• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 12
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 71
  • 42
  • 26
  • 18
  • 17
  • 16
  • 13
  • 12
  • 11
  • 11
  • 11
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

[en] CAN EXIST PEOPLE WITHOUT KING, AND KING WITHOUT PEOPLE CAN EXIST?: MANUSCRIPTS PAMPHLETS AND EMANCIPATION OF THE KINGDOM OF BRAZIL / [pt] PODE HAVER POVO SEM TER REI; E REI SEM TER POVO PODE HAVER?: PANFLETOS MANUSCRITOS E EMANCIPAÇÃO DO REINO DO BRASIL

VANESSA FRAGUAS SERRA LUCAS 10 June 2015 (has links)
[pt] Este trabalho realiza uma análise dos panfletos manuscritos que circularam pelo Reino do Brasil, particularmente no Rio de Janeiro e em Salvador, entre 1820 e 1823. O movimento constitucionalista, iniciado com a Revolução do Porto em 1820, impulsionou a produção e a circulação de panfletos e periódicos, assim como ampliou as discussões políticas nas duas partes do Império português, permitindo a construção de um espaço público de debate político dissociado do Estado. Nesse espaço, eram discutidas questões relacionadas à elaboração de uma Constituição e ao futuro do Império. Diante da escassez de trabalhos sobre os panfletos manuscritos, esta pesquisa tem como objetivo contribuir para os estudos sobre esses documentos, ressaltando a relevância desse material para a construção de um espaço público e para o desenvolvimento de uma opinião pública. A partir da análise do conteúdo dos manuscritos, procurou-se identificar as principais ideias e conceitos apresentados, compreender as diferentes formas de circulação e apropriação que envolvem esse material, além de ressaltar a importância dos panfletos manuscritos para a compreensão de uma das dimensões do espaço público que estava sendo construído. / [en] This work performs an analysis of the handwritten pamphlets that circulated through the Kingdom of Brazil, particularly in Rio de Janeiro and Salvador, between 1820 and 1823. The Constitutionalist Movement, started with the revolution of Porto in 1820, boosted the production and circulation of pamphlets and periodicals, as well as expanded the political discussions in the two parts of the Portuguese Empire, allowing the construction of a public space for political debate dissociated from the State. In this scenario, there were discussed issues related to the drafting of a Constitution and the future of the Empire. Before the shortage of works on the handwritten pamphlets, this research aims to contribute to the studies on these documents, emphasizing the relevance of this material for the construction of a public space and for the development of public opinion. From the analysis of the content of the handwritten pamphlets, we tried to identify the main ideas and concepts presented, understand the different forms of circulation and appropriation involving this material, as well as highlight the importance of handwritten pamphlets for the understanding of the dimensions of the public space that was being built.
62

Active Learning pro zpracování archivních pramenů / Active Learning for Processing of Archive Sources

Hříbek, David January 2021 (has links)
This work deals with the creation of a system that allows uploading and annotating scans of historical documents and subsequent active learning of models for character recognition (OCR) on available annotations (marked lines and their transcripts). The work describes the process, classifies the techniques and presents an existing system for character recognition. Above all, emphasis is placed on machine learning methods. Furthermore, the methods of active learning are explained and a method of active learning of available OCR models from annotated scans is proposed. The rest of the work deals with a system design, implementation, available datasets, evaluation of self-created OCR model and testing of the entire system.
63

On dysgraphia diagnosis support via the automation of the BVSCO test scoring : Leveraging deep learning techniques to support medical diagnosis of dysgraphia / Om dysgrafi diagnosstöd via automatisering av BVSCO-testpoäng : Utnyttja tekniker för djupinlärning för att stödja medicinsk diagnos av dysgrafi

