• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 1
  • Tagged with
  • 12
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Espace-temps globalement hyperboliques conformément plats

Rossi Salvemini, Clara 24 May 2012 (has links) (PDF)
Les espace-temps conformément plats de dimension supérieure ou égal à 3 sont des variétés localement modelées l'espace-temps d'Einstein où il agit la composante connexe de l'identité du groupe des difféomorfismes conformes.Un espace-temps M est globalement hyperbolique s'il admet une hypersurface S de type espace qui est rencontrée une et une seule fois par toute courbe causale de M. L'hypersurface S est alors dite hypersurface de Cauchy de M.L'ensemble des espace-temps globalement hyperboliques conformément plats, identifiés à difféomorphisme conforme près, est naturellement muni d'une relation d'ordre partielle: on dit que N étends M s'il existe un plongement conforme de M dans N tel que l'image de toute hypersurface de Cauchy de M est une hypersurface de Cauchy de N. Les éléments maximaux par rapport à cette relation d'ordre sont appelés espace-temps maximaux.Le premier résultat qu'on a prouvé est l'existence et unicité de l'extension maximale pour un espace-temps conformément plat globalement hyperbolique donné. Ce résultat généralise un théorème de Choquet-Bruhat et Geroch relatif aux espace-temps solutions des équation d'Einstein.L'unicité de l'extension maximale permet de prouver le résultat suivant:Théorème:En dimension supérieur ou égal à 3, l'espace d'Einstein est le seul espace-temps conformément plat maximal simplement connexe admettant une hypersurface de Cauchy compacte.Si l'hypersurface de Cauchy S du revêtement universel d'un espace-temps M est compacte on obtient donc que M est un quotient fini de l'espace d'Einstein. La structure des géodésiques de l'espace d'Einstein et l'unicité de l'extension maximale permettent de prouver :Théorème:Soit M un espace-temps conformément plat maximal de dimension supérieur ou égal à 3, qui contient deux géodésiques lumières distinctes, librement homotopes et ayant les mêmes extrémités. Alors M est un quotient fini de l'espace d'Einstein.Dans le cas où l'hypersurface S' du revêtement universel M' de M est non compacte on montre chaque point p de M' est déterminé par le compact de S 'constitué par l'intersection de son passé causal ou de son futur causal avec l'hypersurface S', suivant que p appartient au passé ou au futur de S'. Onappelle ce compact l'ombre de p sur S'. L'espace-temps M' s'identifie donc à un sous-ensemble des compacts de S'.Ce point de vue permet d'avoir une compréhension plus profonde de la maximalité d'un espace-temps. En fait on a différentes notions de maximalité :un espace-temps pourrait être maximal parmi les espace-temps conformément plats mais avoir un majorant qui n'est pas conformément plat, i.e. il pourrait exister un plongement conforme dans un espace-temps globalement hyperbolique qui ne soit pas conformément plat.Grâce à la notion d'ombre, on prouve que la structure causale induite sur la frontière de Penrose du revêtement universel d'un espace-temps conformément plat permet de caractériser les espace-temps maximaux parmi tous les espace-temps globalement hyperboliques, on obtient:Théorème:Tout espace-temps globalement hyperbolique conformément plat M qui est maximal parmi les espace-temps globalement hyperbolique conformément plats est aussi maximal parmi tous les espace-temps globalement hyperboliques.On conclut avec une discussion détaillée sur la maximalité des espaces-temps globalement hyperboliques maximaux parmi les espace-temps à courbure constante, suivant le signe de la courbure: lorsque la courbure est négative ou nulle, l'espace-temps est maximal aussi parmi tous les espace-temps globalement hyperboliques, mais cela n'est jamais vrai lorsque la courbure est strictement positive
2

