• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 285
  • 92
  • 49
  • 22
  • 15
  • 10
  • 9
  • 9
  • 8
  • 5
  • 4
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 550
  • 102
  • 95
  • 88
  • 88
  • 88
  • 43
  • 40
  • 37
  • 34
  • 33
  • 33
  • 33
  • 31
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

A Hydrological Framework for Geo-referenced Steady-State Exposure Assessment in Surface Water on the Catchment Scale

Wissing, Jutta 30 September 2010 (has links)
The major benefit of geo-referenced exposure modelling tools is the provision of spatially distributed information on expected environmental concentrations. This allows for identifying local and regional concentration differences in the environment which facilitates the development of efficient mitigation strategies. Predicted substance concentrations in the environment are governed by emission rates and representation of the substances' transport and transformation processes on the one hand and by the description of the spatial environmental heterogeneity and temporal variability on the other hand. The shape of river basins and streamflow variability within them is a product of physiographic and climatic factors like e. g. topography, land use, precipitation, or evapotranspiration. These factors are very variable in space and time. This heterogeneity in river basins may have an impact on surface water concentrations of various substances. In this work a hydrological framework for geo-referenced exposure assessment in river networks has been developed which predominantly addresses spatial heterogeneity of river basins. The theoretical background for parameterising a river network for the application of GREAT-ER (Geo-referenced Regional Exposure Assessment Tool for European Rivers) is elaborated and implemented. Quantity of discharge, flow velocity of river water and depth of river bed have to be determined at any location in a river network for the representation of substance dilution, transport and degradation. Temporal variability is handled by a probabilistic approach which demands choice and parameterisation of probability distribution functions to describe the river network characteristics. It is substantiated that discharge and its variation can be described by a lognormal probability distribution. This distribution can be parameterised by spatially distributed information on effective precipitation and specific low flow discharge from the German Hydrological Atlas. Geoprocessing methods are applied to couple information from these maps and the river network. Evaluation of discharge probability distributions by means of gauging data demonstrates good agreement. River depth and flow velocity are estimated on the basis of spatially distributed river structure data and therefore account for actual river morphology more than former approaches do. A comparison with hitherto used flow velocity and depth estimation shows significant differences which trigger perceivable differences in surface water concentration estimates. Identification of the sensitivity of hydrological parameters in terms of chemical fate estimation attaches importance to spatial explicit consideration of river networks. The main benefit of the presented methods is comprehensive incorporation of geo-referenced river basin characteristics into the data basis for the GREAT-ER model because this provides the basis for successful prediction of surface water concentrations by GREAT-ER.
422

Antenna for GNSS Reception in GEO-Orbit

Magnusson, Patrick January 2014 (has links)
There are a number of global navigation satellite systems (GNSS), in use or planed, which are used for navigation on earth but also for autonomous navigation of satellites in low earth orbit (LEO). It would be desirable to also have autonomous navigation in geosynchronous earth orbit (GEO) to reduce costs and make it possible to get higher accuracy on the position of the satellite. One part of the navigation system is the GNSS antenna which is examined in this master thesis. The specifications of the antenna were first decided and then three antenna alternatives were investigated in greater detail: a monofilar helix antenna, a three element circular array antenna and a twelve element circular array antenna. The result was that they would all work as a GNSS antenna in GEO but none could be judged to be the best under all circumstances. The size requirement for the mission and the used GNSS receiver would primarily decide which fits the mission best. / Det finns ett antal världstäckande navigeringssystem (GNSS), i användning och planerade, som används för navigation på jorden fast också för autonom navigation för satelliter i låg bana runt jorden. Det skulle också vara önskvärt att använda autonom navigation för satelliter i geostationär omloppsbana (GEO) för att reducera kostnaden och få högre positions noggrannhet. En del av navigationssystemet är GNSS antennen vilken är undersökt i detta examensarbete. Specifikationerna för antennen bestämdes först och sedan undersöktes tre olika antennalternativ i detalj: en monofilär helixantenn, en tre elements cirkulär gruppantenn och en tolv elements cirkulär gruppantenn. Resultatet var att alla alternativen skulle fungera som en GNSS antenn i GEO-bana fast inget av alternativen är bäst i alla förhållanden. Storlekskraven för uppdraget och vilken GNSS mottagare som skall användas påverkar vilket av alternativen som passar uppdraget bäst.
423

