• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 16
  • 11
  • 8
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 129
  • 129
  • 55
  • 35
  • 27
  • 25
  • 23
  • 22
  • 19
  • 18
  • 18
  • 17
  • 16
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Hot-wire chemical vapor deposition of silicon nitride thin films

Adams, Abdulghaaliq January 2013 (has links)
Magister Scientiae - MSc / Amorphous silicon nitride (a-SiN:H) thin films has a multitude of applications, stemming from the tunability of the material properties. Plasma enhanced chemical vapour deposition (PECVD) is the industrial workhorse for production of device quality a-SiN:H. However, this technique has drawbacks in terms of film quality, rooting from ion bombardment, which then results in undesirable oxidation. Hot wire chemical vapour deposition (HWCVD) has shown to be a viable competitor to its more costly counterpart, PECVD. A thin film produced by HWCVD lacks ion bombardment due to the deposition taking place in the absence of plasma. This study will focus on optimising the MVsystems ® HWCVD chamber at The University of the Western Cape, for production of device quality a-SiN:H thin films at low processing parameters. The effect of these parameters on the structural, optical and morphological properties was investigated, for reduction of production costs. The films were probed by heavy ion elastic recoil detection, energy dispersive spectroscopy, Fourier transform infrared spectroscopy, atomic force microscopy, Xray diffraction, and ultraviolet visible spectroscopy. It was shown that silicon rich, device quality a-SiN:H thin films could be produced by HWCVD at wire temperatures as low as 1400 °C and the films showed considerable resistance to oxidation in the bulk.
92

Optical properties of annealed hydrogenated amorphous silicon nitride (a-SiNx:H) thin films for photovoltaic application

Jacobs, Sulaiman January 2013 (has links)
Magister Scientiae - MSc / Technological advancement has created a market for large area electronics such as solar cells and thin film transistors (TFT’s). Such devices now play an important role in modern society. Various types of conducting, semiconducting and insulating thin films of the order of hundreds, or even tens of nanometres are combined in strata to form stacks to create interactions and phenomena that can be exploited and employed in these devices for the benefit of mankind. One such is for the generation of energy via photovoltaic devices that use thin film technology; these are known as second and third generation solar cells. Silicon and its alloys such as silicon germanium (SiGex), silicon oxide (SiOx), silicon carbide (SiCx) and silicon nitride (SiNx) play an important role in these devices due to the fact that each material in its different structures, whether amorphous, micro or nano-crystalline or completely crystalline, has its own range of unique optical, mechanical and electrical properties. These structures and their material properties can thus exert a huge influence over the overall device performance. viii Chemical vapour deposition (CVD) techniques are most widely used in industry to obtain thin films of silicon and silicon alloys. Source gases are decomposed by the external provision of energy thereby allowing for the growth of a thin solid film on a substrate. In this study a variant of CVD, namely Hot Wire Chemical Vapour Deposition (HWCVD) will be used to deposit thin films of silicon nitride by the decomposition of silane (SiH4), hydrogen (H2) and ammonia (NH3) on a hot tantalum filament (~1600 C). Hydrogenated amorphous silicon nitride (a-SiNx:H) has great potential for application in optoelectronic devices. In commercial solar cell production its potential for use as anti-reflection coatings are due to its intermediate refractive index combined with low light absorption. An additional benefit is the passivation of interface and crystal defects due to the bonded hydrogen. This can lead to better photon conversion efficiency. Its optical properties including optical band gap, Urbach tail, and wavelength-dependent optical constants such as absorption coefficient and refractive index are crucial for the design and application in the relevant optoelectronic device. The final firing step in the production of micro-crystalline silicon solar cells, allows hydrogen to effuse into the solar cell from the a-SiNx:H, and drives bulk passivation of the grain boundaries. We therefore propose the exploration of annealing effects on the thin film structure. The study undertakes a comparison of optical and bonding structure of the as deposited thin film compared to that of the annealed thin film which would have undergone changes due to high temperature annealing under vacuum. However, it is difficult to simultaneously obtain all of these important ix optical parameters for a-SiNx:H thin films. Ultraviolet visible (UV-vis) spectroscopy will be the method of choice to investigate the optical properties. Infrared (IR) spectroscopy is a source of useful information on the microstructure of the material. In particular, the local atomic bonding configurations involving Si, N, and H atoms in a-SiNx:H films can be obtained by Fourier Transform Infrared Spectroscopy (FTIR). Therefore, this study will attempt to establish a relationship between film microstructure of a-SiNx:H thin films and their macroscopic optical properties.
93