Quelques problèmes liés à la dynamique des équations de Gross-Pitaevskii et de Landau-Lifshitz

de Laire, André 21 November 2011 (has links) (PDF)
Cette thèse est consacrée à l'étude des équations de Gross-Pitaevskii et de Landau-Lifshitz, qui présentent d'importantes applications en physique. L'équation de Gross-Pitaevskii modélise des phénomènes de l'optique non linéaire, de la superfluidité et de la condensation de Bose-Einstein, tandis que l'équation de Landau-Lifshitz décrit la dynamique de l'aimantation dans des matériaux ferromagnétiques. Lorsqu'on modélise la matière à très basse température, on fait l'hypothèse que l'interaction des particules est ponctuelle. L'équation de Gross-Pitaevskii classique s'en déduit alors en prenant comme interaction une masse de Dirac. Cependant, différents types de potentiels non locaux probablement plus réalistes ont aussi été proposés par des physiciens pour modéliser des interactions plus générales. Dans un premier temps, on s'intéressera à donner des conditions suffisantes couvrant une variété assez large d'interactions non locales et telles que le problème de Cauchy associé soit globalement bien posé avec des conditions non nulles à l'infini. Par la suite, on étudiera les ondes progressives de ce modèle non local et on donnera des conditions telles que l'on puisse déterminer les vitesses pour lesquelles il n'existe pas de solution non constante d'énergie finie. Concernant l'équation de Landau-Lifshitz, on s'intéressera aussi aux ondes progressives d'énergie finie. On montrera la non existence d'ondes progressives non constantes d'énergie petite en dimensions deux, trois et quatre, sous l'hypothèse que l'énergie soit inférieure au moment dans le cas de la dimension deux. En outre, on donnera aussi dans le cas bidimensionnel la description d'une courbe minimisante qui pourrait donner une approche variationnelle pour construire des solutions de l'équation de Landau-Lifshitz. Finalement, on décrira le comportement à l'infini des ondes progressives d'énergie finie.
3

Dynamique lorentzienne et groupes de difféomorphismes du cercle

Monclair, Daniel 30 June 2014 (has links) (PDF)
Cette thèse comporte deux parties, axées sur des aspects différents de la géométrie lorentzienne. La première partie porte sur les groupes d'isométries de surfaces lorentziennes globalement hyperboliques spatialement compactes, particulièrement lorsque le groupe exhibe une dynamique non triviale (action non propre). Le groupe d'isométries agit naturellement sur le cercle par difféomorphismes, et les résultats principaux portent sur la classification de ces représentations. Sous une hypothèse sur le bord conforme, on obtient une conjugaison par homéomorphisme avec l'action projective d'un sous-groupe de PSL(2,R) ou de l'un de ses revêtements finis. La différentiabilité de la conjuguante est étudiée, avec des résultats qui garantissent une conjugaison dans le groupe de difféomorphismes du cercle dans certains cas. On donne également des contre-exemples à l'existence d'une conjugaison différentiable, y compris pour des groupes ayant une dynamique riche. Ces constructions s'appuient sur l'étude de flots hyperboliques en dimension trois. Sans l'hypothèse sur le bord conforme, on obtient une semi conjugaison et un isomorphisme de groupes. On construit également des exemples pour lesquels il n'existe pas de conjugaison topologique. La seconde partie de cette thèse étudie un espace-temps vu comme un système dynamique multi-valuée : à un point on associe sont futur causal. Cette approche, déjà présente dans les travaux de Fathi et Siconolfi, permet de concrétiser le lien entre fonctions de Lyapunov en systèmes dynamiques et fonctions temps. Le résultat principal est une version lorentzienne du Théorème de Conley : on peut définir l'ensemble récurrent par chaînes d'un espace-temps, et il existe une fonction continue croissante le long de toute courbe causale orientée vers le futur, strictement croissante si le point de départ de la courbe n'est pas dans l'ensemble récurrent par chaînes. Ces techniques s'adaptent aussi dans un espace-temps stablement causal, ce qui permet de donner une nouvelle preuve d'une partie du Théorème d'Hawking.
4

