Spelling suggestions: "subject:"seroconversion"" "subject:"bioconversion""
1 |
Synthèse de bio-liquide de seconde génération par hydroliquéfaction catalytique de la lignine / Synthesis of second generation fiofuels by catalytic hydroliquefaction of ligninJoffres, Benoît 15 November 2013 (has links)
Actuellement, la transformation de la biomasse en bio-carburant ou molécules pour l'industrie chimique fait l'objet de nombreuses recherches. La lignine, en tant que coproduit de l'industrie papetière et de l'éthanol cellulosique, est une ressource des plus disponibles qui pourait être utilisée pour la production d'aromatiques ou de composés phénoliques. Cependant, cette macromolécule constituée d'unités propylphénoliques liées par des liaisons éthers nécessite d'être dépolymérisée. Ce travail porte sur la compréhension des mécanismes de liquéfaction par hydroconversion catalytique d'une lignine de paille de blé extraite par un procédé papetier à la soude. Dans un premier temps, nous avons mené une caractérisation poussée de cette lignine à l'aide de diverses techniques qui nous a permis de proposer une structure modèle. Ensuite, nous avons mis en place un mode opératoire de conversion et un protocole de récupération des produits. La réaction est réalisée en réacteur semi-ouvert à 350°C en présence d'H2 (8MPa), d'un solvant donneur d'hydrogène (tétraline) et d'un catalyseur d'hydrotraitement NiMoP/Al2O3 sulfuré. Les produits se répartissent en une phase liquide (liquéfiat), une phase gaz, une lignine résiduelle et des solides non-solubles dans le THF. Un taux de conversion a été défini comme le rendement en produits non-solides et les valeurs maximales atteintes sont de 81% pds après 28h de réaction avec un excellent bilan matière. Les fractions récupérées ont ensuite été caractérisées en détail avec des techniques d'analyse adaptées. Grâce à ce protocole d'analyse, nous avons pu observer que le solvant permet d'éviter la formation de solides et que le catalyseur intervient principalement sur l'hydrodésoxygénation et l'hydrogénation des molécules issues de la dépolymérisation de la charge. Enfin, nous avons suivis la réaction au cours du temps, ce qui nous a permis de présenter une ébauche de schéma réactionnel. Les premières étapes de conversion sont la décarboxylation, l'hydrogénolyse des OH aliphatiques et la rupture des liaisons éthers entre les unités élémentaires de la lignine, qui entraînent sa dépolymérisation. Puis des processus plus lent se produisent comme l'élimination des groupes méthoxy, principalement par déméthylation suivi de déshydroxylation. Ainsi, les principaux produits obtenus sont des composés phénoliques et des composés désoxygénés / Nowadays, the transformation of lignocellulosic biomass is deeply investigated in order to provide biofuels and chemicals. Lignin, a by-product of pulp and bio-ethanol industry, is an available resource which could be used for the production of aromatic and phenolic compounds. However, this macromolecule mainly made of propylphenolic units linked by ether functions needs to be depolymerized. This work focuses on the study of liquefaction mechanisms by catalytic hydroconversion of wheat straw lignin extracted by a soda pulping. In the first part of this study, an in-depth characterization of this lignin was carried out using techniques. A structure of our lignin was proposed as a result. Then, a procedure was developed to perform the catalytic hydroconversion and recover the products. Catalytic experiments were carried out in a semi-batch reactor at 350°C, using H2 (8 MPa), a hydrogen donor solvent (tetralin) and a sulfide NiMoP/Al2O3 catalyst. The recovered products were separated into a liquid phase, gases, a lignin residue and THF insoluble solids. A conversion of 81 wt% of lignin into non-solid products was reached after 28h of reaction with an excellent mass balance. The characterization of the different fractions was carried out using techniques. Thanks to this protocol, we were able to point out the role of the H-donor solvent for preventing solid formation as well as the role of the catalyst for hydrodeoxygenation and hydrogenation of the depolymerized products. Finally, the catalytic hydroconversion of the lignin was carried out with the different residence times, which helps understanding the transformations occurring during the conversion. At the beginning of the reaction, we observed decarboxylation, hydrogenolysis of aliphatic OH and cleavage of ether linkages between the phenolic units of the lignin. Then, we observed elimination of methoxy groups, mainly by demethylation followed by dehydroxylation. Finally, the main products obtained during the reaction were phenolic and deoxygenated compounds such as aromatics, naphthenes and alkanes
|
2 |
Production de bio-carburants de 3ème génération à partir de microalgues / Production of 3rd generation biofuels from microalgaeRamirez, Lis 19 December 2013 (has links)
