• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 105
  • 9
  • Tagged with
  • 114
  • 112
  • 25
  • 16
  • 14
  • 13
  • 10
  • 10
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

2D and 3D Seismic Surveying at the CO2SINK Project Site, Ketzin, Germany: The Potential for Imaging the Shallow Subsurface

Yordkayhun, Sawasdee January 2008 (has links)
Seismic traveltime inversion, traveltime tomography and seismic reflection techniques have been applied for two dimensional (2D) and three dimensional (3D) data acquired in conjunction with site characterization and monitoring aspects at a carbon dioxide (CO2) geological storage site at Ketzin, Germany (the CO2SINK project). Conventional seismic methods that focused on investigating the CO2 storage and caprock formations showed a poor or no image of the upper 150 m. In order to fill this information gap, an effort on imaging the shallow subsurface at a potentially risky area at the site is the principal goal of this thesis. Beside this objective, a seismic source comparison from a 2D pilot study for acquisition parameter testing at the site found a weight drop source suitable with respect to the signal penetration, frequency content of the data and minimizing time and cost for 3D data acquisition. For the Ketzin seismic data, the ability to obtain high-quality images is limited by the acquisition geometry, source-generated noise and time shifts due to near-surface effects producing severe distortions in the data. Moreover, these time shifts are comparable to the dominant periods of the reflections and to the size of structures to be imaged. Therefore, a combination of seismic refraction and state-of-the-art processing techniques, including careful static corrections and more accurate velocity analysis, resulted in key improvements of the images and allowed new information to be extracted. The results from these studies together with borehole information, hydrogeologic models and seismic modeling have been combined into an integrated interpretation. The boundary between the Quaternary and Tertiary unit has been mapped. The internal structure of the Quaternary sediments is likely to be complicated due to the shallow aquifer/aquitard complex, whereas the heterogeneity in the Tertiary unit is due to rock alteration associated with fault zones. Some of the major faults appear to project into the Tertiary unit. These findings are important for understanding the potentially risky anticline crest and can be used as a database for the future monitoring program at the site.
62

Seismic Studies of Paleozoic Orogens in SW Iberia and the Middle Urals

Kashubin, Artem January 2008 (has links)
Controlled source seismic methods were employed in this study to investigate the reflectivity and velocity structure of two Hercynian orogens – the Uralides and Variscides. Conventional common depth point (CDP) sections from five reflection seismic campaigns and a velocity model obtained from tomographic inversion of wide-angle observations were the main datasets studied from the Middle Urals. These were complemented with the near-vertical seismic sections and velocity models from the Southern Urals. In the Variscides, conventional CDP processing, along with non-standard processing and synthetic data modeling, were used to obtain and interpret reflection seismic images of the Southwestern Iberian crust. Although, the Uralian and Variscan belts were formed in Late Paleozoic time in apparently similar plate collisional settings, a comparison of the seismic results show that the crust of these two orogens looks quite different at depth. In the Urals, collision of Baltica with Asian terranes (Siberia and Kazakhstan) resulted in a highly diversely reflective crust of 40-45 km thickness. The axial zone of the orogen is characterized by a high velocity crustal root of diffuse reflectivity and an imbricated Moho, with a crustal thickness reaching 55-60 km. The Moho discontinuity is marked by a sharp decrease in reflectivity and is well imaged in most locations except in the crustal root zone. The Southwestern Iberian Variscan crust is 30-35 km thick and is characterized by a highly reflective two-layered structure that resulted from collision of Luarussia and Gondwana, including terranes in-between them. This type of crustal structure is very similar to those imaged in other regions of the Variscan belt in the Europe. The Moho discontinuity is flat and appears to be the deepest reflection. This thesis compares the deep structure of the two orogens and interprets mountain building processes related to late Paleozoic plate movements.
63

2D and 3D Seismic Surveying at the CO2SINK Project Site, Ketzin, Germany: The Potential for Imaging the Shallow Subsurface