Dynamique lorentzienne et groupes de difféomorphismes du cercle / Lorentzian dynamics and groups of circle diffeomorphisms

Monclair, Daniel 30 June 2014 (has links)
Cette thèse comporte deux parties, axées sur des aspects différents de la géométrie lorentzienne. La première partie porte sur les groupes d’isométries de surfaces lorentziennes globalement hyperboliques spatialement compactes, particulièrement lorsque le groupe exhibe une dynamique non triviale (action non propre). Le groupe d'isométries agit naturellement sur le cercle par difféomorphismes, et les résultats principaux portent sur la classification de ces représentations. Sous une hypothèse sur le bord conforme, on obtient une conjugaison par homéomorphisme avec l'action projective d'un sous-groupe de PSL(2,R) ou de l'un de ses revêtements finis. La différentiabilité de la conjuguante est étudiée, avec des résultats qui garantissent une conjugaison dans le groupe de difféomorphismes du cercle dans certains cas. On donne également des contre-exemples à l'existence d'une conjugaison différentiable, y compris pour des groupes ayant une dynamique riche. Ces constructions s'appuient sur l'étude de flots hyperboliques en dimension trois. Sans l'hypothèse sur le bord conforme, on obtient une semi conjugaison et un isomorphisme de groupes. On construit également des exemples pour lesquels il n'existe pas de conjugaison topologique. La seconde partie de cette thèse étudie un espace-temps vu comme un système dynamique multi-valuée : à un point on associe sont futur causal. Cette approche, déjà présente dans les travaux de Fathi et Siconolfi, permet de concrétiser le lien entre fonctions de Lyapunov en systèmes dynamiques et fonctions temps. Le résultat principal est une version lorentzienne du Théorème de Conley : on peut définir l'ensemble récurrent par chaînes d'un espace-temps, et il existe une fonction continue croissante le long de toute courbe causale orientée vers le futur, strictement croissante si le point de départ de la courbe n'est pas dans l'ensemble récurrent par chaînes. Ces techniques s'adaptent aussi dans un espace-temps stablement causal, ce qui permet de donner une nouvelle preuve d'une partie du Théorème d'Hawking. / This thesis is divided into two parts, dealing with two different aspects of Lorentzian geometry. The first part deals with isometry groups of globally hyperbolic spatially compact Lorentz surfaces, especially when it has a non trivial dynamical behavior (non proper action). The isometry group acts on circle by diffeomorphisms, and the main results of this part concern the classification of these actions. Under a hypothesis on the conformal boundary, we show that they are topologically conjugate to the projective action of a subgroup of PSL(2,R), or one of its finite covers. The differentiability of the conjugacy is studied, with some results giving a differentiable conjugacy under additional hypotheses. We also give counter examples to such a differentiable conjugacy, even for groups with rich dynamics. These constructions use hyperbolic flows on three manifolds. Without the hypothesis on the conformal boundary, we obtain a semi conjugacy and a group isomorphism. We also give examples where a topological conjugacy cannot exist. In the second part of this thesis, we see a spacetime as a multi valued dynamical system: we map a point to its causal future. This point of view was already adopted by Fathi and Siconolfi, and it gives a concrete meaning to the link between Lyapunov functions in dynamical systems and time functions. The main result is a Lorentzian version of Conley's Theorem: we define the chain recurrent set of a spacetime, and construct a continuous function that increases along future directed causal curves outside the chain recurrent set, and that is non decreasing along other future curves. These techniques also apply to the stably causal setting, and we obtain a new proof of a part of Hawking's Theorem.
5

Espace-temps globalement hyperboliques conformément plats / Globally hyperbolic conformally flat spacetimes

