• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 93
  • 35
  • 20
  • 15
  • 12
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 233
  • 62
  • 51
  • 48
  • 44
  • 36
  • 29
  • 26
  • 26
  • 24
  • 23
  • 23
  • 23
  • 22
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Étude du transport de charges dans le niobate de lithium massif et réalisation de fonctions électro-optiques dans le niobate de lithium périodiquement polarisé / Study of charge transport in bulk lithium niobate and realization of electro-optical functions in periodically poled lithium niobate

Mhaouech, Imed 24 March 2017 (has links)
Le premier volet de cette thèse est consacré à la modélisation des phénomènes de transport dans le LN. Partant d'une analyse critique des modèles de bande usuels, nous montrons leur inadéquation dans le cas du LN et nous proposons un modèle de saut basé sur la théorie des petits polarons. Nous étudions d'abord par simulation Monte-Carlo la décroissance d'une population de polarons liés NbLi4+ relaxant vers des pièges profonds FeLi3+. Nous montrons que les pièges FeLi3+ ont des rayons effectifs particulièrement grands, rayons qui augmentent encore à température décroissante, et limitent considérablement les longueurs de diffusion des polarons. Les résultats de simulations sont ensuite confrontés aux résultats expérimentaux obtenus par différentes techniques ; Absorption photo-induite, Raman, Enregistrement holographique et Pompe-sonde. Le deuxième volet de cette thèse est consacré aux applications électro-optiques dans le LN périodiquement polarisé (PPLN). Sous l’effet d’une tension électrique, l’indice de réfraction du PPLN est périodiquement diminué et augmenté, formant ainsi un réseau d’indice activable électriquement. Un premier composant utilisant l’effet électro-optique dans du PPLN a été développé et démontré expérimentalement. Dans ce composant, la lumière est défléchie sous l’effet de la tension électrique par le réseau d’indice. Ce déflecteur de Bragg atteint une efficacité de diffraction proche de 100% avec une faible tension de commande de l’ordre de 5 V. Un deuxième composant a également été proposé, où la lumière se propage perpendiculairement aux parois de domaines du PPLN. Dans cette configuration un réflecteur de Bragg électro-optique peut être réalisé / The first part of this thesis is devoted to the modeling of transport phenomena in the LN. From a critical analysis of the usual band models, we show their inadequacy in the case of LN and we propose a hopping model based on the theory of small polarons. We first study by Monte-Carlo simulation the population decay of bound polarons NbLi4+ in deep traps FeLi3+. We show that the traps (FeLi3+) have particularly large effective radii, which increase further at decreasing temperature, and considerably limit the diffusion lengths of the polarons. The results of simulations are then compared with experimental results obtained by different techniques; Light-induced absorption, Raman, Holographic storage and Pump-Probe. The second part of this thesis is devoted to electro-optical applications in the periodically poled LN (PPLN). Under the effect of an electrical voltage, the refractive index of the PPLN is periodically decreased and increased, thus forming an electrically activatable index grating. A first component using the electro-optical effect in PPLN has been developed and demonstrated experimentally. In this component, the light is deflected under the effect of the electrical voltage by the index grating. This Bragg deflector achieves a diffraction efficiency of close to 100% with a low drive voltage of the order of 5 V. A second component has also been proposed, where light propagates perpendicularly to the domain walls of the PPLN. In this configuration an electro-optic Bragg reflector can be realized
222

Particle manipulation in minichannels for enhanced digital holographic microscopy observation / Manipulation de mcroparticules dans des minicanaux pour une observation améliorée au microscope holographique digitale.