Yordkayhun, Sawasdee January 2008 (has links)
<p>Seismic traveltime inversion, traveltime tomography and seismic reflection techniques have been applied for two dimensional (2D) and three dimensional (3D) data acquired in conjunction with site characterization and monitoring aspects at a carbon dioxide (CO<sub>2</sub>) geological storage site at Ketzin, Germany (the CO<sub>2</sub>SINK project). Conventional seismic methods that focused on investigating the CO<sub>2</sub> storage and caprock formations showed a poor or no image of the upper 150 m. In order to fill this information gap, an effort on imaging the shallow subsurface at a potentially risky area at the site is the principal goal of this thesis.</p><p>Beside this objective, a seismic source comparison from a 2D pilot study for acquisition parameter testing at the site found a weight drop source suitable with respect to the signal penetration, frequency content of the data and minimizing time and cost for 3D data acquisition.</p><p>For the Ketzin seismic data, the ability to obtain high-quality images is limited by the acquisition geometry, source-generated noise and time shifts due to near-surface effects producing severe distortions in the data. Moreover, these time shifts are comparable to the dominant periods of the reflections and to the size of structures to be imaged. Therefore, a combination of seismic refraction and state-of-the-art processing techniques, including careful static corrections and more accurate velocity analysis, resulted in key improvements of the images and allowed new information to be extracted. The results from these studies together with borehole information, hydrogeologic models and seismic modeling have been combined into an integrated interpretation. The boundary between the Quaternary and Tertiary unit has been mapped. The internal structure of the Quaternary sediments is likely to be complicated due to the shallow aquifer/aquitard complex, whereas the heterogeneity in the Tertiary unit is due to rock alteration associated with fault zones. Some of the major faults appear to project into the Tertiary unit. These findings are important for understanding the potentially risky anticline crest and can be used as a database for the future monitoring program at the site.</p>
64

Analyses and Application of Ambient Seismic Noise in Sweden : Source, Interferometry, Tomography

Sadeghisorkhani, Hamzeh January 2017 (has links)
Ambient seismic noise from generation to its application for determination of sub-surface velocity structures is analyzed using continuous data recordings from the Swedish National Seismic Network (SNSN). The fundamental aim of the thesis is to investigate the applicability of precise velocity measurements from ambient noise data. In the ambient noise method, a form of interferometry, the seismic signal is constructed from long-term cross correlation of a random noise field. Anisotropy of the source distribution causes apparent time shifts (velocity bias) in the interferometric signals. The velocity bias can be important for the study area (Sweden) which has relatively small velocity variations. This work explores the entire data path, from investigating the noise-source distribution to a tomographic study of southern Sweden. A new method to invert for the azimuthal source distribution from cross-correlation envelopes is introduced. The method provides quantitative estimates of the azimuthal source distribution which can be used for detailed studies of source generation processes. An advantage of the method is that it uses few stations to constrain azimuthal source distributions. The results show that the source distribution is inhomogeneous, with sources concentrated along the western coast of Norway. This leads to an anisotropic noise field, especially for the secondary microseisms. The primary microseismic energy comes mainly from the northeast. The deduced azimuthal source distributions are used to study the level of expected bias invelocity estimates within the SNSN. The results indicate that the phase-velocity bias is less than 1% for most station pairs but can be larger for small values of the ratio of inter-station distance over wavelength. In addition, the nature of velocity bias due to a heterogeneous source field is investigated in terms of high and finite-frequency regimes. Graphical software for phase-velocity dispersion measurements based on new algorithms is presented and validated with synthetic data and by comparisons to other methods. The software is used for phase-velocity measurements, and deduced azimuthal source distributions are used for velocity-bias correction. Derived phase-velocity dispersion curves are used to construct two-dimensional velocity maps of southern Sweden at different periods based on travel-time tomography. The effect of the bias correction is investigated, and velocity maps are interpreted in comparison to previous geological and geophysical information.
65

Stora torget : En geofysisk undersökning med georadar (GPR) av Stora torget i Sigtuna