Rossi Salvemini, Clara 24 May 2012 (has links)
Les espace-temps conformément plats de dimension supérieure ou égal à 3 sont des variétés localement modelées l'espace-temps d'Einstein où il agit la composante connexe de l'identité du groupe des difféomorfismes conformes.Un espace-temps M est globalement hyperbolique s'il admet une hypersurface S de type espace qui est rencontrée une et une seule fois par toute courbe causale de M. L'hypersurface S est alors dite hypersurface de Cauchy de M.L'ensemble des espace-temps globalement hyperboliques conformément plats, identifiés à difféomorphisme conforme près, est naturellement muni d'une relation d'ordre partielle: on dit que N étends M s'il existe un plongement conforme de M dans N tel que l'image de toute hypersurface de Cauchy de M est une hypersurface de Cauchy de N. Les éléments maximaux par rapport à cette relation d'ordre sont appelés espace-temps maximaux.Le premier résultat qu'on a prouvé est l'existence et unicité de l'extension maximale pour un espace-temps conformément plat globalement hyperbolique donné. Ce résultat généralise un théorème de Choquet-Bruhat et Geroch relatif aux espace-temps solutions des équation d'Einstein.L'unicité de l'extension maximale permet de prouver le résultat suivant:Théorème:En dimension supérieur ou égal à 3, l'espace d'Einstein est le seul espace-temps conformément plat maximal simplement connexe admettant une hypersurface de Cauchy compacte.Si l'hypersurface de Cauchy S du revêtement universel d'un espace-temps M est compacte on obtient donc que M est un quotient fini de l'espace d'Einstein. La structure des géodésiques de l'espace d'Einstein et l'unicité de l'extension maximale permettent de prouver :Théorème:Soit M un espace-temps conformément plat maximal de dimension supérieur ou égal à 3, qui contient deux géodésiques lumières distinctes, librement homotopes et ayant les mêmes extrémités. Alors M est un quotient fini de l'espace d'Einstein.Dans le cas où l'hypersurface S' du revêtement universel M' de M est non compacte on montre chaque point p de M' est déterminé par le compact de S 'constitué par l'intersection de son passé causal ou de son futur causal avec l'hypersurface S', suivant que p appartient au passé ou au futur de S'. Onappelle ce compact l'ombre de p sur S'. L'espace-temps M' s'identifie donc à un sous-ensemble des compacts de S'.Ce point de vue permet d'avoir une compréhension plus profonde de la maximalité d'un espace-temps. En fait on a différentes notions de maximalité :un espace-temps pourrait être maximal parmi les espace-temps conformément plats mais avoir un majorant qui n'est pas conformément plat, i.e. il pourrait exister un plongement conforme dans un espace-temps globalement hyperbolique qui ne soit pas conformément plat.Grâce à la notion d'ombre, on prouve que la structure causale induite sur la frontière de Penrose du revêtement universel d'un espace-temps conformément plat permet de caractériser les espace-temps maximaux parmi tous les espace-temps globalement hyperboliques, on obtient:Théorème:Tout espace-temps globalement hyperbolique conformément plat M qui est maximal parmi les espace-temps globalement hyperbolique conformément plats est aussi maximal parmi tous les espace-temps globalement hyperboliques.On conclut avec une discussion détaillée sur la maximalité des espaces-temps globalement hyperboliques maximaux parmi les espace-temps à courbure constante, suivant le signe de la courbure: lorsque la courbure est négative ou nulle, l'espace-temps est maximal aussi parmi tous les espace-temps globalement hyperboliques, mais cela n'est jamais vrai lorsque la courbure est strictement positive / As a consequence of the Lorentzian version of Liouville’s Theorem, everyconformally flat space-time of dimension 3 is a (Ein1,n,O0(2, n + 1))-manifold. The Einstein’s space-time Ein1,n is the space Sn × S1 with theconformal class of the metric d2−dt2, where d2 and dt2 are the canonicalRiemannian metrics of Sn and R. The group O0(2, n+1) is the group of theconformal diffeomorphisms of Ein1,n whose action preserve the orientationand the time-orientation of Ein1,n. A space-time M is globally hyperbolicif it contains a spacelike hypersurface which intersects every inextensiblecausal curve of M exactly in one point. As a consequence M is not compact.The hypersurface is called a Cauchy hypersurface of M. Geroch’s Theorem([?]) say that if M is globally hyperbolic, then M is homeomorphic to×R. There is a naturally defined partial order on the set of globally hyperbolicspace-times (up to conformal diffeomorphism) : M M0 if does existsa conformal embedding f : M ,! M0 which sends Cauchy hypersurfaces ofM to Cauchy hypersurfaces of M0 (f is called a Cauchy-embedding ). Wecall C-maximal space-times the maximal elements for this partial order onthe set of globally hyperbolic space-times. We can restrict the partial orderto the subset of conformally flat space-times : in this case we call themaximal elements C0-maximal space-times. The first result of the thesis isa generalization of a Theorem proved by Choquet-Bruhat and Geroch in[?] : let M be a globally hyperbolic conformally flat space-time. Then thereis a globally hyperbolic conformally flat C0-maximal space-time N and aCauchy-embedding f : M ,! N. The space-time N is unique up to conformaldiffeomorphisms.The uniqueness of the C0-maximal extension imply that every globally hyperbolicconformally flat simply connected C0-maximal space-time (of dimension3) with a compact Cauchy hypersurface is conformally diffeomorphicto gEin1,n.In the second part of the thesis we study the injectivity of the developingmap of a globally hyperbolic conformally flat space-time M looking at theshape of its the causal boundary.We say that two points p, q are conjugatedin a space-time M if there are two different lightlike geodesics and whichstart at p and meet at q, such that and don’t intersect between p and q.The most remarkable result of this part is : let M a globally hyperbolicconformally flat C0-maximal space-time. If fM has two conjugated pointsthen fM ' gEin1,n. In particular M is a finite quotient of gEin1,n.As a consequence of this result we obtain that the developing map of Mrestricted to the chronological past and future of every point is injective.In the last part of the thesis we give an abstract construction of the Cmaximalextension for a given conformally flat globally hyperbolic spacetime.The idea is that a globally hyperbolic space-time is completely determinedby one of his Cauchy hypersurfaces. This result helps to understandhow to relate the different notions of maximality. In particular we provethat every conformally flat globally hyperbolic space-time M which is C0-maximal is also C-maximal.
6

