101 |
Kalibrierverfahren und optimierte Bildverarbeitung für MultiprojektorsystemeHeinz, Marcel 18 November 2013 (has links)
Gegenstand der vorliegenden Dissertation ist die Entwicklung von Kalibrierverfahren und Algorithmen zur Bildverarbeitung im Kontext von Multiprojektorsystemen mit dem Ziel, die Einsatzmöglichkeiten von derartigen Anlagen zu erweitern und die Nutzerakzeptanz solcher Systeme zu steigern. Die Arbeit konzentriert sich dabei insbesondere auf (annähernd) planare Mehrsegment-Projektionsanlagen, die aus preisgünstigen, nicht speziell für den Visualisierungbereich konzipierten Consumer- und Office-Projektoren aufgebaut werden.
Im ersten Teil der Arbeit werden bestehende Verfahren zur geometrischen Kalibrierung, zum Edge-Blending sowie zur Helligkeits- und Farbanpassung auf ihre Eignung im Hinblick auf die Anforderungen untersucht und Erweiterungen entwickelt. Für die kamerabasierte Geometrie- Kalibrierung wird mit Lininenpattern gearbeitet, wobei ein effizienter rekursiver Algorithmus zur Berechnung der Schnittpunkte bei leicht gekrümmten Oberflächen vorgestellt wird. Für das Edge-Blending wird ein generalisiertes Modell entwickelt, das mehrere bestehende Ansätze kombiniert und erweitert. Die vorgenommene Modifikation der Distanzfunktion erlaubt insbesondere die bessere Steuerung des Helligkeitsverlaufs und ermöglicht weichere Übergänge an den Grenzen der Überlappungszonen. Es wird weiterhin gezeigt, dass das Edge-Blending mit bestehenden Ansätzen zum Ausgleich der Helligkeitsunterschiede wie Luminance Attenutation Maps kombiniert werden kann.
Für die photometrische Kalibrierung ist die Kenntnis der Farb-Transferfunktion, also der Abbildung der Eingabe-Farbwerte auf die tatsächlich vom Projektor erzeugten Ausgaben, unerlässlich. Die herkömmlichen Ansätze betrachten dabei vorwiegend RGB-Projektoren, bei denen die dreidimensionale Transferfunktion in drei eindimensionale Funktionen für jeden Farbkanal zerlegt werden kann. Diese Annahme trifft jedoch auf die betrachteten Projektoren meist nicht zu. Insbesondere DLP-Projektoren mit Farbrad verfügen oft über zusätzliche Grundfarben, so dass der Farbraum deutlich von einem idealen RGB-Modell abweicht. In dieser Arbeit wird zunächst ein empirisches Modell einer Transferfunktion vorgestellt, das sich für derartige Projektoren besser eignet, allerdings die Helligkeit der Projektoren nicht vollständig ausnutzt.
Im zweiten Teil der Arbeit wird ein kamerabasiertes Messverfahren entwickelt, mit dem direkt die dreidimensionale Farb-Transferfunktion ermittelt werden kann. Gegenüber bestehenden Verfahren werden tausende von Farbsamples gleichzeitig erfasst, so dass die erreichbare Sampledichte unter praxisrelevanten Messbedingungen von 17x17x17 auf 64x64x64 erhöht und damit die Qualität der photometrischen Kalibrierung signifikant gesteigert werden kann. Weiterhin wird ein Schnellverfahren entwickelt, dass die Messungsdauer bei 17x17x17 Samples von mehreren Stunden mit bisherigen Verfahren auf weniger als 30 Minuten reduziert.
Im dritten Teil werden Algorithmen zur effizienten Bildverarbeitung entwickelt, die der GPU-basierten Anwendung der Kalibrierparameter auf die darzustellenden Bilddaten in Echtzeit dienen. Dabei werden die Möglichkeiten zur Vermeidung redundanter Berechnungsschritte beim Einsatz Stereoskopie-fähiger Projektoren ausgenutzt. Weiterhin wird das eigentliche Kalibrierverfahren effizient mit Verfahren zur Konvertierung von stereoskopischen Bildverfahren kombiniert. Es wird gezeigt, dass ein einzelner PC aus Standardkomponenten zur Ansteuerung einer Mehrsegment-Projektionsanlage mit bis zu 6 Projektoren ausreicht. Die Verwendung von DVI-Capture-Karten ermöglicht dabei den Betrieb einer solchen Anlage wie einen "großen Monitor" für beliebige Applikationen und Betriebssysteme.