Calleberg, Kerstin January 2016 (has links)
This paper contains geophysical analysis of the largest town square in Sigtuna, Sweden. The studied area is approximately 736 m2. The purpose of the study was to search for early medieval house remnants and to possibly find structures matching those found during excavations in other parts of the town. The hypothesis is that the town of Sigtuna was planned and that the yards of the town were put out in a special pattern following the main street, which is the same as today. During the day of the geophysical prospection the weather conditions were not optimal. A lot of water at the surface disturbed the instrument and gave a blurred image. It turned out that a lot of contemporary pipes and a large traffic island from the 1930s covered the area. Archaeological structures could only be seen in smaller areas in between later structures. Vague oblong structures could be seen, as well as a distinct smaller square on the eastern part of the area. A large rectangle close to the main street was also observed. None of these structures could be seen in modern maps or photographs and are therefore marked as something that could be of archaeological interest. Some of the structures that were noted were probably part of the original medieval town plan, as judged by their size and location.
66

Data processing of Controlled Source Audio Magnetotelluric (CSAMT) Data / Data processering av Controlled Source Audio Magnetotelluric (CSAMT) data

Rydman, Oskar January 2019 (has links)
During this project three distinct methods to improve the data processing of Controlled Source Audio Magnetotellurics (CSAMT) data are implemented and their advantages and disadvantages are discussed. The methods in question are: Detrending the time series in the time domain, instead of detrending in the frequencydomain. Implementation of a coherency test to pinpoint data segments of low quality andremove these data from the calculations. Implementing a method to detect and remove transients from the time series toreduce background noise in the frequency spectra. Both the detrending in time domain and the transient removal shows potential in improvingdata quality even if the improvements are small(both in the (1-10% range). Due totechnical limitations no coherency test was implemented. Overall the processes discussedin the report did improve the data quality and may serve as groundwork for further improvementsto come. / Projektet behandlar tre stycken metoder för att förbättra signalkvaliten hos Controlled Source Audio Magnetotellurics (CSAMT) data, dessa implementeras och deras för- och nackdelar diskuteras. Metoderna som hanteras är: Avlägsnandet av trender från tidsserier i tidsdomänen istället för i frekvensdomänen. Implementationen av ett koherenstest för att identifiera ”dåliga” datasegment ochavlägsna dessa från vidare beräkningar. Implementationen av en metod för att både hitta och avlägsna transienter (dataspikar) från tidsserien för att minska bakgrundsbruset i frekvensspektrat. Både avlägsnandet av trender samt transienter visar positiv inverkan på datakvaliteten,även om skillnaderna är relativt små (båda på ungefär 1-10%). På grund av begränsningarfrån mätdatan kunde inget meningsfullt koherenstest utformas. Överlag har processernasom diskuteras i rapporten förbättrat datakvaliten och kan ses som ett grundarbete förfortsatta förbättringar inom området.
67

Analyses of Seismic Wave Conversion in the Crust and Upper Mantle beneath the Baltic Shield

Olsson, Sverker January 2007 (has links)
<p>Teleseismic data recorded by broad-band seismic stations in the Swedish National Seismic Network (SNSN) have been used in a suite of studies of seismic wave conversion in order to assess the structure of the crust and upper mantle beneath the Baltic Shield. Signals of seismic waves converted between P and S at seismic discontinuities within the Earth carry information on the velocity contrast at the converting interface, on the depth of conversion and on P and S velocities above this depth. </p><p>The conversion from P to S at the crust-mantle boundary (the Moho) provides a robust tool to constrain crustal thicknesses. Results of such analysis for the Baltic Shield show considerable variation of Moho depths and significantly improve the Moho depth map. Analysis of waves converted from S to P in the upper mantle reveals a layered lithosphere with alternating high and low velocity bodies. It also detects clear signals of a sharp velocity contrast at the lithosphere-asthenosphere boundary at depths around 200 km. </p><p>Delay times of P410s, the conversion from P to S at the upper mantle discontinuity at 410 km depth, were used in a tomographic inversion to simultaneously determine P and S velocities in the upper mantle. The polarisation of P410s was also used to study anisotropy of the upper mantle. Results of these analyses are found to be in close agreement with independently derived results from arrival time tomography and shear-wave splitting analysis of SKS.</p><p>The results presented in this thesis demonstrate the ability of converted wave analysis as a tool to detect and image geological boundaries that involve sharp contrasts in seismic properties. The results also show that this analysis can provide means of studying aspects of Earth’s structure that are conventionally studied using other types of seismic data.</p>
68