Méthode de Test et Conception en Vue du Test pour les Réseaux sur Puce Asynchrones : Application au Réseau ANOC

Tran, Xuan Tu 12 February 2008 (has links) (PDF)
Les réseaux sur puce (NoC : Network on Chip) et les architectures GALS (Globalement Asynchrone – Localement Synchrone) sont deux nouveaux paradigmes de communication pour les systèmes sur puce (SoC : System on Chip). Ces paradigmes ont conduit à la création de réseaux sur puce asynchrones. Cependant, faute de méthodologies et d'outils de test adaptés, le test de production des réseaux sur puce asynchrones constitue un grand défi pour la mise sur le marché de ces systèmes. L'objectif de cette thèse est de proposer une nouvelle méthode de test pour les réseaux sur puce asynchrones. Afin de faciliter le test de l'infrastructure du réseau, nous avons tout d'abord proposé une architecture DfT (Design-for-Test) dans laquelle chaque routeur du réseau est entouré d'un wrapper de test asynchrone qui améliore sa contrôlabilité et son observabilité. Cette architecture DfT a été modélisée, implémentée en logique asynchrone QDI (Quasi-Delay Insensitive), et validée avec un réseau sur puce asynchrone ANOC développée au CEA-LETI. La génération des vecteurs de test a été alors faite en analysant les fonctionnalités et l'implémentation structurelle du routeur et de ses interconnexions. Ensuite, nous avons également introduit une stratégie pour tester un réseau complet. La méthode de test complète développée dans cette thèse permet une couverture de faute de 99,86% pour le réseau ANOC en utilisant un modèle de faute de collage simple.
7

Méthodes de décomposition de domaine espace temps pour le transport réactif --- Application au stockage géologique de CO2