Face à l'épuisement des réserves en carburants fossiles et afin de subvenir à une demande toujours croissante en énergie pour le transport, les scientifiques se tournent désormais vers une ressource quasi-inépuisable et renouvelable : la biomasse. Au sein de la biomasse, les microalgues représentent une source potentielle de biocarburant car elles peuvent contenir des fortes teneurs en lipides et hydrocarbures. Leur croissance extrêmement rapide, l'utilisation du CO2 et de l'énergie solaire pour leur croissance et l'absence de compétition avec l'agriculture traditionnelle confèrent aux micro-algues une très forte attractivité. Deux voies de conversion ont été abordées. Dans un premier temps, nous avons étudié l'hydroconversion de triglycérides avec une molécule modèle (GTO) et charges réelles (huile de poisson et huile de Nannochloropsis obtenu par extraction au CO2 supercritique) sur catalyseurs de type CoMoS et NiMoS sur alumine. Des rendements élevés en alcanes (60- 70%pds) semblables à des carburants fossiles ont été obtenus. Dans un second temps, nous avons étudié la liquéfaction hydrothermale de la Spiruline, peu représentative d'algues lipidiques mais disponible, et d'autres algues (Porphyridium cruentum, Nannochloropsis sp., Ourococcus, Dunaliela salina) pour optimiser ce procédé selon les différentes conditions opératoires avec l'obtention d'un rendement optimal en bio-huile de 35%pds. Cependant, les teneurs élevées en azote et oxygène (8-10%pds) de la bio-huile ne permettent pas de la valoriser directement comme carburant. Cela nous a amené à effectuer une valorisation de la bio-huile avec des catalyseurs hétérogènes de type CoMo, NiMoS, NiMoS-Y supportés sur alumine et SrMoO4-N pour éliminer l'azote et l'oxygène de la bio-huile. Le catalyseur avec le résultat plus satisfaisant a été le SrMoO4-N, avec une teneur finale en alcanes de 70%pds / Given the depletion of fossil fuels and to meet a growing demand for transportation energy, scientists are now turning towards an almost inexhaustible and renewable resource: biomass. As biomass, microalgae represent a potential source of biofuel because they may contain high levels of lipids and hydrocarbons. Their extremely fast growth, the use of CO2 and solar energy for their growth and the absence of competition with traditional agriculture makes microalgae very appealing. Two thermochemical routes of valorisation of μ-algae have been investigated. At first, we studied the hydroconversion of triglycerides with a model molecule (GTO) and then real feedstocks (fish oil and Nannochloropsis oil obtained by supercritical CO2 extraction) on CoMoS and NiMoS type catalysts. High yields of alkanes (60-70 wt%) similar to fossil fuels were obtained. In a second step, we studied the hydrothermal liquefaction of Spirulina and other algae without heterogeneous catalyst to optimize the process for different operating conditions with the obtention of a maximum bio-oil yield of 35 %wtt. However, the high levels of nitrogen and oxygen (8-10 wt%) does not allow to directly use it as fuel . This has led us to perform an upgrading of the bio-oil with heterogeneous catalysts of CoMo, NiMoS, NiMoS-Y and SrMoO4-N types to remove nitrogen and oxygen in the bio-oil. The most performant catalyst was SrMoO4-N, with a final content of 70 %wt of alkanes
|
3 |
Étude du procédé d'hydroconversion des résidus pétroliers en phase slurry en mode recyclage / Study of the slurry-phase hydroconversion of petroleum residues in recycling modeAlvarez Gil, Pedro Jose 15 December 2017 (has links)
Depuis quelques années les raffineries ont commencé à subir des déséquilibres forts en termes d’offre et de demande de produits pétroliers dus à l’exploitation de pétrole de plus en plus lourd et à la forte demande des fractions légères telles que l’essence et les distillats. Cette problématique a conduit à la recherche et le développement de nouveaux procédés en matière de raffinage qui permettent de valoriser les résidus pétroliers de faible valeur commerciale telle que les résidus atmosphériques et sous vide. Dans la gamme des procédés de raffinage des résidus pétroliers, le procédé d’hydroconversion de type slurry se présente comme une technologie attractive en raison de sa capacité de traiter les résidus pétroliers les plus lourdes. Cependant, la conversion profonde des résidus pétroliers ne peut être menée en mode passage unique. Le mode de fonctionnement recyclage offre une alternative pour atteindre la conversion profonde tout en offrant aussi une flexibilité opérationnelle aux unités d'hydroconversion en termes de sévérité et de consommation de catalyseur. L’objectif de cette thèse a été l’étude de l’impact du mode recyclage sur les performances du procédé d’hydroconversion en phase slurry d’un résidu sous vide. La première partie de cette thèse a été dédiée à la fiabilisation d’un micro-pilote continu et à la génération des données expérimentales à partir de cette unité. Pour les expériences d’hydroconversion, trois variables opératoire ont été variés : température, temps de séjour et taux de recycle. Les résultats expérimentaux obtenus ont permis d’évaluer l’impact du mode recyclage sur le procédé d’hydroconversion slurry. Afin de mieux comprendre l’impact du mode recyclage, la deuxième partie de la thèse a été dédiée au développement