|
102 |
Level set methods for higher order evolution lawsStöcker, Christina 20 February 2008 (has links)
A numerical treatment of non-linear higher-order geometric evolution equations with the level set and the finite element method is presented. The isotropic, weak anisotropic and strong anisotropic situation is discussed. Most of the equations considered in this work arise from the field of thin film growth. A short introduction to the subject is given. Four different models are discussed: mean curvature flow, surface diffusion, a kinetic model, which combines the effects of mean curvature flow and surface diffusion and includes a further kinetic component, and an adatom model, which incorporates in addition free adatoms. As an introduction to the numerical schemes, first the isotropic and weak anisotropic situation is considered. Then strong anisotropies (non-convex anisotropies) are used to simulate the phenomena of faceting and coarsening. The experimentally observed effect of corner and edge roundings is reached in the simulation through the regularization of the strong anisotropy with a higher-order curvature term. The curvature regularization leads to an increase by two in the order of the equations, which results in highly non-linear equations of up to 6th order. For the numerical solution, the equations are transformed into systems of second order equations, which are solved with a Schur complement approach. The adatom model constitutes a diffusion equation on a moving surface. An operator splitting approach is used for the numerical solution. In difference to other works, which restrict to the isotropic situation, also the anisotropic situation is discussed and solved numerically. Furthermore, a treatment of geometric evolution equations on implicitly given curved surfaces with the level set method is given. In particular, the numerical solution of surface diffusion on curved surfaces is presented. The equations are discretized in space by standard linear finite elements. For the time discretization a semi-implicit discretization scheme is employed. The derivation of the numerical schemes is presented in detail, and numerous computational results are given for the 2D and 3D situation. To keep computational costs low, the finite element grid is adaptively refined near the moving curves and surfaces resp. A redistancing algorithm based on a local Hopf-Lax formula is used. The algorithm has been extended by the authors to the 3D case. A detailed description of the algorithm in 3D is presented in this work. / In der Arbeit geht es um die numerische Behandlung nicht-linearer geometrischer Evolutionsgleichungen höherer Ordnung mit Levelset- und Finite-Elemente-Verfahren. Der isotrope, schwach anisotrope und stark anisotrope Fall wird diskutiert. Die meisten in dieser Arbeit betrachteten Gleichungen entstammen dem Gebiet des Dünnschicht-Wachstums. Eine kurze Einführung in dieses Gebiet wird gegeben. Es werden vier verschiedene Modelle diskutiert: mittlerer Krümmungsfluss, Oberflächendiffusion, ein kinetisches Modell, welches die Effekte des mittleren Krümmungsflusses und der Oberflächendiffusion kombiniert und zusätzlich eine kinetische Komponente beinhaltet, und ein Adatom-Modell, welches außerdem freie Adatome berücksichtigt. Als Einführung in die numerischen Schemata, wird zuerst der isotrope und schwach anisotrope Fall betrachtet. Anschließend werden starke Anisotropien (nicht-konvexe Anisotropien) benutzt, um Facettierungs- und Vergröberungsphänomene zu simulieren. Der in Experimenten beobachtete Effekt der Ecken- und Kanten-Abrundung wird in der Simulation durch die Regularisierung der starken Anisotropie durch einen Krümmungsterm höherer Ordnung erreicht. Die Krümmungsregularisierung führt zu einer Erhöhung der Ordnung der Gleichung um zwei, was hochgradig nicht-lineare Gleichungen von bis zu sechster Ordnung ergibt. Für die numerische Lösung werden die Gleichungen auf Systeme zweiter Ordnungsgleichungen transformiert, welche mit einem Schurkomplement-Ansatz gelöst werden. Das Adatom-Modell bildet eine Diffusionsgleichung auf einer bewegten Fläche. Zur numerischen Lösung wird ein Operatorsplitting-Ansatz verwendet. Im Unterschied zu anderen Arbeiten, die sich auf den isotropen Fall beschränken, wird auch der anisotrope Fall diskutiert und numerisch gelöst. Außerdem werden geometrische Evolutionsgleichungen auf implizit gegebenen gekrümmten Flächen mit Levelset-Verfahren behandelt. Insbesondere wird die numerische Lösung von Oberflächendiffusion auf gekrümmten Flächen dargestellt. Die Gleichungen werden im Ort mit linearen Standard-Finiten-Elementen diskretisiert. Als Zeitdiskretisierung wird ein semi-implizites Diskretisierungsschema verwendet. Die Herleitung der numerischen Schemata wird detailliert dargestellt, und zahlreiche numerische Ergebnisse für den 2D und 3D Fall sind gegeben. Um den Rechenaufwand gering zu halten, wird das Finite-Elemente-Gitter adaptiv an den bewegten Kurven bzw. den bewegten Flächen verfeinert. Es wird ein Redistancing-Algorithmus basierend auf einer lokalen Hopf-Lax Formel benutzt. Der Algorithmus wurde von den Autoren auf den 3D Fall erweitert. In dieser Arbeit wird der Algorithmus für den 3D Fall detailliert beschrieben.