Haeberlein, Florian 14 October 2011 (has links) (PDF)
Les modèles de transport réactif sont un outil basique pour la modélisation de l'intéraction entre les réactions chimiques et l'écoulement du fluide dans un milieu poreux. Nous présentons un modèle de transport réactif multi-espèces totalement réduit incluant des réactions cinétiques et en équilibre. Une formulation structurée ainsi que différentes approches numériques sont proposées. Les méthodes de décomposition de domaine offrent la possibilité de diviser des problèmes de grande taille dans des problèmes plus petits dont la solution se fait en parallèle. Partant d'un point de vue géométrique, nous présentons la classe des méthodes de Schwarz ayant prouvé une haute performance dans de nombreuses applications. Des questions quant à la réalisation d'une décomposition de domaine et des conditions de transmission au niveau discret sont traitées dans le contexte des volumes finis. Nous proposons et validons numériquement un schéma de volumes finis hybrides pour l'opérateur d'advection-diffusion étant particulièrement adapté à l'utilisation dans le contexte d'une décomposition de domaine. Nous étudions théoriquement et numériquement des méthodes de Schwarz relaxation d'ondes en détail pour un système de deux espèces couplées de type transport réactif avec des termes de couplage linéaire et non-linéaire. Des résultats qualifiant le problème comme bien posé ainsi que la convergence des méthodes de décomposition de domaine sont développés et la sensibilité du comportement de convergence de l'algorithme de Schwarz par rapport au terme de couplage est étudiée. Finalement, nous appliquons une méthode de Schwarz relaxation d'ondes au modèle de transport réactif multi-espèces présenté.
8

ÉQUATION DES ONDES SUR LES ESPACES SYMÉTRIQUES RIEMANNIENS DE TYPE NON COMPACT.

Hassani, Ali 06 June 2011 (has links) (PDF)
Ce mémoire porte sur l'étude des équations d'évolution sur des variétés à coubure non nulle, plus particulièrement l'équation des ondes sur les espaces symétriques riemanniens de type non compact. Des propriétés de dispersion des solutions du problème de Cauchy homogène sont démontrées. Ces propriétés sont ensuite utilisées pour établir des estimations dites estimations de Strichartz. L'examen de ces estimées permet de déduire que le problème de Cauchy non linéaire avec des non-linéarités de type puissance est globalement bien posé pour des données initiales petites et localement bien posé pour des données arbitraires. Après un chapitre introductif dédié aux définitions, propriétés algébriques et géométriques des espaces symétriques et à quelques aspects élémentaires d'analyse harmonique sphérique sur ces espaces, un article est présenté : Wave equation on Riemannian symmetric spaces. Cet article contient nos résultats principaux. Dans le dernier chapitre nous présentons en détail deux problèmes ouverts qui prolongent nos travaux. Il s'agit respectivement d'établir le lien entre le comportement asymptotique des estimées et les orbites nilpotentes, et l'étude de l'équation des ondes pour les formes différentielles sur les espaces symétriques.
9

Surfaces de Cauchy polyédrales des espaces temps plats singuliers / Polyhedral Cauchy-surfaces of flat space-times

Brunswic, Léo 22 December 2017 (has links)
L'étude des espaces-temps plats singuliers munis d'une surface de Cauchy polyédrale est motivée par leur rôle de model jouet de gravité quantique proposé par Deser, Jackiw et 'T Hooft. Cette thèse porte sur les paramétrisations de certaines classes d'espaces-temps plat singuliers : les espaces-temps plats avec particules massives et BTZ Cauchy-compacts maximaux. Deux paramétrisations sont proposées, l'une reposant sur une extension du théorème de Mess aux espaces-temps plats avec BTZ et la surface de Penner-Epstein, l'autre reposant sur une généralisation du théorème d'Alexandrov aux espaces-temps plats avec particules massives et BTZ. Ce travail propose également une amorce de cadre théorique permettant de considérer des espaces-temps singuliers plus généraux. / The study of singular flat spacetimes with polyhedral Cauchy-surfaces is motivated by the quantum gravity toy model role they play in the seminal work of Deser, Jackiw and 'T Hooft. This thesis study parametrisations of classes of singular flat spacetimes : Cauchy-compact maximal flat spacetimes with massive and BTZ-like singularities. Two parametrisations are constructed. The first is based on an extension of Mess theorem to flat spacetimes with BTZ and Penner-Epstein convex hull construction. The second is based on a generalisation of Alexandrov polyhedron theorem to radiant Cauchy-compact flat spacetimes with massive and BTZ-like singularities. This work also initiate a wider theoretical background that encompass singular spacetimes.
10