Perfetti, Claire 24 April 2014 (has links)
The development of techniques targeting the manipulation of particles of different<p>sizes - mostly in the nano to millimeter scale - when dispersed in a carrier medium, is an increasingly important topic in many fields such as biotechnology,nanotechnology, medicine, biophysics and environmental monitoring and remediation. The underlying rationale for using such techniques stands in the sometimes compelling requirements of avoiding clogging as in micro/nano channel flows, of limiting sedimentation and wall interactions in particle/cell counting, of enhancing particle-surface interaction as in bio-sensing or of facilitating characterization and sorting as in bio-physical applications. Being developed in the frame of a Belgian national project devoted to the characterization and counting of pollutant in water media by digital holographic microscopy, this thesis tackles a peculiar class of particle manipulation techniques, commonly known as Focusing. The main goal of focusing is to avoid at best wall particle interactions and sedimentation, prevalent issues for dispersions owing in micro/mini-channels especially for applications such as optical characterization and counting.<p><p>The main attention was given to two flow focusing techniques - Hydrodynamic and Acoustic Focusing - for their wide range applicability and cost effectiveness. Hydrodynamic Focusing consists in controlling the position and spreading of the sample under investigation by means of a so-called sheath flow. A low-cost, nevertheless effective, prototype has been conceived, designed, manufactured and tested. It allowed for controlling the spreading of the sample stream and achieving a focusing ratio accounting for only 4% of the original stream width.<p><p>Acoustic Focusing takes advantage of the time-averaged pressure fields induced by the creation of standing waves in channels to manipulate and focus the dispersed particles. In the frame of this thesis, several devices have been developed using square cross section glass mini-channels. Aside from the cost-effectiveness, particles where focused in a somehow unexpected but high reproducible 3D matrix-like structure. A novel numerical model has also been implemented in order to study the conditions leading to the 3D structure formation. A good agreement between experimental and numerical results was found./Ce projet de thèse portant sur la manipulation de micro-particules dans des minicanaux s'inscrit dans le développement de cellules de flux pour des applications biologiques, qui est l'une des problématiques du projet HOLOFLOW, soutenu par<p>la région de Bruxelles Capitale. Les cellules de flux doivent permettre l'observation et la reconnaissance des micro-organismes vivants dans une large gamme de dimensions (de quelques microns à 1mm) avec la microscopie holographie digitale.<p>La problématique d'observation et de manipulation des microorganismes en flux est liée au clogging (bouchage) et à la sédimentation qui limitent la durée de vie des cellules d'observation. Ce projet de thèse s'inscrit dans cette problématique et propose deux axes d'étude pour limiter l'interaction entre organismes et canaux, la focalisation hydrodynamique, basée sur le guidage de flux, et la focalisation acoustique, basée sur la manipulation des particules.<p><p>La focalisation hydrodynamique est une technique basée sur l'injection différentiée de l'échantillon à observer et d'un fluide support. La différence des vitesses d'injection des flux permet de contrôler la dispersion des particules afin d'optimiser leur observation. Dans le cadre de cette thèse, un prototype à bas-coût a été développé et construit, permettant de focaliser les particules dans un faisceau jusqu'à 4% de leur faisceau incident.<p><p>La focalisation acoustique utilise la création d'une onde acoustique stationnaire afin de regrouper les particules en suspension au centre du canal. Au cours de cette thèse, plusieurs prototypes ont été réalisés, mettant en évidence la formation de motifs tridimensionnaux. Un model numérique a été spécialement développé afin d'étudier les conditions de génération de ces motifs, et de nombreuses expériences ont été menées afin de s'assurer de leur reproductibilité. Une bonne adéquation entre la position des particules mesurée et calculée numériquement a été démontrée. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
223

Development of Next-Generation Optical Tweezers : The New Swiss Army Knife of Biophysical and Biomechanical Research