Sommaruga, Riccardo January 2022 (has links)
Dysgraphia is a rather widespread learning disorder in the current society. It is well established that an early diagnosis of this writing disorder can lead to improvement in writing skills. However, as of today, although there is no comprehensive standard process for the evaluation of dysgraphia, most of the tests used for this purpose must be done at a physician’s office. On the other hand, the pandemic triggered by COVID-19 has forced people to stay at home and opened the door to the development of online medical consultations. The present study therefore aims to propose an automated pipeline to provide pre-clinical diagnosis of dysgraphia. In particular, it investigates the possibility of applying deep learning techniques to the most widely used test for assessing writing difficulties in Italy, the BVSCO-2. This test consists of several writing exercises to be performed by the child on paper under the supervision of a doctor. To test the hypothesis that it is possible to enable children to have their writing impairment recognized even at a distance, an innovative system has been developed. It leverages an already developed customized tablet application that captures the graphemes produced by the child and an artificial neural network that processes the images and recognizes the handwritten text. The experimental results were analyzed using different methods and were compared with the actual diagnosis that a doctor would have provided if the test had been carried out normally. It turned out that, despite a slight fixed bias introduced by the machine for some specific exercises, these results seemed very promising in terms of both handwritten text recognition and diagnosis of children with dysgraphia, thus giving a satisfactory answer to the proposed research question. / Dysgrafi är en ganska utbredd inlärningsstörning i dagens samhälle. Det är väl etablerat att en tidig diagnos av denna skrivstörning kan leda till en förbättring av skrivförmågan. Även om det i dag inte finns någon omfattande standardprocess för utvärdering av dysgrafi måste dock de flesta av de tester som används för detta ändamål göras på en läkarmottagning. Å andra sidan har den pandemi som utlöstes av COVID-19 tvingat människor att stanna hemma och öppnat dörren för utvecklingen av medicinska konsultationer online. Syftet med denna studie är därför att föreslå en automatiserad pipeline för att ge preklinisk diagnos av dysgrafi. I synnerhet undersöks möjligheten att tillämpa djupinlärningstekniker på det mest använda testet för att bedöma skrivsvårigheter i Italien, BVSCO-2. Testet består av flera skrivövningar som barnet ska utföra på papper under överinseende av en läkare. För att testa hypotesen att det är möjligt att göra det möjligt för barn att få sina skrivsvårigheter erkända även på distans har ett innovativt system utvecklats. Det utnyttjar en redan utvecklad skräddarsydd applikation för surfplattor som fångar de grafem som barnet producerar och ett artificiellt neuralt nätverk som bearbetar bilderna och känner igen den handskrivna texten. De experimentella resultaten analyserades med hjälp av olika metoder och jämfördes med den faktiska diagnos som en läkare skulle ha ställt om testet hade utförts normalt. Det visade sig att, trots en liten fast bias som maskinen införde för vissa specifika övningar, verkade dessa resultat mycket lovande när det gäller både igenkänning av handskriven text och diagnos av barn med dysgrafi, vilket gav ett tillfredsställande svar på den föreslagna forskningsfrågan.
64

Multimodal interactive structured prediction

Alabau Gonzalvo, Vicente 27 January 2014 (has links)
This thesis presents scientific contributions to the field of multimodal interac- tive structured prediction (MISP). The aim of MISP is to reduce the human effort required to supervise an automatic output, in an efficient and ergonomic way. Hence, this thesis focuses on the two aspects of MISP systems. The first aspect, which refers to the interactive part of MISP, is the study of strate- gies for efficient human¿computer collaboration to produce error-free outputs. Multimodality, the second aspect, deals with other more ergonomic modalities of communication with the computer rather than keyboard and mouse. To begin with, in sequential interaction the user is assumed to supervise the output from left-to-right so that errors are corrected in sequential order. We study the problem under the decision theory framework and define an optimum decoding algorithm. The optimum algorithm is compared to the usually ap- plied, standard approach. Experimental results on several tasks suggests that the optimum algorithm is slightly better than the standard algorithm. In contrast to sequential interaction, in active interaction it is the system that decides what should be given to the user for supervision. On the one hand, user supervision can be reduced if the user is required to supervise only the outputs that the system expects to be erroneous. In this respect, we define a strategy that retrieves first the outputs with highest expected error first. Moreover, we prove that this strategy is optimum under certain conditions, which is validated by experimental results. On the other hand, if the goal is to reduce the number of corrections, active interaction works by selecting elements, one by one, e.g., words of a given output to be supervised by the user. For this case, several strategies are compared. Unlike the previous case, the strategy that performs better is to choose the element with highest confidence, which coincides with the findings of the optimum algorithm for sequential interaction. However, this also suggests that minimizing effort and supervision are contradictory goals. With respect to the multimodality aspect, this thesis delves into techniques to make multimodal systems more robust. To achieve that, multimodal systems are improved by providing contextual information of the application at hand. First, we study how to integrate e-pen interaction in a machine translation task. We contribute to the state-of-the-art by leveraging the information from the source sentence. Several strategies are compared basically grouped into two approaches: inspired by word-based translation models and n-grams generated from a phrase-based system. The experiments show that the former outper- forms the latter for this task. Furthermore, the results present remarkable improvements against not using contextual information. Second, similar ex- periments are conducted on a speech-enabled interface for interactive machine translation. The improvements over the baseline are also noticeable. How- ever, in this case, phrase-based models perform much better than word-based models. We attribute that to the fact that acoustic models are poorer estima- tions than morphologic models and, thus, they benefit more from the language model. Finally, similar techniques are proposed for dictation of handwritten documents. The results show that speech and handwritten recognition can be combined in an effective way. Finally, an evaluation with real users is carried out to compare an interactive machine translation prototype with a post-editing prototype. The results of the study reveal that users are very sensitive to the usability aspects of the user interface. Therefore, usability is a crucial aspect to consider in an human evaluation that can hinder the real benefits of the technology being evaluated. Hopefully, once usability problems are fixed, the evaluation indicates that users are more favorable to work with the interactive machine translation system than to the post-editing system. / Alabau Gonzalvo, V. (2014). Multimodal interactive structured prediction [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/35135 / Premios Extraordinarios de tesis doctorales
65