d’un modèle du micro-pilote en mode recyclage. Ce modèle a été développé prenant en compte la cinétique chimique déterminée précédemment dans un réacteur semi-batch et les modèles physique (hydrodynamique et transfert de matière) du micro-pilote. Le modèle a été validé en comparant ses prédictions avec les données expérimentales / In recent years, refineries have experienced strong imbalances in supply and demand of petroleum products due to the extraction of increasingly heavy petroleum and the high demand for light fractions such as naphtha and middle distillates. This problem has led to the research and development of new technologies for upgrading of heavy fractions with low commercial value such as atmospheric and vacuum residues. In this context, slurry-phase hydroconversion appears as an attractive technology capable of treating the heaviest feeds. However, the deep conversion of petroleum residues can’t be carried out in once-through mode. The recycling mode offers an excellent alternative to achieve the deep conversion while also providing operational flexibility to the hydroconversion units in terms of severity and catalyst consummation.The aim of this work was to study the impact of recycling mode on the slurry-phase hydroconversion performances of a vacuum residue. The first part of this work was dedicated to the reliability of a continuous micro-scale pilot unit and the generation of experimental data from this unit. For the hydroconversion experiments, three operating variables were varied: temperature, residence time and recycling rate. The experimental results obtained allowed evaluating the impact of recycling mode. In order to better understand the impact of recycling mode, the second part of this work was dedicated to the development of a model of the micro-scale pilot in recycling mode. This model was developed taking into account the chemical kinetics determined previously in a semi-batch reactor and the physical characterization (hydrodynamics and mass transfer) of the micro-scale pilot. The model was validated by comparing its predictions with experimental data
|
4 |
Étude de la réactivité des résidus pétroliers en hydroconversionDanial-Fortain, Pierre 18 October 2010 (has links)
La valorisation des résidus pétroliers est une nécessité compte tenu de l'amenuisementdes ressources en pétrole conventionnel et de la progression de la demande du marché en carburants. Le procédé d'hydroconversion en lit bouillonnant permet de convertir des résidus pétroliers en fractions plus légères dans des conditions très sévères de température (>400°C) et de pression d'hydrogène (>100bar), en présence d'un catalyseur bimétallique d'hydrogénation. Le craquage thermique est prépondérant dans ce type de procédé et met en oeuvre des réactions radicalaires. Toutefois, les mécanismes et la réactivité des charges ne sont pas clairement identifiés du fait de la complexité chimique des fractions lourdes du pétrole. L'objectif de la thèse consiste donc à étudier les mécanismes de conversion des résidus pétroliers dans ces conditions. Après une caractérisation analytique détaillée de différents résidus sous vide (Athabasca, Oural et Duri), une étude de réactivité systématique a été entreprise sur ces charges à l'aide d'un réacteur batch développé spécifiquement pour cette étude. Des essais ont également été réalisés sur différentes fractions du résidu sous vide Athabasca, de distributions SARA (Saturés, Aromatiques, Résines et Asphaltènes) différentes. Il a été montré que les mécanismes de conversion sont essentiellement thermiques et peuvent être inhibés par l'activité hydrogénante du catalyseur. Des réactivités différentes sont observées d'un résidu à l'autre et l'avancement de la conversion en fonction de la sévérité de craquage dépend de la naturedes charges traitées. Cependant, pour un même avancement en conversion, les rendements en produits sont similaires pour toutes les charges étudiées. Il semble ainsi que les différents résidus soient composés de "briques" élémentaires similaires, malgré des compositions globalement différentes. Il a également été démontré que la cinétique de conversion suit un ordre apparent de 2. Cependant, il n'est a priori pas possible d'expliquer les différences de réactivité des résidus simplement en fonction de leur composition SARA. Finalement, les conclusions de ce travail permettent d'envisager une réduction forte de l'expérimentation requise sur un résidu pour prédire les structures de rendement des procédés d'hydroconversion. / Nowadays, more and more petroleum residues have to be converted into lighter fractions due to a decline in conventional crude oil production and to an increasing demand for motor fuels. Ebullated bed hydroconversion process converts heavyfeed stocks at elevated temperature (>400°C) and high hydrogen partial pressure (>100bar), with a bimetallic hydrogenation catalyst. Thermal cracking is the driving component for conversion and involves radicals formation. Nevertheless, detailed reaction mechanisms and feedstock reactivity are still not well established due to the detailed composition complexity of