Investigation of the Iron Oxidation Kinetics in Mantua Reservoir

Lathen, Scott H. 08 May 2007 (has links) (PDF)
Irrigation of the municipal cemetery in Brigham City, Utah resulted in stained headstones in 2001 and 2002. The water used in the irrigation came from Mantua reservoir, a medium sized impoundment situated near the mouth of Box Elder Canyon. In order for Brigham City to establish a city wide secondary pressurized irrigation system using water from Mantua reservoir, the cause and the source of staining problem must be determined. Previous research (Wallace 2006) determined that the source of the staining was the reduction of iron found in Mantua Reservoir sediments that occurred when seasonal variations in the reservoir caused anaerobic conditions. The reduced iron then dissolved in the water and was used in the irrigation system, causing re-oxidation of the iron. The oxidized iron then precipitated out on the headstones causing the staining. The purpose of this investigation is to determine the iron oxidation kinetics after the re-aeration of the water which will help determine appropriate mitigation methods. A secondary purpose is to confirm the Mantua reservoir's capacity to become anaerobic, resulting in the conditions which cause staining. Using laboratory investigations and computer modeling, I determined that on re-aeration, fifty percent of the dissolved iron in the water precipitates in five hours. Using first-order kinetics to model this process, I found the rate constant of the kinetic reaction to be 0.0029 min-1. Fitting a geochemical computer model of the iron oxidation kinetics in Mantua reservoir, which uses a higher-order kinetics model to better model this process, to experimental kinetic data yielded a rate constant of 4x1013 /atm x min. I also recreated the staining process in the laboratory using concrete. This was successful and provided visual evidence that the iron precipitates out of the water and stained the concrete within a couple of hours of application. Field data collected from Mantua reservoir showed that the dissolved oxygen concentration in the reservoir drops regularly below levels consistent with equilibrium to the atmosphere. While my field measurements did not record anaerobic conditions, based on the patterns shown, this study shows that it would be possible for anaerobic conditions to occur during warmer weather.
424

Construction of Large Geo-Referenced Mosaics from MAV Video and Telemetry Data

Heiner, Benjamin Kurt 12 July 2009 (has links) (PDF)
Miniature Aerial Vehicles (MAVs) are quickly gaining acceptance as a platform for performing remote sensing or surveillance of remote areas. However, because MAVs are typically flown close to the ground (1000 feet or less in altitude), their field of view for any one image is relatively small. In addition, the context of the video (where and at what orientation are the objects being observed, the relationship between images) is unclear from any one image. To overcome these problems, we propose a geo-referenced mosaicing method that creates a mosaic from the captured images and geo-references the mosaic using information from the MAV IMU/GPS unit. Our method utilizes bundle adjustment within a constrained optimization framework and topology refinement. Using real MAV video, we have demonstrated our mosaic creation process on over 900 frames. Our method has been shown to produce the high quality mosaics to within 7m using tightly synchronized MAV telemetry data and to within 30m using only GPS information (i.e. no roll and pitch information).
425

Creating Marginality And Reconstructing Narrative: Reconfiguring Karen Social And Geo-political Alignment

Verchot, Barbara 01 January 2008 (has links)
Pre-modern conceptualization of shifting borderlands and territories rather than fixed boundaries often allowed for the dynamic flow of peoples between polities. Until the late 1800s and the colonization of Burma in 1886 by the British Empire, this permeability of the borders of its territory was how Siam (currently Thailand) viewed its geo-political sphere (Thomson 1995:272). Britain extended the boundaries of its empire beyond India to guarantee the economic interests of the British Empire. With this push eastward, Siam abutted a polity that rejected the idea of shifting borderlands. The British ascribed to the modern concept of non-permeability of borders. This concept brought with it a rigidity of perception that extended beyond geographical frameworks to also psychologically limit the interpersonal connections of Siam's multi-ethnic minority populations and the Tai ethnic majority (Keyes 1979:54, Marlowe 1979:203, Thomson 1995:281). Ancient residents of what was once the borderland area, the Karen, lost their status as a valuable part of a symbiotic relationship with the dominant Thai polity and were placed within a discourse of opposing binary factions. The Karen, once respected as stewards of the remote forestlands, became part of a larger group of peoples all of which have been labeled as the "hill tribes" (Trakarnsuphakorn 1997:218). This paper addresses how globalization and these social and political changes have resulted in marginalizing a group of diverse peoples who are now viewed as a threat to the security of the nation-states in which they reside. The discussion continues with a look at how the narrative about the Karen has changed and introduces a proposal for constructing a new empowering for the Karen.
426