Contributions to the joint segmentation and classification of sequences (My two cents on decoding and handwriting recognition)

España Boquera, Salvador 05 April 2016 (has links)
[EN] This work is focused on problems (like automatic speech recognition (ASR) and handwritten text recognition (HTR)) that: 1) can be represented (at least approximately) in terms of one-dimensional sequences, and 2) solving these problems entails breaking the observed sequence down into segments which are associated to units taken from a finite repertoire. The required segmentation and classification tasks are so intrinsically interrelated ("Sayre's Paradox") that they have to be performed jointly. We have been inspired by what some works call the "successful trilogy", which refers to the synergistic improvements obtained when considering: - a good formalization framework and powerful algorithms; - a clever design and implementation taking the best profit of hardware; - an adequate preprocessing and a careful tuning of all heuristics. We describe and study "two stage generative models" (TSGMs) comprising two stacked probabilistic generative stages without reordering. This model not only includes Hidden Markov Models (HMMs, but also "segmental models" (SMs). "Two stage decoders" may be deduced by simply running a TSGM in reversed way, introducing non determinism when required: 1) A directed acyclic graph (DAG) is generated and 2) it is used together with a language model (LM). One-pass decoders constitute a particular case. A formalization of parsing and decoding in terms of semiring values and language equations proposes the use of recurrent transition networks (RTNs) as a normal form for Context Free Grammars (CFGs), using them in a parsing-as-composition paradigm, so that parsing CFGs result in a slight extension of regular ones. Novel transducer composition algorithms have been proposed that can work with RTNs and can deal with null transitions without resorting to filter-composition even in the presence of null transitions and non-idempotent semirings. A review of LMs is described and some contributions mainly focused on LM interfaces, LM representation and on the evaluation of Neural Network LMs (NNLMs) are provided. A review of SMs includes the combination of generative and discriminative segmental models and general scheme of frame emission and another one of SMs. Some fast cache-friendly specialized Viterbi lexicon decoders taking profit of particular HMM topologies are proposed. They are able to manage sets of active states without requiring dictionary look-ups (e.g. hashing). A dataflow architecture allowing the design of flexible and diverse recognition systems from a little repertoire of components has been proposed, including a novel DAG serialization protocol. DAG generators can take over-segmentation constraints into account, make use SMs other than HMMs, take profit of the specialized decoders proposed in this work and use a transducer model to control its behavior making it possible, for instance, to use context dependent units. Relating DAG decoders, they take profit of a general LM interface that can be extended to deal with RTNs. Some improvements for one pass decoders are proposed by combining the specialized lexicon decoders and the "bunch" extension of the LM interface, including an adequate parallelization. The experimental part is mainly focused on HTR tasks on different input modalities (offline, bimodal). We have proposed some novel preprocessing techniques for offline HTR which replace classical geometrical heuristics and make use of automatic learning techniques (neural networks). Experiments conducted on the IAM database using this new preprocessing and HMM hybridized with Multilayer Perceptrons (MLPs) have obtained some of the best results reported for this reference database. Among other HTR experiments described in this work, we have used over-segmentation information, tried lexicon free approaches, performed bimodal experiments and experimented with the combination of hybrid HMMs with holistic classifiers. / [ES] Este trabajo se centra en problemas (como reconocimiento automático del habla (ASR) o de escritura manuscrita (HTR)) que cumplen: 1) pueden representarse (quizás aproximadamente) en términos de secuencias unidimensionales, 2) su resolución implica descomponer la secuencia en segmentos que se pueden clasificar en un conjunto finito de unidades. Las tareas de segmentación y de clasificación necesarias están tan intrínsecamente interrelacionadas ("paradoja de Sayre") que deben realizarse conjuntamente. Nos hemos inspirado en lo que algunos autores denominan "La trilogía exitosa", refereido a la sinergia obtenida cuando se tiene: - un buen formalismo, que dé lugar a buenos algoritmos; - un diseño e implementación ingeniosos y eficientes, que saquen provecho de las características del hardware; - no descuidar el "saber hacer" de la tarea, un buen preproceso y el ajuste adecuado de los diversos parámetros. Describimos y estudiamos "modelos generativos en dos etapas" sin reordenamientos (TSGMs), que incluyen no sólo los modelos ocultos de Markov (HMM), sino también modelos segmentales (SMs). Se puede obtener un decodificador de "dos pasos" considerando a la inversa un TSGM introduciendo no determinismo: 1) se genera un grafo acíclico dirigido (DAG) y 2) se utiliza conjuntamente con un modelo de lenguaje (LM). El decodificador de "un paso" es un caso particular. Se formaliza el proceso de decodificación con ecuaciones de lenguajes y semianillos, se propone el uso de redes de transición recurrente (RTNs) como forma normal de gramáticas de contexto libre (CFGs) y se utiliza el paradigma de análisis por composición de manera que el análisis de CFGs resulta una extensión del análisis de FSA. Se proponen algoritmos de composición de transductores que permite el uso de RTNs y que no necesita recurrir a composición de filtros incluso en presencia de transiciones nulas y semianillos no idempotentes. Se propone una extensa