Nilsson, Daniel January 2020 (has links)
In a time when microorganisms are controlling the world, research in biology is more relevant than ever and this requires some powerful instruments. Optical tweezers use a focused laser beam to manipulate and probe objects on the nano- and microscale. This allows for the exploration of a miniature world at the border between biology, chemistry and physics. New methods for biophysical and physicochemical measurements are continuously being developed and at Umeå University there is a need for a new system that combines several of these methods. This would truly be the new Swiss army knife of biophysical and biomechanical research, extending their reach in the world of optical tweezing. My ambition with this project is to design and construct a robust system that incorporates optical trapping with high-precision force measurements and Raman spectroscopy, as well as introducing the possibility of generating multiple traps by using a spatial light modulator (SLM). The proposed design incorporates four different lasers and a novel combination of signal detection techniques. To allow for precise control of the systems components and laser beams, I designed and constructed motorized opto-mechanical components. These are controlled by an in-house developed software that handles data processing and signal analysis, while also providing a user interface for the system. The components include, motorized beam blockers and optical attenuators, which were developed using commonly available 3D printing techniques and electronic controllers. By designing the system from scratch, I could eliminate the known weaknesses of conventional systems and allow for a modular design where components can be added easily. The system is divided into two parts, a laser breadboard and a main breadboard. The former contains all the equipment needed to generate and control the laser beams, which are then coupled through optical fibers to the latter. This contains the components needed to move the optical trap inside the sample chamber, while performing measurements and providing user feedback. Construction and testing was done for one sub-system at a time, while the lack of time required a postponement for the implementation of Raman and SLM. The system performance was verified through Allan variance stability tests and the results were compared with other optical tweezers setups. The results show that the system follows the thermal limit for averaging times (τ) up to ~1 s when disturbances had been eliminated, which is similar to other systems. However, we could also show a decrease in variance all the way to τ = 2000 s, which is exceptionally good and not found in conventional systems. The force-resolution was determined to be on the order of femtonewtons, which is also exceptionally good. Thus, I conclude that this optical tweezers setup could lie as a solid foundation for future development and research in biological science at Umeå University for years to come.
224

Vývoj biofyzikální interpretace dat kvantitativního fázového zobrazování / Development of Biophysical Interpretation of Quantitative Phase Image Data

Křížová, Aneta January 2019 (has links)
This doctoral thesis deals with biophysical interpretation of quantitative phase imaging (QPI) gained with coherence-controlled holographic microscope (CCHM). In the first part methods evaluating information from QPI such as analysis of shape and dynamical characteristics of segmented objects as well as evaluation of the phase information itself are described. In addition, a method of dynamic phase differences (DPD) is designed to allow more detailed monitoring of cell mass translocations. All of these methods are used in biological applications. In an extensive study of various types of cell death, QPI information is compared with flow cytometry data, and preferably a combination of QPI and fluorescence microscopy is used. The DPD method is used to study mass translocations inside the cell during osmotic events. The simplified DPD method is applied to investigate the mechanism of tumor cell movement in collagen gels.
225

Koherencí řízený holografický mikroskop / COHERENCE-CONTROLLED HOLOGRAPHIC MICROSCOPE

Kolman, Pavel January 2010 (has links)
ransmitted-light coherence-controlled holographic microscope (CCHM) based on an off-axis achromatic and space-invariant interferometer with a diffractive beamsplitter has been designed, constructed and tested. It is capable to image objects illuminated by light sources of arbitrary degree of temporal and spatial coherence. Off-axis image-plane hologram is recorded and the image complex amplitude (intensity and phase) is reconstructed numerically using fast Fourier transform algorithms. Phase image represents the optical path difference between the object and the reference arms caused by presence of an object. Therefore, it is a quantitative phase contrast image. Intensity image is confocal-like. Optical sectioning effect induced by an extended, spatial incoherent light source is equivalent to a conventional confocal image. CCHM is therefore capable to image objects under a diffusive layer or immersed in a turbid media. Spatial and temporal incoherence of illumination makes the optical sectioning effect stronger compared to a confocal imaging process. Object wave reconstruction from the only one recorded interference pattern ensures high resistance to vibrations and medium or ambience fluctuations. The frame rate is not limited by any component of the optical setup. Only the detector and computer speeds limit the frame rate. CCHM therefore allows observation of rapidly varying phenomena. CCHM makes the ex-post numerical refocusing possible within the coherence volume. Coherence degree of the light source in CCHM can be adapted to the object and to the required image properties. More coherent illumination provides wider range of numerical refocusing. On the other hand, a lower degree of coherence makes the optical sectioning stronger, i.e. the optical sections are thiner, it reduces coherence-noise and it makes it possible to separate the ballistic light. In addition to the ballistic light separation, CCHM enables us to separate the diffused light. Multi-colour-light
226