3D Geophysical and Geological Modeling in the Skellefte District: Implications for Targeting Ore Deposits

Malehmir, Alireza January 2007 (has links)
<p>With the advancements in acquisition and processing of seismic reflection data recorded over crystalline rocks, building three-dimensional geologic models becomes increasingly favorable. Because of little available petrophysical data, interpretations of seismic reflection data in hardrock terrains are often speculative. Potential field data modeling are sometimes performed in order to reduce the ambiguity of seismic reflection interpretations. The Kristineberg mining area in the western part of the Paleoproterozoic Skellefte Ore District was chosen to construct a pilot three-dimensional geologic model in an attempt to understand the crustal architecture in the region and how the major mineral systems operated in this architecture. To contribute to this aim, two parallel seismic reflection profiles were acquired in 2003 and processed to 20 sec with special attention to the top 4 sec of data. Several reflections were imaged and interpreted by the aid of reflector modeling, borehole data, 2.5D and 3D potential field modeling, and geological observations. Interpretations are informative at the crustal scale and help to construct a three-dimensional geologic model of the Kristineberg mining area. The three-dimensional geologic model covers an area of 30×30 km<sup>2</sup> down to a depth of 12 km. The integrations help to interpret a structural basement to the Skellefte volcanic rocks, possibly with Bothnian Basin metasedimentary affinity. The contact is a shear-zone that separates the two units, generating large fold structures, which can be observed in the region. The interpretations help to divide the Revsund granitic rocks into two major groups based on their present shape and thickness. A large gravity low in the south is best represented by the intrusion of thick dome of Revsund granite. In the north, the low-gravity corresponds to the intrusion of sheet-like Revsund granites. In general, the structure associated with the Skellefte volcanics and the overlying metasedimentary rocks are two thrusts exposing the Skellefte volcanic rocks in the cores of hanging wall anticlinal structures. Lack of coherent reflectivity in the seismic reflection data may be due to complex faulting and folding systems observed in the Skellefte volcanics. Ultramafic sills within the metasedimentary rocks are interpreted to extend down to depths of about 5-6 km. The interpretations are helpful for targeting new VHMS deposits and areas with gold potential. For VHMS deposits, these are situated in the southern limb of a local synformal structure south of the Kristineberg mine, on the contact between the Revsund granite and the Skellefte volcanic rocks. A combination of metasedimentary and mafic-ultramafic rocks are highly gold prospective in the west, similar to observations elsewhere in the region. There are still questions that remain unanswered and need more work. New data in the study area will help to answer questions related to e.g., an enigmatic diffraction seismic signal in Profile 5 and the structural relationship between the Skellefte volcanic rocks and the Malå volcanics. Although the derived 3D geologic model is preliminary and constructed at the crustal scale, it provides useful information to better understand the tectonic evolution of the Kristineberg mining area. </p>
69

A 2D Electrical Resistivity Survey of Palsas in Tavvavuoma, sub-arctic Sweden / Undersökning av palsar med hjälp av elektrisk resistivitetstomografi i Tavvavuoma, norra Sverige