revisión de LMs y algunas contribuciones relacionadas con su interfaz, con su representación y con la evaluación de LMs basados en redes neuronales (NNLMs). Se ha realizado una revisión de SMs que incluye SMs basados en combinación de modelos generativos y discriminativos, así como un esquema general de tipos de emisión de tramas y de SMs. Se proponen versiones especializadas del algoritmo de Viterbi para modelos de léxico y que manipulan estados activos sin recurrir a estructuras de tipo diccionario, sacando provecho de la caché. Se ha propuesto una arquitectura "dataflow" para obtener reconocedores a partir de un pequeño conjunto de piezas básicas con un protocolo de serialización de DAGs. Describimos generadores de DAGs que pueden tener en cuenta restricciones sobre la segmentación, utilizar modelos segmentales no limitados a HMMs, hacer uso de los decodificadores especializados propuestos en este trabajo y utilizar un transductor de control que permite el uso de unidades dependientes del contexto. Los decodificadores de DAGs hacen uso de un interfaz bastante general de LMs que ha sido extendido para permitir el uso de RTNs. Se proponen también mejoras para reconocedores "un paso" basados en algoritmos especializados para léxicos y en la interfaz de LMs en modo "bunch", así como su paralelización. La parte experimental está centrada en HTR en diversas modalidades de adquisición (offline, bimodal). Hemos propuesto técnicas novedosas para el preproceso de escritura que evita el uso de heurísticos geométricos. En su lugar, utiliza redes neuronales. Se ha probado con HMMs hibridados con redes neuronales consiguiendo, para la base de datos IAM, algunos de los mejores resultados publicados. También podemos mencionar el uso de información de sobre-segmentación, aproximaciones sin restricción de un léxico, experimentos con datos bimodales o la combinación de HMMs híbridos con reconocedores de tipo holístico. / [CA] Aquest treball es centra en problemes (com el reconeiximent automàtic de la parla (ASR) o de l'escriptura manuscrita (HTR)) on: 1) les dades es poden representar (almenys aproximadament) mitjançant seqüències unidimensionals, 2) cal descompondre la seqüència en segments que poden pertanyer a un nombre finit de tipus. Sovint, ambdues tasques es relacionen de manera tan estreta que resulta impossible separar-les ("paradoxa de Sayre") i s'han de realitzar de manera conjunta. Ens hem inspirat pel que alguns autors anomenen "trilogia exitosa", referit a la sinèrgia obtinguda quan prenim en compte: - un bon formalisme, que done lloc a bons algorismes; - un diseny i una implementació eficients, amb ingeni, que facen bon us de les particularitats del maquinari; - no perdre de vista el "saber fer", emprar un preprocés adequat i fer bon us dels diversos paràmetres. Descrivim i estudiem "models generatiu amb dues etapes" sense reordenaments (TSGMs), que inclouen no sols inclouen els models ocults de Markov (HMM), sinò també models segmentals (SM). Es pot obtindre un decodificador "en dues etapes" considerant a l'inrevés un TSGM introduint no determinisme: 1) es genera un graf acíclic dirigit (DAG) que 2) és emprat conjuntament amb un model de llenguatge (LM). El decodificador "d'un pas" en és un cas particular. Descrivim i formalitzem del procés de decodificació basada en equacions de llenguatges i en semianells. Proposem emprar xarxes de transició recurrent (RTNs) com forma normal de gramàtiques incontextuals (CFGs) i s'empra el paradigma d'anàlisi sintàctic mitjançant composició de manera que l'anàlisi de CFGs resulta una lleugera extensió de l'anàlisi de FSA. Es proposen algorismes de composició de transductors que poden emprar RTNs i que no necessiten recorrer a la composició amb filtres fins i tot amb transicions nul.les i semianells no idempotents. Es proposa una extensa revisió de LMs i algunes contribucions relacionades amb la seva interfície, amb la seva representació i amb l'avaluació de LMs basats en xarxes neuronals (NNLMs). S'ha realitzat una revisió de SMs que inclou SMs basats en la combinació de models generatius i discriminatius, així com un esquema general de tipus d'emissió de trames i altre de SMs. Es proposen versions especialitzades de l'algorisme de Viterbi per a models de lèxic que permeten emprar estats actius sense haver de recórrer a estructures de dades de tipus diccionari, i que trauen profit de la caché. S'ha proposat una arquitectura de flux de dades o "dataflow" per obtindre diversos reconeixedors a partir d'un xicotet conjunt de peces amb un protocol de serialització de DAGs. Descrivim generadors de DAGs capaços de tindre en compte restriccions sobre la segmentació, emprar models segmentals no limitats a HMMs, fer us dels decodificadors especialitzats proposats en aquest treball i emprar un transductor de control que permet emprar unitats dependents del contexte. Els decodificadors de DAGs fan us d'una interfície de LMs prou general que ha segut extesa per permetre l'ús de RTNs. Es proposen millores per a reconeixedors de tipus "un pas" basats en els algorismes especialitzats per a lèxics i en la interfície de LMs en mode "bunch", així com la seua paral.lelització. La part experimental està centrada en el reconeiximent d'escriptura en diverses modalitats d'adquisició (offline, bimodal). Proposem un preprocés d'escriptura manuscrita evitant l'us d'heurístics geomètrics, en el seu lloc emprem xarxes neuronals. S'han emprat HMMs hibridats amb xarxes neuronals aconseguint, per a la base de dades IAM, alguns dels millors resultats publicats. També podem mencionar l'ús d'informació de sobre-segmentació, aproximacions sense restricció a un lèxic, experiments amb dades bimodals o la combinació de HMMs híbrids amb classificadors holístics. / España Boquera, S. (2016). Contributions to the joint segmentation and classification of sequences (My two cents on decoding and handwriting recognition) [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/62215 / Premios Extraordinarios de tesis doctorales
66

