• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 19
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Evoluční vztahy tetraploidních zástupců skupiny Galium pusillum (sekce Leptogalium) na území střední Evropy. Alopatrická diferenciace českého endemického druhu G. sudeticum. / Evolutionary history of tetraploid representatives Galium pusillum group (sect. Leptogalium) in central Europe. Allopatric differentiation of Czech endemic species G. sudeticum

Knotek, Adam January 2014 (has links)
The presented study tries to reveal the evolutionary history of polyploid complex Galium pusillum aiming on a rare czech endemic species G. sudeticum, an ideal model to study allopatric speciation in the context of Central European (post)glacial development. The species G. sudeticum grows in Krkonose Mts. and on serpentines in western Bohemia (Slavkovský les) more than 200 kilometers away. Our morphological and molecular data suggest a clearly different history of its two isolated areas. The populations in Krkonose Mts. are probable relics of mountainous species G. anisophyllon which was there on its northern border of occurence and hybridized with lowland species G. valdepilosum during postglacial vegetations shifts. This fact is well supported by intermediate position of Krkonose Mts. populations in both morphological and molecular AFLP analyses and by sharing the same chloroplast haplotype with geographically close lowland populations. On the other hand the serpentine lowland populations in western Bohemia are both morphologicaly and genetically indistinguishable from G. valdepilosum. Distinct genetic lineage of few populations belonging to G. valdepilosum (incl. one traditionaly referred as G. sudeticum) was found in western Bohemia and Bavaria, located on relic stands (calcareous and serpentine...
12

Synthesis And Characterization Of One-Dimensional Oxide Nanostructures

Vanithakumari, S C 07 1900 (has links)
Nanostructured materials especially, one-dimensional (1D) nanostructures have unique physical, chemical, mechanical properties and are the building blocks for a range of nanoscale devices. The procedure employed for the synthesis of nanostructures involves the use of sophisticated instruments or rigorous chemical reactions. The motivation of our work is to develop a strategy that is simple, cost effective and applicable to a host of oxide materials. Nanostructures of various oxides have been grown from the metal as the source material. 1D ZnO nanostructures have been obtained by simply heating Zn metal in ambient air at temperatures below 600 °C. The nanostructures grow on the surface of the source material and the morphology is controlled by monitoring the curvature of the source material. This technique has an added advantage that neither any catalyst nor any gas flow is required. Tetrapods of ZnO are obtained when Zn is heated above 700 °C in ambient air. It has been shown that the morphology and the aspect ratio (length-to-diameter ratio) of the tetrapods depend on the temperature and the temperature gradient. Photoluminescence studies reveal good optical quality ZnO nanostructures. The technique employed to synthesize 1D ZnO nanostructures has been checked for other oxides. The temperature required for the synthesis of Ga2O3 nanostructures is 1200 °C. Many researchers have shown that Ga2O3 emits in the blue-green region. A red emission is required to get the impression of white light which has been seen for nitrogen doped Ga2O3. As the temperature is very high and Ga is heated in ambient air, unintentional nitrogen doping of 1D Ga2O3 nanostructures is obtained which is the reason for white light emission. The morphology of Ga2O3 nanostructures has been controlled by monitoring the curvature of the starting material as is the case of ZnO. Similar technique has also been employed for the synthesis of CuO nanostructures. The morphology is temperature dependent and 1D CuO nanostructures are obtained when the synthesis temperature is between 400 and 600 C. Possible growth mechanisms have been proposed for all these oxide materials. The entire thesis is based on the results discussed above. It has been organized as follows: Chapter 1 deals with the introduction to nanostructures, importance