|
103 |
Mesoscopic wave phenomena in electronic and optical ring structuresHentschel, Martina 29 October 2001 (has links)
Gegenstand dieser Arbeit sind Wellenphänomene in mesoskopischen Ringstrukturen. In Teil I der Arbeit befassen wir uns mit spinabhängigem Transport von Elektronen in effektiv eindimensionalen Ringen in Gegenwart inhomogener Magnetfelder. Wir benutzen die exakten Lösungen der Schrödinger-Gleichung im allgemeinen nicht-adiabatischen Fall in einem Transfer-Matrix-Formalismus und untersuchen Auswirkungen von geometrischen Phasen auf den Magnetwiderstand. Für den Spezialfall eines Magnetfeldes in der Ringebene sagen wir einen interessanten Spin-Flip-Effekt vorher, der die Steuerung der Polarisationsrichtung von Elektronen über einen externen Aharonov-Bohm-Fluß erlaubt. Optische mesoskopische Systeme sind Thema von Teil II dieser Arbeit. Wir betrachten zweidimensionale annulare Strukturen, charakterisiert durch unterschiedliche Brechungsindizes, sowohl im klassischen Bild der geometrischen Optik als auch mit Wellenmethoden auf der Grundlage der Maxwellschen Gleichungen. Insbesondere diskutieren wir erstmals eine Streumatrixbeschreibung optischer Mikroresonatoren und wenden sie auf das dielektrische annulare Billard an. Ein Vergleich der Ergebnisse des Wellen- und Strahlenbildes liefert eine gute Übereinstimmung, jedoch sind im Grenzfall großer Wellenlängen von der Ordnung der Systemabmessungen Korrekturen zum Strahlenbild nötig. Wir zeigen am Beispiel von Fresnel-Gesetzen für gekrümmte Oberflächen erstmals, daß der Goos-Hänchen-Effekt diese Korrekturen quantitativ erfaßt. Ausgehend von der Wellenbeschreibung leiten wir neue analytische Formeln für verallgemeinerte Fresnel-Gesetze für beide möglichen Polarisationsrichtungen ab. Die Anwendung des Strahlenbildes erlaubt eine schlüssige Interpretation eines Experiments mit einer quadrupolaren Glasfaser, außerdem schlagen wir Strahlenkonzepte als Grundlage der Konstruktion von Mikrolasern mit maßgeschneiderten Charakteristika vor. / In this work we investigate wave phenomena in mesoscopic systems using different theoretical approaches. In Part I, we focus on effectively one-dimensional electronic ring structures and address the phenomenon of geometric phases in spin-dependent electronic transport in the presence of non-uniform magnetic fields. In the general non-adiabatic case, exact solutions of the Schrödinger equation are used in a transfer matrix formalism to compute the transmission probability through the ring. In the magneto-conductance we identify clear signatures of interference effects due to geometric phases, for example in rings where the non-uniform field is created by a central micromagnet. For the special case of an in-plane magnetic field we predict an interesting spin-flip effect that allows one to control the spin polarization of electrons by applying an external Aharonov-Bohm flux. Optical mesoscopic systems are the subject of Part II. We consider two-dimensional annular structures characterized by different refractive indices, and apply classical methods from geometric optics as well as wave concepts based on Maxwell's equations. For the first time, an S-matrix approach is successfully employed in the description of resonances in optical microresonators; in particular we propose the dielectric annular billiard as an attractive model system. Comparing ray and wave pictures, we find general agreement, except for large wavelengths of the order of the system size, where corrections to the ray model are necessary. The Goos-Hänchen effect as an extension of the ray picture is shown to quantitatively account for wave modifications of Fresnel's laws due to curved interfaces. We derive novel analytical expressions for the corrected Fresnel formulas for both polarizations of light. Motivated by the successful ray description, we give a conclusive interpretation of a recent filter experiment on a quadrupolar glass fibre, and suggest novel concepts for microresonator-based lasers.