Le orecchie si piene di Fiandra : Italian news and histories on the Revolt in the Netherlands (1566-1648)

Lamal, Nina January 2014 (has links)
This thesis examines the Italian news reports, political debates and histories of the revolt in the Netherlands between 1566 and 1648. Many Italians were directly involved in this conflict and were keen narrators of these wars. Despite this, a systematic study of the Italian interest for the conflict has not yet been undertaken. This thesis argues that the complex political constellation of the Italian peninsula, dominated by the Habsburg monarchy, shaped the Italian news, debates and interpretations of the Dutch Revolt. Chapter one examines the different ways in which news from the Low Countries reached Italian states. It demonstrates that Italian military officers, active on the battlefield in the Netherlands in the Habsburg army, played a crucial role as purveyors of news and opinion on the conflict. The two following chapters study the circulation of political treatises on the Italian peninsula. Chapter two reconstructs the debates sparked by the events in the Low Countries between 1576 and 1577. Chapter three examines the descriptions of the emergence of a new state in the Northern Netherlands and the discourses on war and peace between 1590 and 1609. Chapter four looks into the development of a market for printed news pamphlets and explores the connections between manuscript and printed news. Chapter five studies how news was used by Italian history writers in their contemporary chronicles. It also investigates how these authors celebrated Italian protagonists in the war as Italian and Catholic heroes. The conclusion examines the evolution of all these Italian discourses related to Dutch Revolt.
67