of 1D nanostructures, the specific applications of different morphologies, materials that are widely explored in the synthesis of nanostructures and different approaches to the synthesis of nanostructures. Growth mechanisms like VLS, VS and SLS are briefly discussed. A brief review on the basic physical properties, applications and different morphologies of ZnO, Ga2O3 and CuO is outlined with emphasis to the various synthesis techniques. Finally the aim and scope of the present work is discussed. Chapter 2 describes the experimental setup used for the synthesis and the basic principles of characterization techniques like x-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), energy dispersive spectrum (EDS), electron energy loss spectroscopy (EELS), photoluminescence (PL), Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), UV-Visible spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR) and thermogravimetric analysis (TGA). Chapter 3 deals with the synthesis of 1D ZnO nanostructures with different morphologies such as nanoneedles, nanorods, nanobelts from Zn powder/granule. The growth process is found to be different from the conventional VS mechanism. The advantage and the versatility of the method is emphasized. In this method, neither a catalyst nor any gas flow is required for the synthesis of oxide nanostructures. Depending upon the Zn powder or Zn granules as the starting material different nanostructures of ZnO have been synthesized. The as-synthesized materials are characterized by XRD, SEM, HRTEM, EDS, TGA and Raman spectroscopy and the results are discussed. Chapter 4 describes the controlled growth of ZnO tetrapods and the influence of temperature and temperature gradient on the growth process. Though there are several methods to synthesize ZnO tetrapods and it has been established that ZnO tetrapods can be synthesized by heating Zn in air, it is advantageous to grow tetrapods of different morphologies with different lengths. The large scale synthesis of ZnO tetrapods by heating Zn in air ambient is discussed in this chapter. The key parameters that control the diameter, length, and morphology of tetrapods are identified. It is shown that the morphology and dimensions of the tetrapods depend not only on the vaporization temperature but also on the temperature gradient of the furnace. The influence of vaporization temperature and growth temperature on the morphology of the tetrapods is discussed elaborately. Chapter 5 explains the one-step synthesis of nitrogen doped Ga2O3 nanostructures of different morphologies and the different growth mechanisms. The experimental method employed for the synthesis of nanostructures is simple and is different from the other reported methods. Neither any catalyst/substrate preparation nor any gas flow is required for the synthesis of Ga2O3 nanostructures. The synthesis involves the heating of molten Ga at high temperatures. Single crystalline monoclinic phase of nitrogen-doped Ga2O3 nanorods, nanobelts and nanoneedles are obtained by this method. The morphology is controlled by monitoring the curvature of the Ga droplet which is achieved by using different substrates. Possible growth processes of different morphology have been proposed. Chapter 6 includes some surprising results on the white light emission of Ga2O3 nanorods. High synthesis temperature generates a high vapor pressure suitable for the growth of Ga2O3 nanorods, creates oxygen vacancy and incorporates nitrogen from the ambient. The oxygen vacancy is responsible for the bluish-green emission, while nitrogen is responsible for the red emission. As a consequence, white light emission is observed from Ga2O3 nanorods when irradiated with UV light. The interesting point is that neither post-treatment of the nanorods nor size control is required for white light emission. Chapter 7 describes the synthesis of CuO nanostructures by heating Cu foil in air ambient. This is an attempt to check whether the synthesis technique employed for ZnO and Ga2O3 is applicable to other oxides. The as-synthesized CuO nanostructures are characterized by XRD, SEM, HRTEM, EDS, TGA, UV-visible, FTIR and the results are discussed. Chapter 8 gives the conclusions and the overall summary of the thesis.
13