Sensitivity analysis of low-density jets and flames

Chandler, Gary James January 2011 (has links)
This work represents the initial steps in a wider project that aims to map out the sensitive areas in fuel injectors and combustion chambers. Direct numerical simulation (DNS) using a Low-Mach-number formulation of the Navier–Stokes equations is used to calculate direct-linear and adjoint global modes for axisymmetric low-density jets and lifted jet diffusion flames. The adjoint global modes provide a map of the most sensitive locations to open-loop external forcing and heating. For the jet flows considered here, the most sensitive region is at the inlet of the domain. The sensitivity of the global-mode eigenvalues to force feedback and to heat and drag from a hot-wire is found using a general structural sensitivity framework. Force feedback can occur from a sensor-actuator in the flow or as a mechanism that drives global instability. For the lifted flames, the most sensitive areas lie between the inlet and flame base. In this region the jet is absolutely unstable, but the close proximity of the flame suppresses the global instability seen in the non-reacting case. The lifted flame is therefore particularly sensitive to outside disturbances in the non-reacting zone. The DNS results are compared to a local analysis. The most absolutely unstable region for all the flows considered is at the inlet, with the wavemaker slightly downstream of the inlet. For lifted flames, the region of largest sensitivity to force feedback is near to the location of the wavemaker, but for the non-reacting jet this region is downstream of the wavemaker and outside of the pocket of absolute instability near the inlet. Analysing the sensitivity of reacting and non-reacting variable-density shear flows using the low-Mach-number approximation has up until now not been done. By including reaction, a large forward step has been taken in applying these techniques to real fuel injectors.
94

Utveckling och tillverkning av flödestestkammare med högupplöst motstånd för kompaktfläktar : Mätinstrument som mäter statiskt tryck och luftflöde för framställning av fläktkurvor vid prestandamätning av kompaktfläktar / Design and verification of an airflow test chamber for compact fans using a high-resolution load : Instrument measuring static pressure and airflow for creation of fan curves during performance measurements of compact fans