Анализ идентичности жителей территории как этап разработки геобренда : магистерская диссертация / Analysis of the identity of the inhabitants of the territory as a stage in the development of a geo-brand

Брынь, К. А., Bryn, K. A. January 2020 (has links)
Цель данной работы – проанализировать идентичность жителей областного центра для разработки программы ее реновации. Объектом исследования диссертационной работы является городская идентичность как этап разработки геобренда. Предмет исследования – ресурсы формирования единой городской идентичности жителей Кургана. Брендинг в настоящее время становится важнейшей частью процесса формирования стратегии развития каждого города, так как является инструментом управления взаимоотношениями с различными целевыми аудиториями, поддерживает выполнение целей социально-экономического развития и отражает все элементы уникальной идентичности региона. Автор в своем исследовании для полного осмысления технологии геобрендинга изучил этапы продвижения территории. Для этого автор опирался на подход Д. В. Визгалова, который из всех этапов построения геобренда ключевым выделяет изучение территориальной идентичности. Таким образом, был сформулирован вывод, что важным и основополагающим элементом, на котором строится концепция бренда города является изучение идентичности территории. Автор исследования основывал свой анализ идентичности, изучая такую территорию как областной центр город Курган. Курган – это большой современный город, но в социально- и культурно-психологическом плане, Курган – типичный малый город. Такой образ не может не придавать «провинциальности» всей территории. Кризис идентичности снижает степень отождествления индивида с городом, означает потерю им ценностной ориентации и, как следствие, способствует межтерриториальной эмиграции. Таким образом, городская идентичность нуждается в управлении ее воспроизводством. Совокупные знания, полученные в результате анализа идентичности жителей города Курган, помогли выявить уникальный ресурс города – градообразующее предприятие ЗАО «Курганстальмост». Разработанная автором коммуникационная программа, на основе предприятия ЗАО «Курганстальтмост»: «Курган – лидер производства», способствует формированию единой городской идентичности жителей территории. Следовательно, практическая ценность данного исследования заключается в том, что разработанная коммуникационная программа, на основе промышленного предприятия ЗАО «Курганстальмост» может послужить началом для работы по усилению городской идентичности жителей территории. / The purpose of this work is to analyze the identity of residents regional center to develop a program for its renovation. The object of research of the dissertation work is urban identity as a stage of geo-brand development. The subject of research is the resources of forming a unified urban identity of the inhabitants of Kurgan. Branding is now becoming a critical part of the process formation of the development strategy of each city, as it is relationship management tool with various target audiences, supports the achievement of the goals of socio-economic development and reflects all the elements of the unique identity of the region. Author in his research for a complete understanding of technology geo-branding has studied the stages of territory promotion. For this, the author relied on the approach of D.V. Vizgalov, which of all stages of building Geobrand is key to the study of territorial identity. Thus, the conclusion was formulated that it is important and the fundamental element on which the city brand concept is built is the study of the identity of the territory. The study author based his analysis of identity by examining such territory as a regional center, the city of Kurgan. Kurgan is big a modern city, but in social, cultural and psychological terms, Kurgan is a typical small town. Such an image cannot but impart "Provinciality" of the entire territory. Identity crisis reduces the degree identification of the individual with the city means the loss of their value orientation and, as a result, promotes inter-territorial emigration. Thus, urban identity needs to be managed reproduction The aggregate knowledge gained from identity analysis residents of the city of Kurgan, helped to identify a unique resource of the city -city-forming enterprise CJSC "Kurganstalmost". A communication program developed by the author, based on enterprises of JSC "Kurganstaltmost": "Kurgan - the leader of production", contributes to the formation of a single urban identity of residents territory. Therefore, the practical value of this study lies in the fact that the developed communication program, on the basis of the industrial enterprise CJSC "Kurganstalmost" can serve as a starting point for work to strengthen the urban identity of residents territory.
427