Algorithms in data mining using matrix and tensor methods

Savas, Berkant January 2008 (has links)
In many fields of science, engineering, and economics large amounts of data are stored and there is a need to analyze these data in order to extract information for various purposes. Data mining is a general concept involving different tools for performing this kind of analysis. The development of mathematical models and efficient algorithms is of key importance. In this thesis we discuss algorithms for the reduced rank regression problem and algorithms for the computation of the best multilinear rank approximation of tensors. The first two papers deal with the reduced rank regression problem, which is encountered in the field of state-space subspace system identification. More specifically the problem is \[ \min_{\rank(X) = k} \det (B - X A)(B - X A)\tp, \] where $A$ and $B$ are given matrices and we want to find $X$ under a certain rank condition that minimizes the determinant. This problem is not properly stated since it involves implicit assumptions on $A$ and $B$ so that $(B - X A)(B - X A)\tp$ is never singular. This deficiency of the determinant criterion is fixed by generalizing the minimization criterion to rank reduction and volume minimization of the objective matrix. The volume of a matrix is defined as the product of its nonzero singular values. We give an algorithm that solves the generalized problem and identify properties of the input and output signals causing a singular objective matrix. Classification problems occur in many applications. The task is to determine the label or class of an unknown object. The third paper concerns with classification of handwritten digits in the context of tensors or multidimensional data arrays. Tensor and multilinear algebra is an area that attracts more and more attention because of the multidimensional structure of the collected data in various applications. Two classification algorithms are given based on the higher order singular value decomposition (HOSVD). The main algorithm makes a data reduction using HOSVD of 98--99 \% prior the construction of the class models. The models are computed as a set of orthonormal bases spanning the dominant subspaces for the different classes. An unknown digit is expressed as a linear combination of the basis vectors. The resulting algorithm achieves 5\% in classification error with fairly low amount of computations. The remaining two papers discuss computational methods for the best multilinear rank approximation problem \[ \min_{\cB} \| \cA - \cB\| \] where $\cA$ is a given tensor and we seek the best low multilinear rank approximation tensor $\cB$. This is a generalization of the best low rank matrix approximation problem. It is well known that for matrices the solution is given by truncating the singular values in the singular value decomposition (SVD) of the matrix. But for tensors in general the truncated HOSVD does not give an optimal approximation. For example, a third order tensor $\cB \in \RR^{I \x J \x K}$ with rank$(\cB) = (r_1,r_2,r_3)$ can be written as the product \[ \cB = \tml{X,Y,Z}{\cC}, \qquad b_{ijk}=\sum_{\lambda,\mu,\nu} x_{i\lambda} y_{j\mu} z_{k\nu} c_{\lambda\mu\nu}, \] where $\cC \in \RR^{r_1 \x r_2 \x r_3}$ and $X \in \RR^{I \times r_1}$, $Y \in \RR^{J \times r_2}$, and $Z \in \RR^{K \times r_3}$ are matrices of full column rank. Since it is no restriction to assume that $X$, $Y$, and $Z$ have orthonormal columns and due to these constraints, the approximation problem can be considered as a nonlinear optimization problem defined on a product of Grassmann manifolds. We introduce novel techniques for multilinear algebraic manipulations enabling means for theoretical analysis and algorithmic implementation. These techniques are used to solve the approximation problem using Newton and Quasi-Newton methods specifically adapted to operate on products of Grassmann manifolds. The presented algorithms are suited for small, large and sparse problems and, when applied on difficult problems, they clearly outperform alternating least squares methods, which are standard in the field.
68

Cautionnement et droit des sociétés / Deposits and company law

Achour, Dehlila 16 November 2011 (has links)
À l’heure actuelle, le droit du cautionnement est une matière totalement désagrégée. Cet éclatement du droit du cautionnement provient essentiellement de l’abondance et de la superposition des textes : on ne compte plus les multiples interventions du législateur, ni les rebondissements jurisprudentiels. La matière aurait pu être simplifiée si elle avait bénéficié de la réforme du droit des sûretés avec l’ordonnance du 23 mars 2006. Mais il n’en est rien.Associée au droit des sociétés, cette matière en devient d’autant plus complexe. En droit des sociétés, le cautionnement est une garantie des plus répandues. Il constitue la plupart du temps, pour la société, un acte dangereux car il peut avoir des conséquences préjudiciables pour celle-Ci. En même temps, la réglementation doit garder une certaine souplesse afin de respecter les exigences de rapidité de la vie des affaires. Cette conciliation est délicate à réaliser.Cette étude se propose d’appréhender le lien existant entre le cautionnement et les règles du droit des sociétés. Pour mener à bien cette entreprise, il convenait d’envisager le sujet sous deux angles, à savoir d’une part le cautionnement donné par une société, et d’autre part, celui consenti au profit d’une personne morale.Un tel cautionnement qu’il soit donné par une société, ou en sa faveur, est de nature à soulever des difficultés au regard des principes gouvernant le droit des sociétés. C’est pourquoi, certaines règles ont été fixées. Le cautionnement se trouve ainsi gouverné par des règles de droit des sociétés spécifiques, au-Delà des règles de droit commun qui le régissent. Mais cela passe également par l’exploitation du formalisme supposé protéger la caution personne physique, les obligations du créancier telles que l’obligation d’information, de mise en garde, le principe de proportionnalité…Si la loi Dutreil a échoué dans son impératif de cohésion et de simplification du droit du cautionnement, peut-On dire que l’avenir est à une unification des différentes législations relatives au cautionnement ? / At present, surety law is a matter that has totally been breaking apart. This fragmentation of surety law is mainly due to the abundance and overlapping of legislative acts: there are more interventions on the part of the legislator, more jurisprudential developments than we can count. The matter could have be simplified, had it benefited from the reform of security law in accordance with the order of 23 March 2006. But that was not the case.In relation to corporate law, the subject is becoming even more complex. In corporate law, surety is the most widespread guarantee. To a company it represents, most of the time, an unsafe act because it may suffer adverse consequences from it. At the same time, regulation should retain some flexibility to meet the speed requirements of the business world. This is a delicate balance to achieve.This study aims at grasping the relationship between surety and the rules of corporate law. To carry out this undertaking, it was appropriate to consider the subject from two different angles, namely the surety bond as it is issued by a company, and that as granted for the benefit of a legal person.Such guarantee whether it is granted by a company or to it, is liable to give rise to difficulties with regard to the principles governing corporate law. Which explains why certain rules have been set. The guarantee is therefore governed by specific corporate rules that transcend the common law rules made to that effect. But it also involves meeting the formal requirements designed to protect the individual guarantor, and binding the creditor to obligations such as the duty of disclosure, duty of warning, the principle of proportionality ...If the Dutreil law has failed to observe the requirements of cohesion and simplification of surety law, can we therefore say that the future is dependent on a unification of the various laws pertaining to surety?
69