Wallace, William, Wiström, Oskar January 2021 (has links)
Examensarbetet har utförts hos RotoSub AB i Linköping. RotoSub fokuserar på innovativa lösningar inom brusreducering för fläktar och är även utvecklingspartner med det österrikiska företaget Noctua, som utvecklar och tillverkar kompaktfläktar och processorkylare inom elektronikbranschen. Under examensarbetet har en flödestestkammare för kompaktfläktar utvecklats och tillverkats. Testkammaren utnyttjar ett högupplöst motstånd som ger möjlighet till ett flertal driftpunkter för att konstruera detaljerade fläktkurvor. Detta låter RotoSub noggrant analysera och undersöka fläktkaraktäristiken under utvecklingsstadiet. I rapporten undersöks två metoder för att bestämma luftflödet genom testkammaren. Däribland en känd geometri i form av munstycken, enligt den amerikanska standarden ANSI/AMCA 210-16 samt utnyttjandet av en varmtrådsanemometer. Vidare undersöks alternativ för att konstruera ett högupplöst motstånd med hög pålitlighet och repeterbarhet, samt en tryckmätningsmetod som tillåter en jämn avläsning av det statiskatrycket som testfläkten ger upphov till. Under utvecklingen tillverkades prototyper där koncept testades och utvärderades, innan slutprodukten kunde modelleras i ett CAD-program för att slutligen tillverkas fysiskt. Slutprodukten tillverkades huvudsakligen i styren-akrylnitril (SAN) samt ett fåtal komponenter i polylaktid (PLA) och aluminium. Testkammaren använder sig av en tryckring med fyra tryckportar, en varmtrådsanemometer för att mäta luftflödet samt en roterande skiva som drivs av en stegmotor för att högupplöst variera motståndet i testkammaren. Testkammaren har visat sig kapabel att konstruera fläktkurvor för samtliga fläktstorlekar undersökta under arbetet med god repeterbarhet. Vidare arbete finns gällande tätning, då ett visst läckage finns i testkammaren vilket ger ett systematiskt fel i fläktkurvorna vid låga flöden där maximalt statiskt tryck inte kan uppnås. / This undergraduate thesis has been carried out at RotoSub AB in Linköping, Sweden. RotoSub develop innovative solutions for noise-reduction in fans. RotoSub are also development partners to the Austrian company Noctua, who design and develop fans and processor coolers for the electronics industry. During the thesis a compact airflow test chamber has been designed and constructed. The test chamber utilises a high-resolution load to measure and create a fan curve. The high-resolution load ensures that a large amount of operating points can be measured, which gives RotoSub the opportunity to closely analyse the characteristics of the fan being tested. In this thesis two different methods of measuring the airflow through the test chamber have been studied. Firstly a method of using nozzles to calculate the flow according to the standard ANSI/AMCA 210-16. Secondly the use of hot-wire anemometry to measure the airflow through the test chamber. Methods of measuring static pressure behind the test fan with high accuracy and stable readings have also been studied. Different high-resolution loads have been studied to ensure high repeatability and reliability. During the development phase, prototypes of the different components were created to allow for testing and evaluation before a final design was chosen. After the designs for each component was decided, the final design was modelled in CAD before being fabricated and constructed. The construction mostly utilises styrene-acrylonitrile (SAN) but with certain components made from polylactic acid (PLA) and aluminium. Pressure readings are taken behind the fan being tested using static ports placed on the outside of a hollow diffuser, mounted on the inlet of the test chamber. The hollow diffuser is filled with foam to stabilise the pressure readings. The chosen method of measuring airflow through the test chamber was hot-wire anemometry for its broad measurement range, high accuracy and simplicity in implementation. The design of the high-resolution load was chosen to be a rotating gate with two ports. As the gate rotates these ports openor close. The rotating gate is driven by a stepper-motor. This design allowed for very fine control at high loads and ensures reliable operation with a minimal amount of moving parts. Tests with the finished test chamber have shown that the test chamber is capable of measuring and creating high-resolution fan curves with high repeatability. However the test chamber cannot measure static pressure at zero flow as there are currently leaks within the test chamber that allows a small amount of flow through the chamber when the variable load is fully closed. This leads to a systematic error when creatingfan curves, mainly at lower flow rates and higher static pressures. Further work with this test chamber is needed to reduce leaks, which would improve measurement precision.
95

Charakteristické parametry palivových trysek / Characteristic parameters of fuel nozzles

Ledererová, Lucie January 2017 (has links)
Many industrial applications acquire necessary thermal energy through the combustion process. The basic element of each combustion appliance is a burner and one~part~of~it~is a~nozzle system that supplies fuel to a combustion chamber. The geometry of the fuel nozzle significantly affects the intensity of mixing the fuel with the combustion air and thus the stability of the combustion. The main subject of~this diploma thesis is~determination of~velocity coefficients for nozzles with different geometries. The knowledge of~correct values of~velocity coefficients is a key parameter for the design of~the burner and~its subsequent operation. For the calculation of~velocity coefficients, the exit nozzle velocities were used. For chosen nozzles, a~theoretical exit nozzle velocities were calculated. They were compared with the actual exit nozzle velocities, which were measured experimentally using the hot-wire anemometry, and with velocities, which were calculated using the CFD simulation method.
96

Měření rychlostních profilů za vířičem / Velocity profile measurement downstream of swirler

Zejda, Vojtěch January 2015 (has links)
A burner is very important device in process furnaces that significantly affect the production of emissions during the combustion process. One of the key things in development of the modern low-NOX burners is the evaluation of flow field downstream of an axial blade swirler inside the burner. The computational fluid dynamics (CFD) is often used to predict the attributes of the flow. Predicted values should be validated with measurement. It is the reason why the velocity fields for several choosen swirlers were measured. The hot wire anemometry was choosen and the dual-sensor probe was used during the measurement. The data can be then used for CFD validation. This thesis describes procedure of measurement set-up. The experimental facility was designed according to the anemometry method. The new probe traversing system was designed, which provides desired accuracy. Five different swirlers were measured. Large data set, need for customized post-processing and control over calculation procedures lead to new software design. For each swirler the velocity profiles were gathered and the swirl numbers calculated. That final data were transferred in to graphical format. Uncertainty of measured data was calculated. Results show counter-rotating flow in some areas closed to the swirler. Some drawbacks of current measurement set-up are discussed. Based on the thesis reader can obtain the information and knowledge for consequent measurements of swirl burners velocity profiles.
97