Machine Learning for Improvement of Ocean Data Resolution for Weather Forecasting and Climatological Research

Huda, Md Nurul 18 October 2023 (has links)
Severe weather events like hurricanes and tornadoes pose major risks globally, underscoring the critical need for accurate forecasts to mitigate impacts. While advanced computational capabilities and climate models have improved predictions, lack of high-resolution initial conditions still limits forecast accuracy. The Atlantic's "Hurricane Alley" region sees most storms arise, thus needing robust in-situ ocean data plus atmospheric profiles to enable precise hurricane tracking and intensity forecasts. Examining satellite datasets reveals radio occultation (RO) provides the most accurate 5-25 km altitude atmospheric measurements. However, below 5 km accuracy remains insufficient over oceans versus land areas. Some recent benchmark study e.g. Patil Iiyama (2022), and Wei Guan (2022) in their work proposed the use of deep learning models for sea surface temperature (SST) prediction in the Tohoku region with very low errors ranging from 0.35°C to 0.75°C and the root-mean-square error increases from 0.27°C to 0.53°C over the over the China seas respectively. The approach we have developed remains unparalleled in its domain as of this date. This research is divided into two parts and aims to develop a data driven satellite-informed machine learning system to combine high-quality but sparse in-situ ocean data with more readily available low-quality satellite data. In the first part of the work, a novel data-driven satellite-informed machine learning algorithm was implemented that combines High-Quality/Low-Coverage in-situ point ocean data (e.g. ARGO Floats) and Low-Quality/High-Coverage Satellite ocean Data (e.g. HYCOM, MODIS-Aqua, G-COM) and generated high resolution data with a RMSE of 0.58◦C over the Atlantic Ocean.The second part of the work a novel GNN algorithm was implemented on the Gulf of Mexico and showed it can successfully capture the complex interactions between the ocean and mimic the path of a ARGO floats with a RMSE of 1.40◦C. / Doctor of Philosophy / Severe storms like hurricanes and tornadoes are a major threat around the world. Accurate weather forecasts can help reduce their impacts. While climate models have improved predictions, lacking detailed initial conditions still limits forecast accuracy. The Atlantic's "Hurricane Alley" sees many storms form, needing good ocean and atmospheric data for precise hurricane tracking and strength forecasts. Studying satellite data shows radio occultation provides the most accurate 5-25 km high altitude measurements over oceans. But below 5 km accuracy remains insufficient versus over land. Recent research proposed using deep learning models for sea surface temperature prediction with low errors. Our approach remains unmatched in this area currently. This research has two parts. First, we developed a satellite-informed machine learning system combining limited high-quality ocean data with more available low-quality satellite data. This generated high resolution Atlantic Ocean data with an error of 0.58°C. Second, we implemented a new algorithm on the Gulf of Mexico, successfully modeling complex ocean interactions and hurricane paths with an error of 1.40°C. Overall, this research advances hurricane forecasting by combining different data sources through innovative machine learning techniques. More accurate predictions can help better prepare communities in hurricane-prone regions.
428

Identification of Key Biomarkers in Bladder Cancer: Evidence from a Bioinformatics Analysis