Leveraging noisy side information for disentangling of factors of variation in a supervised setting

Carrier, Pierre Luc 08 1900 (has links)
No description available.
70

Layout Analysis for Handwritten Documents. A Probabilistic Machine Learning Approach

Quirós Díaz, Lorenzo 21 March 2022 (has links)
[ES] El Análisis de la Estructura de Documentos (Document Layout Analysis), aplicado a documentos manuscritos, tiene como objetivo obtener automáticamente la estructura intrínseca de dichos documentos. Su desarrollo como campo de investigación se extiende desde los sistemas de segmentación de caracteres desarrollados a principios de la década de 1960 hasta los sistemas complejos desarrollados en la actualidad, donde el objetivo es analizar estructuras de alto nivel (líneas de texto, párrafos, tablas, etc.) y la relación que existe entre ellas. Esta tesis, en primer lugar, define el objetivo del Análisis de la Estructura de Documentos desde una perspectiva probabilística. A continuación, la complejidad del problema se reduce a un conjunto de subproblemas complementarios bien conocidos, de manera que pueda ser gestionado por medio de recursos informáticos modernos. Concretamente se abordan tres de los principales problemas del Análisis de la Estructura de Documentos siguiendo una formulación probabilística. Específicamente se aborda la Detección de Línea Base (Baseline Detection), la Segmentación de Regiones (Region Segmentation) y la Determinación del Orden de Lectura (Reading Order Determination). Uno de los principales aportes de esta tesis es la formalización de los problemas de Detección de Línea Base y Segmentación de Regiones bajo un marco probabilístico, donde ambos problemas pueden ser abordados por separado o de forma integrada por los modelos propuestos. Este último enfoque ha demostrado ser muy útil para procesar grandes colecciones de documentos con recursos informáticos limitados. Posteriormente se aborda el subproblema de la Determinación del Orden de Lectura, que es uno de los subproblemas más importantes, aunque subestimados, del Análisis de la Extructura de Documentos, ya que es el nexo que permite convertir los datos extraídos de los sistemas de Reconocimiento Automático de Texto (Automatic Text Recognition Systems) en información útil. Por lo tanto, en esta tesis abordamos y formalizamos la Determinación del Orden de Lectura como un problema de clasificación probabilística por pares. Además, se proponen dos diferentes algoritmos de decodificación que reducen la complejidad computacional del problema. Por otra parte, se utilizan diferentes modelos estadísticos para representar la distribución de probabilidad sobre la estructura de los documentos. Estos modelos, basados en Redes Neuronales Artificiales (desde un simple Perceptrón Multicapa hasta complejas Redes Convolucionales y Redes de Propuesta de Regiones), se estiman a partir de datos de entrenamiento utilizando algoritmos de aprendizaje automático supervisados. Finalmente, todas las contribuciones se evalúan experimentalmente, no solo en referencias académicas estándar, sino también en colecciones de miles de imágenes. Se han considerado documentos de texto manuascritos y documentos musicales manuscritos, ya que en conjunto representan la mayoría de los documentos presentes en bibliotecas y archivos. Los resultados muestran que los métodos propuestos son muy precisos y versátiles en una amplia gama de documentos manuscritos. / [CA] L'Anàlisi de l'Estructura de Documents (Document Layout Analysis), aplicada a documents manuscrits, pretén automatitzar l'obtenció de l'estructura intrínseca d'un document. El seu desenvolupament com a camp d'investigació comprén des dels sistemes de segmentació de caràcters creats al principi dels anys 60 fins als complexos sistemes de hui dia que busquen analitzar estructures d'alt nivell (línies de text, paràgrafs, taules, etc) i les relacions entre elles. Aquesta tesi busca, primer de tot, definir el propòsit de l'anàlisi de l'estructura de documents des d'una perspectiva probabilística. Llavors, una vegada reduïda la complexitat del problema, es processa utilitzant recursos computacionals moderns, per a dividir-ho en un conjunt de subproblemes complementaris més coneguts. Concretament, tres dels principals subproblemes de l'Anàlisi de l'Estructura de Documents s'adrecen seguint una formulació probabilística: Detecció de la Línia Base Baseline Detection), Segmentació de Regions (Region Segmentation) i Determinació de l'Ordre de Lectura (Reading Order Determination). Una