Experimental study of turbulent flows through pipe bends

Kalpakli, Athanasia January 2012 (has links)
This thesis deals with turbulent flows in 90 degree curved pipes of circular cross-section. The flow cases investigated experimentally are turbulent flow with and without an additional motion, swirling or pulsating, superposed on the primary flow. The aim is to investigate these complex flows in detail both in terms of statistical quantities as well as vortical structures that are apparent when curvature is present. Such a flow field can contain strong secondary flow in a plane normal to the main flow direction as well as reverse flow. The motivation of the study has mainly been the presence of highly pulsating turbulent flow through complex geometries, including sharp bends, in the gas exchange system of Internal Combustion Engines (ICE). On the other hand, the industrial relevance and importance of the other type of flows were not underestimated. The geometry used was curved pipes of different curvature ratios, mounted at the exit of straight pipe sections which constituted the inflow conditions. Two experimental set ups have been used. In the first one, fully developed turbulent flow with a well defined inflow condition was fed into the pipe bend. A swirling motion could be applied in order to study the interaction between the swirl and the secondary flow induced by the bend itself. In the second set up a highly pulsating flow (up to 40 Hz) was achieved by rotating a valve located at a short distance upstream from the measurement site. In this case engine-like conditions were examined, where the turbulent flow into the bend is non-developed and the pipe bend is sharp. In addition to flow measurements, the effect of non-ideal flow conditions on the performance of a turbocharger was investigated. Three different experimental techniques were employed to study the flow field. Time-resolved stereoscopic particle image velocimetry was used in order to visualize but also quantify the secondary motions at different downstream stations from the pipe bend while combined hot-/cold-wire anemometry was used for statistical analysis. Laser Doppler velocimetry was mainly employed for validation of the aforementioned experimental methods. The three-dimensional flow field depicting varying vortical patterns has been captured under turbulent steady, swirling and pulsating flow conditions, for parameter values for which experimental evidence has been missing in literature. / QC 20120425
98

Experimental study of the rotating-disk boundary-layer flow

Imayama, Shintaro January 2012 (has links)
Rotating-disk flow has been investigated not only as a simple model of cross flow instability to compare with swept-wing flow but also for industrial flow applications with rotating configurations. However the exact nature of laminar-turbulent transi- tion on the rotating-disk flow is still major problem and further research is required for it to be fully understood, in particular, the laminar-turbulent transition process with absolute instability. In addition the studies of the rotating-disk turbulent boundary- layer flow are inadequate to understand the physics of three-dimensional turbulent boundary-layer flow. In present thesis, a rotating-rotating disk boundary-layer flow has been inves- tigated experimentally using hot-wire anemometry. A glass disk with a flat surface has been prepared to archieve low disturbance rotating-disk environment. Azimuthal velocity measurements using a hot-wire probe have been taken for various conditions. To get a better insight into the laminar-turbulent transition region, a new way to describe the process is proposed using the probability density function (PDF) map of azimuthal fluctuation velocity. The effect of the edge of the disk on the laminar-turbulent transition process has been investigated. The disturbance growth of azimuthal fluctuation velocity as a function of Reynolds number has a similar trend irrespective of the various edge conditions. The behaviour of secondary instability and turbulent breakdown has been in- vestigated. It has been found that the kinked azimuthal velocity associated with secondary instability just before turbulent breakdown became less apparent at a cer- tain wall normal heights. Furthermore the turbulent breakdown of the stationary mode seems not to be triggered by its amplitude, however, depend on the appearance of the travelling secondary instability. Finally, the turbulent boundary layer on a rotating disk has been investigated. An azimuthal friction velocity has been directly measured from the azimuthal velocity profile in the viscous sub-layer. The turbulent statistics normalized by the inner and outer sclaes are presented. / QC 20120529
99