Zhang, Chuan, Berndt-Paetz, Mandy, Neuhaus, Jochen 18 April 2023 (has links)
Bladder cancer (BCa) is one of the most common malignancies and has a relatively poor outcome worldwide. However, the molecular mechanisms and processes of BCa development and progression remain poorly understood. Therefore, the present study aimed to identify candidate genes in the carcinogenesis and progression of BCa. Five GEO datasets and TCGA-BLCA datasets were analyzed by statistical software R, FUNRICH, Cytoscape, and online instruments to identify differentially expressed genes (DEGs), to construct protein‒protein interaction networks (PPIs) and perform functional enrichment analysis and survival analyses. In total, we found 418 DEGs. We found 14 hub genes, and gene ontology (GO) analysis revealed DEG enrichment in networks and pathways related to cell cycle and proliferation, but also in cell movement, receptor signaling, and viral carcinogenesis. Compared with noncancerous tissues, TPM1, CRYAB, and CASQ2 were significantly downregulated in BCa, and the other hub genes were significant upregulated. Furthermore, MAD2L1 and CASQ2 potentially play a pivotal role in lymph nodal metastasis. CRYAB and CASQ2 were both significantly correlated with overall survival (OS) and disease-free survival (DFS). The present study highlights an up to now unrecognized possible role of CASQ2 in cancer (BCa). Furthermore, CRYAB has never been described in BCa, but our study suggests that it may also be a candidate biomarker in BCa.
429

Large herbivores on permafrost— a pilot study of grazing impacts on permafrost soil carbon storage in northeastern Siberia

Windirsch, Torben, Grosse, Guido, Ulrich, Mathias, Forbes, Bruce C., Göckede, Mathias, Wolter, Juliane, Macias-Fauria, Marc, Olofsson, Johan, Zimov, Nikita, Strauss, Jens 15 February 2024 (has links)
The risk of carbon emissions from permafrost is linked to an increase in ground temperature and thus in particular to thermal insulation by vegetation, soil layers and snow cover. Ground insulation can be influenced by the presence of large herbivores browsing for food in both winter and summer. In this study, we examine the potential impact of large herbivore presence on the soil carbon storage in a thermokarst landscape in northeastern Siberia. Our aim in this pilot study is to conduct a first analysis on whether intensive large herbivore grazing may slow or even reverse permafrost thaw by affecting thermal insulation through modifying ground cover properties. As permafrost soil temperatures are important for organic matter decomposition, we hypothesize that herbivory disturbances lead to differences in ground-stored carbon. Therefore, we analyzed five sites with a total of three different herbivore grazing intensities on two landscape forms (drained thermokarst basin, Yedoma upland) in Pleistocene Park near Chersky. We measured maximum thaw depth, total organic carbon content, δ13C isotopes, carbon-nitrogen ratios, and sediment grain-size composition as well as ice and water content for each site. We found the thaw depth to be shallower and carbon storage to be higher in intensively grazed areas compared to extensively and non-grazed sites in the same thermokarst basin. First data show that intensive grazing leads to a more stable thermal ground regime and thus to increased carbon storage in the thermokarst deposits and active layer. However, the high carbon content found within the upper 20 cm on intensively grazed sites could also indicate higher carbon input rather than reduced decomposition, which requires further studies including investigations of the hydrology and general ground conditions existing prior to grazing introduction. We explain our findings by intensive animal trampling in winter and vegetation changes, which overcompensate summer ground warming. We conclude that grazing intensity—along with soil substrate and hydrologic conditions—might have a measurable influence on the carbon storage in permafrost soils. Hence the grazing effect should be further investigated for its potential as an actively manageable instrument to reduce net carbon emission from permafrost.
430

An investigation of the Ora del Garda wind by means of airborne and surface measurements