de les principals contribucions d'aquesta tesi és la formalització dels problemes de la Detecció de les Línies Base i dels de Segmentació de Regions en un entorn probabilístic, sent els dos problemes tractats per separat o integrats en conjunt pels models proposats. Aquesta última aproximació ha demostrat ser de molta utilitat per a la gestió de grans col·leccions de documents amb uns recursos computacionals limitats. Posteriorment s'ha adreçat el subproblema de la Determinació de l'Ordre de Lectura, sent un dels subproblemes més importants de l'Anàlisi d'Estructures de Documents, encara així subestimat, perquè és el nexe que permet transformar en informació d'utilitat l'extracció de dades dels sistemes de reconeixement automàtic de text. És per això que el fet de determinar l'ordre de lectura s'adreça i formalitza com un problema d'ordenació probabilística per parells. A més, es proposen dos algoritmes descodificadors diferents que reducix la complexitat computacional del problema. Per altra banda s'utilitzen diferents models estadístics per representar la distribució probabilística sobre l'estructura dels documents. Aquests models, basats en xarxes neuronals artificials (des d'un simple perceptron multicapa fins a complexes xarxes convolucionals i de propostes de regió), s'estimen a partir de dades d'entrenament mitjançant algoritmes d'aprenentatge automàtic supervisats. Finalment, totes les contribucions s'avaluen experimentalment, no només en referents acadèmics estàndard, sinó també en col·leccions de milers d'imatges. S'han considerat documents de text manuscrit i documents musicals manuscrits, ja que representen la majoria de documents presents a biblioteques i arxius. Els resultats mostren que els mètodes proposats són molt precisos i versàtils en una àmplia gamma de documents manuscrits. / [EN] Document Layout Analysis, applied to handwritten documents, aims to automatically obtain the intrinsic structure of a document. Its development as a research field spans from the character segmentation systems developed in the early 1960s to the complex systems designed nowadays, where the goal is to analyze high-level structures (lines of text, paragraphs, tables, etc) and the relationship between them. This thesis first defines the goal of Document Layout Analysis from a probabilistic perspective. Then, the complexity of the problem is reduced, to be handled by modern computing resources, into a set of well-known complementary subproblems. More precisely, three of the main subproblems of Document Layout Analysis are addressed following a probabilistic formulation, namely Baseline Detection, Region Segmentation and Reading Order Determination. One of the main contributions of this thesis is the formalization of Baseline Detection and Region Segmentation problems under a probabilistic framework, where both problems can be handled separately or in an integrated way by the proposed models. The latter approach is proven to be very useful to handle large document collections under restricted computing resources. Later, the Reading Order Determination subproblem is addressed. It is one of the most important, yet underestimated, subproblem of Document Layout Analysis, since it is the bridge that allows us to convert the data extracted from Automatic Text Recognition systems into useful information. Therefore, Reading Order Determination is addressed and formalized as a pairwise probabilistic sorting problem. Moreover, we propose two different decoding algorithms that reduce the computational complexity of the problem. Furthermore, different statistical models are used to represent the probability distribution over the structure of the documents. These models, based on Artificial Neural Networks (from a simple Multilayer Perceptron to complex Convolutional and Region Proposal Networks), are estimated from training data using supervised Machine Learning algorithms. Finally, all the contributions are experimentally evaluated, not only on standard academic benchmarks but also in collections of thousands of images. We consider handwritten text documents and handwritten musical documents as they represent the majority of documents in libraries and archives. The results show that the proposed methods are very accurate and versatile in a very wide range of handwritten documents. / Quirós Díaz, L. (2022). Layout Analysis for Handwritten Documents. A Probabilistic Machine Learning Approach [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/181483

Page generated in 0.058 seconds