Contribution à l'étude de la stabilité des systèmes électrotechniques / Contribution to the study of the stability of the electrotechnical systems

Marx, Didier 12 November 2009 (has links)
Dans cette thèse différents outils issus de l'automatique non linéaire ont été mis en œuvre et ont permis d'apporter une première solution au problème de stabilité large signal des dispositifs électriques. A l'aide de modèles flous de type Takagi-Sugeno, on a montré qu'il était possible de résoudre le problème de stabilité dans le cas de deux applications électrotechniques à savoir un hacheur contrôlé en tension et l'alimentation par l'intermédiaire un filtre d'entrée d'un dispositif électrique fonctionnant à puissance constante. Dans le cas du hacheur, la taille estimée des bassins d'attraction reste modeste. Les raisons essentielles à l'échec obtenu dans la recherche de bassin de grande taille peut résulter dans le fait que d'une part , la mise sous forme TS du système n'est pas unique et que d'autre part les matrices du sous modèle TS du système ne sont de Hurwitz que dans une gamme très restreinte de variations du rapport cyclique. Dans le cas de l'alimentation par l'intermédiaire d'un filtre d'entrée d'un dispositif fonctionnant à puissance constante, on a montré que l'utilisation d'un modèle flou de type Takagi-Sugeno permettait d'exhiber un domaine d'attraction de taille significative. On a fourni des outils permettant de borner la plage de variations des pôles du système dans un domaine donné de l'espace d'état, domaine dans lequel la stabilité du modèle TS est prouvée. L'utilisation de la D-stabilité permet de connaitre les dynamiques maximales du système. La notion de stabilité exponentielle permet de connaître les dynamiques minimales du système. L'approche utilisée pour prouver la stabilité du système en présence de variations paramétriques, pour les deux systèmes étudiés, n'autorise que des variations extrêmement faibles de la valeur du paramètre autour de sa valeur nominale / In this thesis, various tools resulting from the nonlinear automatic were implemented and made it possible to bring a first solution to the problem of large signal stability of the electric systems. Using Takagi-Sugeno fuzzy models, one showed that it was possible to in the case of solve the problem of stability two electrotechnical applications to knowing a Boost converter controlled in tension and an electric system constituted by an input filter connected to an actuator functioning at constant power. In the case of the Boost converter, the estimated size of attraction domain remains modest. The reasons essential with the failure obtained in the search for domain of big size can result in the fact that on the one hand, the setting TS fuzzy models of the system is not single and that on the other hand the matrices of local model of TS model of the system are of Hurwitz only in one very restricted range of variations of the cyclic ratio. In the case of the electric system via a filter of entry of a functioning device at constant power, one showed that the use of a Takagi-Sugeno fuzzy model allowed exhibit a attraction domain of significant size. One provided tools allowing to limit the variations of the poles of the system in a given field of the state space, domain in which the stability of model TS is proven. The use of D-stability makes it possible to know dynamic maximum system. The concept of exponential stability makes it possible to know dynamic minimal system. The approach used to prove the stability of the system in the presence of parametric variations, for the two studied systems, authorizes only extremely weak variations of the value of the parameter around its maximal value

Page generated in 0.0849 seconds