|
104 |
High fluid intelligence and analogical reasoning / behavioural and cerebral correlates and their temporal characteristicsPreusse, Franziska 13 December 2011 (has links)
Hitherto, previous studies on the cerebral correlates of fluid intelligence (fluIQ) used tasks that did not exclusively demand fluIQ, or were restricted to participants of average fluIQ (ave-fluIQ) solving intelligence test items of varying difficulty, thus not allowing assumptions on interindividual differences in fluIQ. Geometric analogical reasoning (GAR) demands fluIQ very purely and thus is an eligible approach for research on interindividual differences in fluIQ. In a first study, we examined the cerebral correlates of GAR, and showed the involvement of parietal and frontal brain regions. This is in line with the assumptions of the parieto-frontal integration theory (P-FIT) of intelligence and with literature reports for other visuo-spatial tasks. Building upon these findings, we report results from a second study with high fluIQ (hi-fluIQ) and ave-fluIQ school students solving a GAR task. Again in line with the P-FIT model, we demonstrated that the parieto-frontal network is involved in GAR in both groups. However, the extent of task-related brain activation in parietal and frontal brain regions was differentially modulated by fluIQ. Our results thus partly run counter to the postulates of the neural efficiency hypothesis, which assumes a negative brain activation-intelligence relationship. We conclude that this relationship is not generally unitary; rather, it can be conjectured that the adaptive and flexible modulation of brain activation is characteristic of hi-fluIQ. Knowledge on the stability of the cerebral correlates of hi-fluIQ during adolescence had been sparse. To elucidate this field, we examined the follow-up stability of the cerebral correlates of GAR in hi-fluIQ in a third study. We demonstrated that the relevant brain network is in place already at age 17 and that improvements in behavioral performance at age 18 due to task familiarity are indicative of more efficient use of the cerebral resources available. / Bisherige Studien zu zerebralen Korrelaten fluider Intelligenz (fluIQ) haben Aufgaben verwendet, die fluIQ nicht in Reinform erfordern oder haben Probanden mit durchschnittlicher fluIQ (ave-fluIQ) beim Lösen von Intelligenztestaufgaben mit variierenden Schwierigkeitsstufen untersucht und ermöglichen daher keine Aussagen zu interindividuellen Unterschieden in fluIQ. Geometrisches analoges Schließen (GA) beansprucht fluIQ in Reinform und eignet sich daher als differentielles Untersuchungsparadigma. In einer ersten Studie haben wir die zerebralen Korrelate des GA untersucht und nachgewiesen, dass parietale und frontale Hirnregionen involviert sind. Dies steht im Einklang mit der parieto-frontalen Integrationstheorie (P-FIT) der Intelligenz und mit Literaturberichten zu anderen visuell-räumlichen Aufgaben. Aufbauend auf diesen Befunden berichten wir Ergebnisse einer zweiten Studie, in der Schüler mit hoher fluIQ (hi-fluIQ) und ave-fluIQ GA-Aufgaben lösten. In Übereinstimmung mit den Annahmen des P-FIT-Modells konnten wir zeigen, dass GA in beiden Gruppen das parieto-frontale Netzwerk beansprucht. Das Ausmaß der Hirnaktivierung wurde jedoch differentiell durch fluIQ moduliert. Unsere Ergebnisse widersprechen damit teilweise den Postulaten der neuralen Effizienztheorie, die einen negativen Zusammenhang zwischen Hirnaktivierung und Intelligenz annimmt. Wir schlussfolgern, dass dieser Zusammenhang nicht generell einseitig gerichtet ist, sondern die flexible Modulation von Hirnaktivierung charakteristisch für hi-fluIQ ist. Befunde zur Stabilität zerebraler Korrelate von hi-fluIQ in der Jugend waren bisher rar. Um dieses Feld zu beleuchten, haben wir die follow-up-Stabilität zerebraler Korrelate des GA in der hi-fluIQ Gruppe in einer dritten Studie untersucht. Wir konnten zeigen, dass das relevante zerebrale Netzwerk schon mit 17 Jahren etabliert ist und Performanzverbesserungen über die Zeit für eine effizientere Nutzung der verfügbaren zerebralen Ressourcen sprechen.