Metodologia de aquisição de dados e análise por software, para sistemas de coincidências 4pß-? e sua aplicação na padronização de radionuclídeos, com ênfase em transições metaestáveis / Data acquisition with software analysis methodology for 4pß-? coincidence systems and application in radionuclide standardization, with emphasis on metastable transitions

BRANCACCIO, FRANCO 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:41:56Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:04:33Z (GMT). No. of bitstreams: 0 / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
14

Estudo de materiais adsorvedores para o preparo de geradores de Ge-68/Ga-68 / Studies of adsorber materials for preparing sup(68)Ge/sup(68)Ga generators

BRAMBILLA, TANIA de P. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:41:57Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:04:43Z (GMT). No. of bitstreams: 0 / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
15

Simulações atomísticas do gálio super-resfriado / Atomistic simulations of supercooled gallium

Carvajal Jara, Diego Alejandro 13 August 2018 (has links)
Orientador: Maurice de Koning / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-13T12:16:33Z (GMT). No. of bitstreams: 1 CarvajalJara_DiegoAlejandro_M.pdf: 4649880 bytes, checksum: d014cd5c835938e4643e478fa70353be (MD5) Previous issue date: 2009 / Resumo: Recentemente tem sido proposta a existência de uma transição líquido-líquido em substâncias puras com o propósito de explicar alguns comportamentos anômalos como os incrementos de funções resposta (compressibilidade isotérmica, coeficiente de expansão térmica, calor específico) ao diminuir a temperatura de um líquido. A existência deste tipo de transição foi demostrada experimentalmente para o fósforo por dispersão de raios X, e através de simulações atomísticas ou de primeiros princípios para a água, o silício, o carbono, etc. A compreensão detalhada deste tipo de transição está intimamente relacionada à questão fundamental de quais fatores físicos controlam as propriedades de um líquido, e portanto o estudo desta é de grande importância para o desenvolvimento de novas tecnologias, a síntese de novos materiais e o controle de suas propriedades. Neste trabalho realizamos simulações atomísticas sobre um sistema de 1152 partículas de Gálio submetidas a um potencial semi-empírico MEAM, com condições periódicas de contorno. Com estas simulações procuramos uma transição líquido-líquido no Gálio através de um processo de eliminação de três teorias. Inicialmente mostramos que o limite de metaestabilidade do líquido super-aquecido tem um comportamento monótono decrescente no plano de fase P-T. Posteriormente nosso sistema apresenta histerese, uma descontinuidade no volume, estruturas locais diferentes, duas fases que fluem, e um calor latente característico de uma transição de fase de primeira ordem. Por todas estas razões concluímos que o sistema simulado apresenta um transição líquido-líquido de primeira ordem. Adicionalmente foram realizadas compressões e expansões isotérmicas para temperaturas diferentes, observando que estes processos também apresentam histerese e que ela diminui com o aumento da temperatura, indicando assim a possível existência de um segundo ponto crítico e a finalização da transição líquido-líquido. Finalizamos o trabalho com a obtenção e a caracterização de uma possível nova fase cristalina do Gálio cuja estrutura ainda não tem sido obtida experimentalmente. Esta fase foi obtida por casualidade durante o estudo da existência de uma transição líquido-líquido no Gálio ao tencionar o Gálio a -1.6GPa. Sua estrutura é do tipo ortorrômbica com uma simetria Cmcm (grupo espacial 63) e sua principal diferença do Gálio-I é a orientação dos dímeros de Gálio, que nesta nova fase estão dispostos paralelamente. Simulações por DFT mostraram que esta nova fase é metaestável a pressão nula e chega a ser estável a pressões negativas abaixo de ~ 1.5GPa. / Abstract: Recently, the existence of a liquid-liquid transition in pure substances has been proposed as an explanation of anomalous behaviors such as the increase of response functions (isothermal compressibility, coefficient of thermal expansion, specific heat) with decreasing temperature displayed by some liquids. The existence of this type of transition has been demonstrated experimentally for phosphorous by X-ray diÿraction, and through atomistic simulations for water, silicon and carbon. The detailed understanding of this type of transition is closely related to the fundamental question of which physical factors control the properties of a liquid. Therefore, the study of this phenomenon is of great importance for the development of new technologies, the synthesis of new materials and the control of their properties. In this work, we carry out a series of atomistic simulations of a system containing 1152 Gallium atoms described by a semi-empirical Modified Embedded-Atom Model subject to periodic boundary conditions. By means of these simulations we search for a liquid-liquid transition in Gallium by means of a process of elimination of three theories. Initially we show that the limit of metastability of the superheated liquid has a decreasing monotonous behavior in the pressure-temperature phase diagram. Subsequently, our system presents hysteresis, a discontinuity in volume, two phases that have different local atomic structures and display diffusion, and a latent heat, all characteristic of a first-order phase transition. For all these reasons we conclude that the simulated system presents a liquid-liquid phase transition of first-order in the supercooled regime. In addition, we carried out several simulations of isothermal compressions and expansions for different temperatures. These results also show hysteresis although it is found to decrease with increasing temperature, thus indicating the possible existence of a second critical point at which the liquid-liquid transition ends. We finish our studies with the discovery and characterization of a crystalline phase of Gallium whose structure has not been observed experimentally. This phase was obtained by chance during the study of the existence of a liquid-liquid transition in Gallium under tension of -1.6GPa. Its structure is of the orthorhombic type with Cmcm symmetry (space group 63). Its main difference with respect to the Gallium-I phase is that in the new phase the Gallium dimers are disposed in a parallel fashion. Subsequent DFT simulations show that this new phase is metastable at zero pressure and predict it to become stable with respect to Gallium-I arrives at negative pressures below ~1.5GPa. / Mestrado / Física da Matéria Condensada / Mestre em Física
16

Studium interakce iontů inertních plynů a galia s povrchy a tenkými vrstvami pomocí rozptylu nízkoenergiových iontů LEIS / Interaction of the noble gas ions and gallium with surfaces and thin layers studied by Low Energy Ion Scattering LEIS

Chmelický, Martin January 2019 (has links)
In this thesis we study the interaction of helium, neon, argon and gallium ions with graphene. The graphene structure is contaminated with gallium ions during the graphene processing by focused gallium beam (FIB). The graphene properties are affected, e.g. reducing the electrical conductivity. The aim of this thesis is to verify the effect of selected ion beams on the graphene structure and select suitable ion beam for sputtering. Furthermore, the modification of standard heating stage used in LEIS instrument (Qtac 100) was designed and implemented. The LEIS instrument is connected to the complex UHV system for deposition and analysis of nanostructures – SPECS. This modification allows analysis of selected nanoparticles on suitable substrate at the elevated temperature.
17

Aplikace fokusovaného iontového a elektronového svazku v nanotechnologiích / Application onf the Focused Ion on Electron Beam in Nanotechnologies