Matematické metody pro zpracování obrazu v biologických pozorováních / Mathematical Methods for Image Processing in Biological Observations

Zikmund, Tomáš January 2014 (has links)
The dissertation deals with the image processing in digital holographic microscopy and X-ray computed tomography. The focus of the work lies in the proposal of data processing techniques to meet the needs of the biological experiments. Transmitted light holographic microscopy is particularly used for quantitative phase imaging of transparent microscopic objects such as living cells. The phase images are affected by the phase aberrations that make the analysis particularly difficult. Here, we present a novel algorithm for dynamical processing of living cells phase images in a time-lapse sequence. The algorithm compensates for the deformation of a phase image using weighted least squares surface fitting. Moreover, it identifies and segments the individual cells in the phase image. This property of the algorithm is important for real-time cell quantitative phase imaging and instantaneous control of the course of the experiment. The efficiency of the propounded algorithm is demonstrated on images of rat fibrosarcoma cells using an off-axis holographic microscope. High resolution X-ray computed tomography is increasingly used technique for the study of the small rodent bones micro-structure. In this part of the work, the trabecular and cortical bone morphology is assessed in the distal half of rat femur. We developed new method for mapping the cortical position and dimensions from a central longitudinal axis with one degree angular resolution. This method was used to examine differences between experimental groups. The bone position in tomographic slices is aligned before the mapping using the propound standardization procedure. The activity of remodelling process of the long bone is studied on the system of cortical canals.
227

Designing Optical Metastructures for IR Sensing, Discernment and Signature Reduction

James Lawrence Stewart (10701084) 27 April 2021 (has links)
<div>Increasing flexibility of light manipulation is vital for various domains including both biomedical and military applications, where a lack of photon control could become critical. The efforts conducted and projected within this proposal are focused on three major areas: semi-continuous planar thin film photomodification for infrared (IR) filtering, nanosphere core-shell structures for obscurance, and all-dielectric sub-wavelength focal lenses for advanced IR sensing.Through a collaborative effort with the Army Research Office, we advanced the tunability of planar plasmonic filters with cutoff wavelengths in the 10–16μm range with photomodification using a 10.6μm CO2laser. Surface-enhanced molecular absorption in concert with three-dimensional (3D) Au nano-structures with inherent broad absorption in the IR band was a novel approach utilized to create such planar filters.Expanding on these, efforts and the results of the 2-dimensional (2D) semicontinuous Au plasmonic planar filtering, we further advanced our research with 3D Au nano-coreshell structures to enable levitated long-wavelength pass filter obscurants. We exploited the radiative effects of Au nano-structures that mimic conventional apertures or antennas, though these structures are on the nanometer scale and demonstrated the filtering characteristics through flow cell.In parallel with our plasmonic filtering we designed, manufactured and tested low loss dielectric microlenses for IR radiation based on a dielectric metasurface layer by patterning a SI substrate and etching to sub-micron depths. For a proof-of-concept lens demonstration,we chose a fine patterned array of nano-pillars with variable diameters.Merging our plasmonic filtering and dielectric microlens efforts, we created a holographic lenslet by designing and simulating a low loss focusing metasurface lens with engineered nano-scaled features to converge off-axis IR radiation. An array of nano-pillars with varied diameter and fixed height and periodicity was chosen for ease of fabrication with single layer etching</div>
228

Holographic Communications Technologies : A qualitative study on the ethical and\or legal challenges based on the stakeholders' perspectives