|
105 |
Microscopic description of magnetic model compoundsSchmitt, Miriam 24 June 2013 (has links) (PDF)
Solid state physics comprises many interesting physical phenomena driven by the complex interplay of the crystal structure, magnetic and orbital degrees of freedom, quantum fluctuations and correlation. The discovery of materials which exhibit exotic phenomena like low dimensional magnetism, superconductivity, thermoelectricity or multiferroic behavior leads to various applications which even directly influence our daily live. For such technical applications and the purposive modification of materials, the understanding of the underlying mechanisms in solids is a precondition. Nowadays DFT based band structure programs become broadly available with the possibility to calculate systems with several hundreds of atoms in reasonable time scales and high accuracy using standard computers due to the rapid technical and conceptional development in the last decades. These improvements allow to study physical properties of solids from their crystal structure and support the search for underlying mechanisms of different phenomena from microscopic grounds.
This thesis focuses on the theoretical description of low dimensional magnets and intermetallic compounds. We combine DFT based electronic structure and model calculations to develop the magnetic properties of the compounds from microscopic grounds. The developed, intuitive pictures were challenged by model simulations with various experiments, probing microscopic and macroscopic properties, such as thermodynamic measurements, high field magnetization, nuclear magnetic resonance or electron spin resonance experiments. This combined approach allows to investigate the close interplay of the crystal structure and the magnetic properties of complex materials in close collaboration with experimentalists. In turn, the systematic variation of intrinsic parameters by substitution or of extrinsic factors, like magnetic field, temperature or pressure is an efficient way to probe the derived models. Especially pressure allows a continuous change of the crystal structure on a rather large energy scale without the chemical complexity of substitution, thus being an ideal tool to consistently alter the electronic structure in a controlled way. Our theoretical results not only provide reliable descriptions of real materials, exhibiting disorder, partial site occupation and/or strong correlations, but also predict fascinating phenomena upon extreme conditions. In parts this theoretical predictions were already confirmed by own experiments on large scale facilities.
Whereas in the first part of this work the main purpose was to develop reliable magnetic models of low dimensional magnets, in the second part we unraveled the underlying mechanism for different phase transitions upon pressure. In more detail, the first part of this thesis is focused on the magnetic ground states of spin 1/2 transition metal compounds which show fascinating phase diagrams with many unusual ground states, including various types of magnetic order, like helical states exhibiting different pitch angles, driven by the intimate interplay of structural details and quantum fluctuations. The exact arrangement and the connection of the magnetically active building blocks within these materials determine the hybridization, orbital occupation, and orbital orientation, this way altering the exchange paths and strengths of magnetic interaction within the system and consequently being crucial for the formation of the respective ground states. The spin 1/2 transition metal compounds, which have been investigated in this work, illustrate the great variety of exciting phenomena fueling the huge interest in this class of materials.
We focused on cuprates with magnetically active CuO4 plaquettes, mainly arranged into edge sharing geometries. The influence of structural peculiarities, as distortion, folding, changed bonding angles, substitution or exchanged ligands has been studied with respect to their relevance for the magnetic ground state. Besides the detailed description of the magnetic ground states of selected compounds, we attempted to unravel the origin for the formation of a particular magnetic ground state by deriving general trends and relations for this class of compounds. The details of the treatment of the correlation and influence of structural peculiarities like distortion or the bond angles are evaluated carefully.
In the second part of this work we presented the results of joint theoretical and experimental studies for intermetallic compounds, all exhibiting an isostructural phase transition upon pressure. Many different driving forces for such phase transitions are known like quantum fluctuations, valence instabilities or magnetic ordering. The combination of extensive computational studies and high pressure XRD, XAS and XMCD experiments using synchrotron radiation reveals completely different underlying mechanism for the onset of the phase transitions in YCo5, SrFe2As2 and EuPd3Bx.