Šamořil, Tomáš January 2016 (has links)
Nowadays, the systems that allow simultaneous employment of both focused electron and ion beams are very important tools in the field of micro- and nanotechnology. In addition to imaging and analysis, they can be used for lithography, which is applied for preparation of structures with required shapes and dimensions at the micrometer and nanometer scale. The first part of the thesis deals with one lithographic method – focused electron or ion beam induced deposition, for which a suitable adjustment of exposition parameters is searched and quality of deposited metal structures in terms of shape and elemental composition studied. Subsequently, attention is paid also to other types of lithographic methods (electron or ion beam lithography), which are applied in preparation of etching masks for the subsequent selective wet etching of silicon single crystals. In addition to optimization of mentioned techniques, the application of etched silicon surfaces for, e.g., selective growth of metal structures has been studied. The last part of the thesis is focused on functional properties of selected 2D or 3D structures.
18

Optical studies and biological applications of spins in semiconductors

Jung, Young Woo 25 July 2011 (has links)
No description available.
19

Caractérisation électrique multi-échelle d'oxydes minces ferroélectriques / Multi-scale electrical characterization of ferroelectric thin films

Martin, Simon 12 December 2016 (has links)
Les matériaux ferroélectriques sont des matériaux qui possèdent une polarisation spontanée en l'absence de champ électrique, leur conférant plusieurs propriétés intéressantes du point de vue des applications possibles. La réduction de l'épaisseur des couches ferroélectriques vers des films minces et ultra-minces s'est avérée nécessaire notamment en vue de leur intégration dans les dispositifs de la micro et nano-électronique. Cependant, cette diminution a fait apparaître certains phénomènes indésirables au sein des couches minces tels que les courants de fuite. La caractérisation électrique de ces matériaux reste donc un défi afin de comprendre les mécanismes physiques en jeu dans ces films, d'autant qu'une information à l'échelle très locale est maintenant requise. Il est donc nécessaire de faire progresser les techniques de mesure électrique pour atteindre ces objectifs. Durant cette thèse, nous mesurons la polarisation diélectrique de l'échelle mésoscopique jusqu'à l'échelle nanométrique en utilisant des caractérisations purement électriques constituées de mesures Polarisation-Tension, Capacité-Tension et Courant-Tension mais aussi des mesures électromécaniques assurées par une technique dérivée de la microscopie à force atomique et nommée Piezoresponse Force Microscopy. Au cours de nos travaux, nous montrons la limite de certaines techniques de caractérisation classiques ainsi que les artéfacts affectant la mesure électrique ou électromécanique et pouvant mener à une mauvaise interprétation des résultats de mesure. Afin de pousser nos investigations plus loin, nous avons développé de nouvelles techniques de mesure pour s'affranchir de certains signaux parasites dont nous exposerons le principe de fonctionnement. Nous présentons les premières mesures directes de polarisation rémanente à l'échelle du nanomètre grâce à une technique que nous nommons nano-PUND. Ces techniques et méthodes sont appliquées à une variété importante de matériaux tels que Pb(Zr,Ti)O3, GaFeO3 ou BaTiO3 dont, pour certains, la ferroélectricité n'a jamais été démontrée expérimentalement sans ambiguïté. / Ferroelectric materials show a spontaneous dielectric polarisation even in the absence of applied electric field, which confers them interesting possibilities of applications. The reduction of the thickness of ferroelectric layers towards ultra-thin values has been necessary in view of their integration in micro and nano-electronic devices. However, the reduction of thickness has been accompanied by unwanted phenomena in thin layers such as tunneling currents and more generally leakage currents. The electrical characterization of these materials remains a challenge which aims at better understanding the physical mechanisms at play, and requires now a nanometric spatial resolution. To do so, it is thus mandatory to enhance the techniques of electrical measurement. In this work, we measure the dielectric polarisation of ferroelectric films from mesoscopic scale down to the nanometric scale using purely electric characterisation techniques (Polarisation vs Voltage, Capacitance vs Voltage, Current vs Voltage), but also electro-mechanical techniques like Piezoresponse Force Microscopy which derives from Atomic Force Microscopy. We show the limits of several classical techniques as well as the artefacts which affect electrical or electro-mechanical measurement and may lead to an incorrect interpretation of the data. In order to push the investigation further, we have developed and we describe new measurement techniques which aim at avoiding some parasitic signals. We present the first direct measurement of the remnent polarisation at the nanoscale thanks to a technique which we call « nano-PUND ». These techniques and methods are applied to a large variety of materials like Pb(Zr,Ti)O3, GaFeO3 or BaTiO3 which (for some of them), ferroelectricity has not been measured experimentally.

Page generated in 0.0386 seconds