Laiti, Lavinia January 2013 (has links)
On fair-weather summer days an intense southerly lake breeze blows across the northern shorelines of Lake Garda (Italy). This wind, known as Ora del Garda, arises regularly in the late morning, and then channels northward into the adjacent Sarca Valley and Lakes Valley, coupling with the local up-valley flow. In the early afternoon, after flowing over an elevated (~400 m high) saddle, the Ora del Garda wind breaks into the Adige Valley north of Trento city; there it flows down on the valley floor, interacting with the local up-valley wind and creating a strongly turbulent flow. The characteristic diurnal cycle of surface meteorological variables determined by the lake-valley coupled circulation is rather well-known, on the basis of climatological analyses of data from surface automatic weather stations operated in the area by local institutions; on the contrary, the valley upper atmosphere structure, i.e. the structure of the atmospheric boundary-layer (ABL), associated with the Ora del Garda development has not yet been investigated. Indeed, in such a complex terrain area, the characterization of the typical structure, spatial variation and depth of the ABL, as well as a sound knowledge of local atmospheric circulation patterns, are of crucial importance for the understanding of the local climate and of air pollution transport and dispersion processes. To meet this lack of knowledge, a series of targeted measurement campaigns, including both intensive surface observations and research flights, were carried out by the Atmospheric Physics Group of the University of Trento in the study area between 1998 and 2001, providing the database for the present work. Five flights of an instrumented motorglider explored specific sections of the valley atmosphere, namely at Lake Garda’s shoreline, in the lower Sarca Valley, in the Lakes Valley, and where the Ora del Garda and the Adige Valley up-valley flow interact. Position, pressure, temperature and relative humidity were measured along spiralling trajectories performed over the above mentioned target areas. Surface observations from a number of weather stations disseminated along the valley floor provided a picture of the diurnal cycles of meteorological quantities determined at the surface by the development of the investigated wind on the flight days. The preliminary processing of the experimental dataset included the application of a suitable procedure to correct airborne temperature data for the time-delay effect induced by the slow-response behavior of the sensor, and required the determination of a proper time constant. The dominant vertical structure of the valley ABL was then deciphered on the basis of vertical “pseudo-soundings” (i.e. mean vertical profiles) of potential temperature and water vapour mixing ratio extracted from airborne data. Shallow mixed layers, surmounted by deeper stable layers, likely to be produced by local subsidence associated with up-slope flows, were detected up-valley. This characteristic pattern is indeed in good accord with ABL structures typically observed in deep Alpine valleys in connection with up-valley winds, as reported in the literature. On the other hand, closer to the lake the potential temperature profile was typically stabilized down to lower heights, due to the onshore advection of colder air from above the water surface. A residual kriging (RK) technique was adopted to map potential temperature fields over 3D high-resolution grids for each explored section of the valley atmosphere, integrating both surface and airborne observations. Exploiting a test-bed database, RK method was preliminarly tested against the interpolation methods commonly used in the literature for mapping airborne data, namely inverse distance, inverse squared distance and natural neighbor methods. The predictive performance of the different methods was assessed by means of a cross-validation procedure, and a critical comparison of the different interpolation results was carried out. Finally, RK resulted the best-performing technique for the specific application. RK-interpolated fields revealed fine-scale local features of the complex ABL thermal structures determined by the Ora del Garda in the study area valleys, revealing at the same time macroscopic features of the thermo-topographically driven wind field, mainly amenable to irregular topography and land cover heterogeneities. In particular, a non-homogeneous penetration of the lake-breeze front across the flat basin facing Lake Garda was detected in the morning, while in the afternoon the presence of a sharp discontinuity in the upper-level vertical stratification, originated by updrafts and downdrafts associated with the lake breeze circulation, was observed. Moreover, a strongly asymmetric potential temperature field, resulting from the contrast between the stable core of the Ora del Garda up-valley flow and an intense up-slope flow layer developing along a bare-rock valley sidewall, was detected in the area of Cavedine Lake in the Lakes Valley. Further up-valley, RK-interpolated fields displayed a thermal structure compatible with the occurrence of a single-cell cross-valley circulation, likely to be originated by asymmetric solar irradiation and by the local valley curvature. The valley curvature was also found to induce a preferential channeling of the up-valley flow along the northwestern sidewall at the valley end, in proximity of the elevated saddle from where the Ora del Garda overflows into the underlying Adige Valley, giving origin to an anomalous, strong katabatic wind that hinders the regular development of the local up-valley wind in the area north of Trento. Here the westerly inflow from the Lakes Valley feeds a denser wedge of potentially cooler air, which forces the local up-valley (i.e. southerly) wind to flow over it. Regridded potential temperature fields provided further insight into this flow pattern, revealing the occurrence in the area of a hydraulic jump structure, due to the blocking exerted on the flow by the eastern Adige Valley sidewall. This induced a pronounced deepening of the local mixed layer, which was likely produced by the highly-turbulent flow conditions that usually develop here following the Ora del Garda outbreak.

Page generated in 0.0485 seconds