This thesis demonstrates on a series of complex compounds that the combination of ab-initio electronic structure calculations with numerical simulations and with various experimental techniques is an extremely powerful tool for a successful description of the intriguing quantum phenomena in solids. This approach is able to reduce the complex behavior of real materials to simple but appropriate models, this way providing a deep understanding for the underlying mechanisms and an intuitive picture for many phenomena. In addition, the close interaction of theory and experiment stimulates the improvement and refinement of the methods in both areas, pioneering the grounds for more and more precise descriptions. Further pushing the limits of these mighty techniques will not only be a precondition for the success of fundamental research at the frontier between physics and chemistry, but also enables an advanced material design on computational grounds.
|
106 |
Simulation methods for the mechanical nonlinearity in MEMS gyroscopesPutnik, Martin 16 September 2019 (has links)
Im Zuge der Miniaturisierung werden mechanische Nichtlinearitäten immer wichtiger für die Auslegung und Optimierung von mikromechanischen Drehratensensoren.
Die vorliegende Arbeit beschäftigt sich mit neuen Simulationsmethoden zur Beschreibung dieser mechanischen Nichtlinearitäten. Die Methoden werden mit Benchmark-Simulationen und Messergebnissen validiert. Die Genauigkeit der neuen Simulationsmethoden erlaubt den Einsatz in der Designoptimierung von kommerziellen MEMS Drehratensensoren. / In this thesis, new simulation methods for the mechanical nonlinearities in microelectromechanical gyroscopes are developed and validated with benchmark simulations and experimental results. The benchmark simulations use transient finite element analysis that consider geometric nonlinear effects. Experimental results are from Laser Doppler Vibrometry and electrical measurements on wafer level.
Two different simulation methods, the energy- and stiffness-based approach, are compared with respect to numerical performance and accuracy.
In order to evaluate these methods, four different mechanical structures are taken into account: a doubly-clamped beam, a gyroscope test structure and two state-of-the-art gyroscopes with 1 and 2 axes. For the accuracy measurement, the simulated frequency shifts of modes
are compared to the true frequency shifts that are developed from either benchmark simulation, Laser Doppler Vibrometry or electrical measurement. The presented methods allow to predict the frequency shift of modes accurately and with a minimum of computational cost. Furthermore, the methodologies allow to generate modal reduced order models which are compatible with common model order reduction in the field. This makes it possible to incorporate mechanical nonlinearity in already established reduced order models of gyroscopes.
The simulation and modeling strategies are applicable for generic actuated structures that can be also in different fields of study such as the aerospace and earthquake engineering.
|
107 |
Microscopic description of magnetic model compounds: from one-dimensional magnetic insulators to three-dimensional itinerant metalsSchmitt, Miriam 22 November 2012 (has links)
Solid state physics comprises many interesting physical phenomena driven by the complex interplay of the crystal structure, magnetic and orbital degrees of freedom, quantum fluctuations and correlation. The discovery of materials which exhibit exotic phenomena like low dimensional magnetism, superconductivity, thermoelectricity or multiferroic behavior leads to various applications which even directly influence our daily live. For such technical applications and the purposive modification of materials, the understanding of the underlying mechanisms in solids is a precondition. Nowadays DFT based band structure programs become broadly available with the possibility to calculate systems with several hundreds of atoms in reasonable time scales and high accuracy using standard computers due to the rapid technical and conceptional development in the last decades. These improvements allow to study physical properties of solids from their crystal structure and support the search for underlying mechanisms of different phenomena from microscopic grounds.
This thesis focuses on the theoretical description of low dimensional magnets and intermetallic compounds. We combine DFT based electronic structure and model calculations to develop the magnetic properties of the compounds from microscopic grounds. The developed, intuitive pictures were challenged by model simulations with various experiments, probing microscopic and macroscopic properties, such as thermodynamic measurements, high field magnetization, nuclear magnetic resonance or electron spin resonance experiments. This combined approach allows to investigate the close interplay of the crystal structure and the magnetic properties of complex materials in close collaboration with experimentalists. In turn, the systematic variation of intrinsic parameters by substitution or of extrinsic factors, like magnetic field, temperature or pressure is an efficient way to probe the derived models. Especially pressure allows a continuous change of the crystal structure on a rather large energy scale without the chemical complexity of substitution, thus being an ideal tool to consistently alter the electronic structure in a controlled way. Our theoretical results not only provide reliable descriptions of real materials, exhibiting disorder, partial site occupation and/or strong correlations, but also predict fascinating phenomena upon extreme conditions. In parts this theoretical predictions were already confirmed by own experiments on large scale facilities.