Giogiou, Natalia January 2022 (has links)
Holographic communications technologies are a new digital technology being currently  developed by companies to be available to the public in the near future. Through holographic  communications technologies, the image of one user located in one place can be captured with  special equipment from different angles, so that its three-dimensional depiction is created  realistically. The 3D depiction is then transmitted in high-quality to another user located in some  other remote place, creating a whole new experience of unconventional data communication. This  new digital technology is planned to be deployed in several fields, such as marketing, education,  medicine, business and entertainment. However, like any new technological tool that is  introduced, also in the case of holographic communication technologies there are ethical and/or  legal challenges that could emerge from its misuse and set in danger fundamental human rights.  Hence, research was conducted as an interpretive qualitative study to explore the potential ethical  and/or legal challenges of holographic communications technologies by considering the  knowledge, opinions, experiences, and perspectives of legal experts, as well as experts on ethical  issues. The empirical data was collected through individual semi-structured interviews from the  selected participants, and from the review of mainly confidential documents, before being  subjected to a thematic analysis. The analysis of the data gave prominence to five themes which  were reviewed in the context of the research question and the proposed theoretical framework  with the help of Ethical Technology Assessment (ETA). The discussion of the findings revealed  that the most prominent challenges that could arise from the use of holographic communications  technologies are privacy and data protection issues. It was further shown that existing digital  technologies with similar features and the ethical and/or legal challenges confronted in the past  about them can be of help to approach the ones regarding holographic communications  technologies. The research indicated that the designing phase of a new digital technology, and  accordingly holographic communication technologies, is important as decisions are being made  about the technical features of it, as well as the capabilities it will offer to the end users. Hence, it  plays a vital role to whether the use of the digital technology will be according to ethics and laws  later on. It was also shown that the participation of end users in this phase is important to reflect  their concerns and desires with the creators before the new digital technology is introduced, but  it is still a challenge to decide who will be included and on what criteria they will be selected.   The research showed that existing ethical and legal frameworks are important to form a  corresponding framework for holographic communications technologies and can be built upon.  However, this is also a challenge, as, according to the research, any new framework that will be  constructed with regard to holographic communications technologies cannot possibly be  unanimous as different norms and societal beliefs apply to different territories or domains, but  should rather be “personalized” according to the targeted audience.
229

Développement, étude expérimentale et visualisation par holographie digitale de mini-séparateurs fluidiques (STEP-SPLITT) en vue de la séparation d'objets de taille micrométrique. / Development, experimental study and visualization by digital holography of mini fluidic separators (STEP-SPLITT) in order to separate micron-size species.

Callens, Natacha N 22 December 2005 (has links)
Cette thèse expérimentale s’inscrit dans le domaine des sciences séparatives et se base sur la technique de SPLITT (SPLIT-flow Thin fractionation). Son objectif consiste en l’étude des mécanismes qui sont à l’origine de la séparation, en continu et sans membrane, d’objets de taille micrométrique dans des mini-séparateurs fluidiques (Step-SPLITT). Les expériences menées, en laboratoire et lors de vols paraboliques, ont révélé le couplage complexe comme l’influence des effets hydrodynamiques et du champ gravitationnel sur la migration transverse des espèces en écoulement. Des visualisations tridimensionnelles par holographie digitale ont corroboré nos résultats et dévoilé des comportements inattendus. Les capacités séparatives des Step-SPLITT ont rendu possible l’analyse et la séparation d’objets biologiques et biomimétiques. Enfin, cette étude complétée par une modélisation tridimensionnelle de l’écoulement nous a permis de mettre au point un nouveau prototype de séparateur. This experimental thesis belongs to the field of separative sciences and is based on the SPLITT technique (SPLIT-flow Thin fractionation). The objective is to study the mechanisms that are at the origin of continuous and membraneless separation of micron-size species in mini fluidic separators (Step-SPLITT). Experiments undertaken in laboratory and during parabolic flights revealed the complex coupling of the hydrodynamic effects and the gravitational field influencing the transverse migration of the flowing species. Three-dimensional visualizations performed by digital holography confirmed our results and disclosed unexpected behaviours. The separation capacities of Step-SPLITT made the analysis and the separation of biological and biomimetic species possible. In addition this study in conjunction with a three-dimensional flow modelling enabled us to develop a new prototype of separator.
230

Landningsbana för tidsresande

Eklund, Mira January 2012 (has links)
No description available.

Page generated in 0.0435 seconds