Marklund, Per January 2014 (has links)
Electrical resistivity tomography (ERT) is a commonly used geophysical method to investigate permafrost in the mountain environment, but few studies have employed this method in a permafrost affected peatland. For this thesis, 5 ERT profiles were measured over 17 palsas and peat-plateaus in a palsa peatland environment in Tavvavuoma, northern Sweden, where the primary aim was to investigate the depth to the base of permafrost under the mounds. These depths are also used to estimate the excess ice fraction (EIF), which is indicative of the proportion of segregation ice in the frozen core under the mounds. The internal structure of palsas and the spatial distribution of permafrost was also investigated from the inverted resistivity models. Permafrost thickness was found to range from 5 – 17 m, with the thickest permafrost in the west end of the study area. EIF values range between 0,04 to 0,58, with the lowest values in the same end as the deepest permafrost, where also low mound elevations are found. The deep permafrost combined with low mound elevations are suggested to be attributed to the presence of coarse grained (glaciofluvial) sediments where ice segregation formation is limited, thus small amounts of frost heave. Deep permafrost is possibly underlying at least two thermokarst depressions/fens in the area, which is suggested to obstruct their drainage. The height of the mounds was surprisingly found to decrease with permafrost thickness, a relationship that is likely to be an effect of the varied underlying sediment cover. This thesis demonstrates the applicability of ERT in peatland permafrost research, but also considers the limitations of the method. / Elektrisk resistivitetstomografi (ERT) är en geofysisk metod som har använts flitigt vid undersökningar av alpin permafrost, men få studier har hittills tillämpat denna teknik vid undersökningar av permafrost i myrmarker. Under detta examensarbete på masternivå mättes 5 ERT-profiler över 17 palsar samt torvplatåer i ett palsmyrkomplex med sporadisk permafrost i Tavvavuoma, norra Sverige, med det primära målet att undersöka permafrostens mäktighet under dessa. De beräknade permafrostdjupen används även för att uppskatta isöverskottsfraktionen (EIF), vilket ger en indikation på andelen segregationsis i den frusna kärnan under respektive pals/torvplatå. Palsarnas interna struktur och den rumsliga utbredningen av permafrost i myren diskuteras också kvalitativt utifrån resistivitetsmodellerna. Permafrostmäktigheten under palsar och torvplatåer bestämdes till mellan 5 – 17 meter, med den djupaste permafrosten i den västra delen av studieområdet. Isöverskottsfraktionen varierar mellan 0,04 – 0,58, med de lägsta värdena i samma del av studieområdet som den djupaste permafrosten fanns, här är även palshöjderna låga. Den djupa permafrosten i kombination med låga palshöjder föreslås tillskrivas förekomst av grovkorniga (glaciofluviala) sediment i denna del av studieområdet, där bildningen av segregationsis begränsas. I och med detta begränsas mängden frosthävning, med låga palshöjder som resultat. Djup permafrost kan finnas under minst två thermokarstsänkor i området, vilket kan hindra dränering av dessa. Ett oväntat resultat var att palshöjd minskar med ökat permafrostdjup bland de studerade objekten, vilket bäst kan förklaras med det varierade sedimentunderlaget, som ger mycket olika förutsättningar för segregationsisbildning. Denna masteruppsats visar på tillämpligheten av ERT i myrmarker med permafrost, men beaktar även metodens begränsningar för denna tillämpning.
70

1D and 2D Modelling of AMT and CSAMT Measurements from Swedish Lapland - A Case Study

Dossow, Lisa January 2018 (has links)
Audiomagnetotelluric measurements with (CSAMT) and without (AMT) a controlled source were performed near Gällivare and Kiruna in Swedish Lapland in order to retrieve representative conductivity models of the subsurfaces. Magnetotelluric transfer functions were gained from processed time series’ and subsequently inverted to generate the sought models successfully. Additionally, a strike angle analysis was performed to determine the dimension of the ground structures. That information was used to justify the approaches of 1D and 2D inversions of the data sets and to judge their applicability. In Kiruna, two profiles were installed. One profile is considered to be in line with the strike direction, the other profile was oriented rather orthogonal to the strike direction. In Gällivare, only one profile was installed orthogonally with respect to the strike direction. The strike analysis showed a preferentially 2-dimensional structure for Kiruna’s parallel profile. For the orthogonal oriented profiles from Kiruna and Gällivare, the analysis revealed a 2D (with distortions) to 3D dimension of the ground structures. For the AMT method, it was possible to generate 1-dimensional and 2-dimensional models. Regarding the CSAMT data, it was only possible to generate a 1D conductivitymodel for the subsurface. Due to a significant transmitter overprint, no undistorted start model for the 2-dimensional CSAMT data inversion could be produced. The models from Kiruna had a sufficient data quality and thus resulted in reliable 2D AMT resistivity models with, locally, 2 to 3 layers. However, in combination with the 1D models for AMT and CSAMT, a 3-layer structure was predicted, where a resistive layer is covered by a thin conductive layer and underlaid by a rather conductive basement. For Gällivare’s profile, the data quality was good such that for all inversion methods good results were achieved. The predicted 2-layer models were resolved for for depths between 10m and 10,000m and coincide with the at hand geological maps and cross sections.

Page generated in 0.0271 seconds