Whereas in the first part of this work the main purpose was to develop reliable magnetic models of low dimensional magnets, in the second part we unraveled the underlying mechanism for different phase transitions upon pressure. In more detail, the first part of this thesis is focused on the magnetic ground states of spin 1/2 transition metal compounds which show fascinating phase diagrams with many unusual ground states, including various types of magnetic order, like helical states exhibiting different pitch angles, driven by the intimate interplay of structural details and quantum fluctuations. The exact arrangement and the connection of the magnetically active building blocks within these materials determine the hybridization, orbital occupation, and orbital orientation, this way altering the exchange paths and strengths of magnetic interaction within the system and consequently being crucial for the formation of the respective ground states. The spin 1/2 transition metal compounds, which have been investigated in this work, illustrate the great variety of exciting phenomena fueling the huge interest in this class of materials.
We focused on cuprates with magnetically active CuO4 plaquettes, mainly arranged into edge sharing geometries. The influence of structural peculiarities, as distortion, folding, changed bonding angles, substitution or exchanged ligands has been studied with respect to their relevance for the magnetic ground state. Besides the detailed description of the magnetic ground states of selected compounds, we attempted to unravel the origin for the formation of a particular magnetic ground state by deriving general trends and relations for this class of compounds. The details of the treatment of the correlation and influence of structural peculiarities like distortion or the bond angles are evaluated carefully.
In the second part of this work we presented the results of joint theoretical and experimental studies for intermetallic compounds, all exhibiting an isostructural phase transition upon pressure. Many different driving forces for such phase transitions are known like quantum fluctuations, valence instabilities or magnetic ordering. The combination of extensive computational studies and high pressure XRD, XAS and XMCD experiments using synchrotron radiation reveals completely different underlying mechanism for the onset of the phase transitions in YCo5, SrFe2As2 and EuPd3Bx.
This thesis demonstrates on a series of complex compounds that the combination of ab-initio electronic structure calculations with numerical simulations and with various experimental techniques is an extremely powerful tool for a successful description of the intriguing quantum phenomena in solids. This approach is able to reduce the complex behavior of real materials to simple but appropriate models, this way providing a deep understanding for the underlying mechanisms and an intuitive picture for many phenomena. In addition, the close interaction of theory and experiment stimulates the improvement and refinement of the methods in both areas, pioneering the grounds for more and more precise descriptions. Further pushing the limits of these mighty techniques will not only be a precondition for the success of fundamental research at the frontier between physics and chemistry, but also enables an advanced material design on computational grounds.:Contents
List of abbreviations
1. Introduction
2. Methods
2.1. Electronic structure and magnetic models for real compounds
2.1.1. Describing a solid
2.1.2. Basic exchange and correlation functionals
2.1.3. Strong correlations
2.1.4. Band structure codes
2.1.5. Disorder and vacancies
2.1.6. Models on top of DFT
2.2. X-ray diffraction and x-ray absorption at extreme conditions
2.2.1. Diamond anvil cells
2.2.2. ID09 - XRD under pressure
2.2.3. ID24 - XAS and XMCD under pressure
3. Low dimensional magnets
3.1. Materials
3.1.1 AgCuVO4 - a model compound between two archetypes of Cu-O chains
3.1.2 Li2ZrCuO4 - in close vicinity to a quantum critical point
3.1.3 PbCuSO4(OH)2 -magnetic exchange ruled by H
3.1.4 CuCl2 and CuBr2 - flipping magnetic orbitals by crystal water
3.1.5 Na3Cu2SbO6 and Na2Cu2TeO6 - alternating chain systems
3.1.6 Cu2(PO3)2CH2 - magnetic vs. structural dimers
3.1.7 Cu2PO4OH - orbital order between dimers and chains
3.1.8 A2CuEO6 - an new family of spin 1/2 square lattice compounds
3.2. General trends and relations
3.2.1. Approximation for the treatment of strong correlation
3.2.2. Structural elements
4. Magnetic intermetallic compounds under extreme conditions 115
4.1. Itinerant magnets
4.1.1. YCo5 - a direct proof for a magneto elastic transition by XMCD
4.1.2. SrFe2As2 - symmetry-preserving lattice collapse
4.2. Localized magnets
4.2.1. EuPd3Bx - valence transition under doping and pressure
5. Summary and outlook
A. Technical details
B. Crystal Structures
C. Supporting Material
Bibliography
List of Publications
Acknowledgments
|
Page generated in 0.0567 seconds