A Study of Constant Voltage Anemometry Frequency Response

Powers, Alex D 01 June 2016 (has links) (PDF)
The development of the constant voltage anemometer (CVA) for the boundary layer data system (BLDS) has been motivated by a need for the explicit autonomous measurement of velocity fluctuations in the boundary layer. The frequency response of a sensor operated by CVA has been studied analytically and experimentally. The thermal lag of the sensor is quantified by a time constant, MCVA. When the time constant is decreased, the half-amplitude cut-off frequency, fCVA, is increased, thereby decreasing the amount of attenuation during measurements. In this thesis, three main approaches have been outlined in theory and tested experimentally to determine the feasibility and effectiveness of implementing them with CVA to limit attenuation: operation at higher Vw, implementation of software compensation, and utilization of smaller diameter sensors. Operation of CVA at higher voltage results in little improvement in frequency response but is accompanied by increased danger of wire burnout. However, sensors do need to be operated at high wire voltages to be more sensitive to velocity fluctuations and less sensitive to temperature fluctuations, without reaching a temperature high enough for wire burnout. Software compensation of the CVA output has been shown not to be useful for measurements with BLDS. The electrical noise present in the CVA measurement system is amplified by the correction algorithm and creates measurements that are not representative of the fluctuations being measured. Decreasing sensor diameter leads to a significant decrease of MCVA and therefore increase of fCVA. Under similar operating conditions, a 2.5 micron diameter sensor showed less roll off in the frequency spectra (measured higher turbulence intensities) than a 3.8 micron diameter sensor for tests in both a turbulent jet and in a turbulent boundary layer. Smaller sensors are more fragile and have been shown to have a decrease in sensitivity as compared to larger sensors; however, for some applications, the increase in frequency response may be worth the trade-off with fragility and sensitivity.
100

Development of an Autonomous Single-Point Calibration for a Constant Voltage Hot-Wire Anemometer

Murphy, Ryan 01 March 2015 (has links) (PDF)
Traditionally, the measurement of turbulence has been conducted using hot-wire anemometry. This thesis presents the implementation of a constant voltage hot-wire anemometer for use with the Boundary Layer Data System (BLDS). A hot-wire calibration apparatus has been developed that is capable of operation inside a vacuum chamber and flow speeds up to 50 m/s. Hot-wires operated with a constant-voltage anemometer (CVA) were calibrated at absolute static pressures down to 26 kPa. A thermal/electrical model for a hot-wire and the CVA circuit successfully predicted the measured CVA output voltage trend at reduced pressure environments; however, better results were obtained when the Nusselt number was increased. A calibration approach that required only one measured flow speed was developed to allow autonomous calibrations of a CVA hot-wire. The single-point calibration approach was evaluated through comparison with the experimental data from the vacuum chamber over a range of 14-50 m/s and at pressures from 26 to 100 kPa. The thermal-electrical model was used to make predictions of CVA output voltage and the corresponding flow speed for conditions that could not be replicated within a laboratory. The first set of predictions were made for conditions from 7.5 to 100 kPa, at a constant temperature of 25⁰C, within a flight speed range of 40 to 150 m/s. Single-point calibrations were developed from these predictions. Additionally, the thermal-electrical model was used to predict hot-wire response for a change in temperature of 25⁰C at 26 kPa and the single-point calibration developed for the pressure range 7.5 to 100 kPa was tested for its ability to adjust. The temperature variation at a single pressure of 26 kPa proved that the single-point function was capable of adapting to off-standard temperatures with the largest deviations of +/- 7% in the mid-range velocities. With a temperature drop, the deviations were below 5%. The second set of thermal-electrical predictions involved conditions for altitude from 0 to 18 km at flow speeds from 40 to 150 m/s. A single-point calibration was developed for altitude conditions. Furthermore, to test the single-point calibration the thermal-electrical model was used to predict hot-re response for a temperature variation of 25⁰C at 18 km. The single-point calibration developed for altitude proved that it was capable of adjusting to a temperature variation of 25⁰C with maximum deviations of about 5% at mid-range velocities. It is proposed that the single-point calibration approach could be employed for CVA measurements with the Boundary Layer Data System (BLDS) to allow hot-wire data to be acquired autonomously during flight tests.

Page generated in 0.0588 seconds