feeds. The objective of this thesis is to study conversion mechanisms of petroleum residues in these conditions. A detailed analytical characterization of several vacuum residues (Athabasca, Oural and Duri)was conducted initially and the reactivity of these feeds was then tested in a batch reactor specifically developed for the purpose of the study. Reactivity tests were also conducted on Athabasca residue fractions, characterized by different SARA distributions (Saturates, Aromatics,Resins and Asphaltenes). It was demonstrated that hydroconversion mechanisms are mostly thermal and can be inhibited by hydrogenation activity of the catalyst. Differences of reactivitywere observed for the different feeds tested and conversion level in function of severity depends on the nature of the feeds. At a same conversion level, product yields are similar whatever the feed considered. This suggests that residues could be composed of similar elementary units. It was also demonstrated that residue hydroconversion reaction can be adequately represented by an apparent second order kinetics. However, residue reactivity differences cannot a priori be explained based on SARA composition differences. Finally, the conclusions of the present work enable to consider a significant reduction of the number of experiments required in order to predict yield structures resulting from hydroconversion of aresidue.
|
5 |
Hydroconversion des résidus pétroliers par des catalyseurs dispersés / Hydroconversion of petroleum residues with dispersed catalystsJansen, Tim 21 October 2014 (has links)
Face à l'épuisement des pétroles bruts légers et à la demande en énergies fossiles toujours croissante, l'exploitation des pétroles lourds et le raffinage des résidus pétroliers devient une nécessité. Cependant, la nature de ces résidus pose de nombreuses difficultés aux procédés de raffinage existants. En conséquence, l'industrie pétrolière a actuellement un fort intérêt au développement d'un procédé de conversion profonde de ces résidus pétroliers en carburants valorisables. L'utilisation d'un catalyseur hautement dispersé dans la charge permettrait de minimiser ces difficultés. L'objectif de cette thèse est alors l'étude de quelques aspects du développement d'un procédé d'hydroconversion des résidus pétroliers avec des catalyseurs dispersés. La première partie est dédiée à la génération des données expérimentales de la conversion d'un résidu dans un micro-pilote continu en faisant varier les conditions opératoires. Ensuite, un modèle de cette unité a été développé en couplant la description des cinétiques chimiques déterminée dans un autre réacteur (dans une étude préalable), avec les modèles physiques (hydrodynamique et transfert de matière) et thermodynamiques. Le modèle a été validé en comparant les prédictions du modèle avec les résultats expérimentaux obtenus. La minimisation de la consommation de catalyseur et l'augmentation du rendement en produits désirables sont deux objectifs dans le développement d'un procédé industriel. Le recyclage du catalyseur et de la fraction non-convertie est une stratégie permettant d'atteindre ces objectifs. L'outil expérimental utilisé pour l'étude du fonctionnement en mode recyclage était un réacteur semi-continu. La caractérisation des produits issus d'expériences de la conversion avec un catalyseur recyclé est accompagnée d'une caractérisation de la phase active. De plus, l'étude de l'évolution de la réactivité de la charge recyclée fait partie de cette étude. Les résultats obtenus permettent d'évaluer la faisabilité du fonctionnement en recyclage / With the depletion of light petroleum crude oils and the demand in fossil energies still growing, the exploration of heavy oils and the refining of petroleum residues becomes a necessity. However, the nature of these feedstocks presents numerous difficulties for the existing refining processes. As a consequence, the petroleum industry is currently developing new processes for the deep conversion of these residues to more valuable fuels. The utilization of dispersed catalysts is a promising new strategy for minimizing these difficulties. The aim of this work was to study several aspects of the scale-up of a hydroconversion process of petroleum residues with dispersed catalysts. The first part of this work is dedicated to the generation of experimental data for the conversion of a residue in a continuous micro-pilot unit by varying the operating conditions. Afterwards, a model of the unit was developed by coupling the chemical kinetics determined in a previous batch reactor study with the physical characterization (hydrodynamics and mass transfer) of the continuous micro-pilot unit. The model was validated by comparing its predictions with the experimental data. Minimization of catalyst consummation and the increasing product yields are vital in the development of an industrial process. Recycling the non-converted fraction as well as the catalyst is is a strategy to achieve these two objectives. The second part was thus dedicated to the study of the recycling mode, which was carried out in a semi-continuous reactor. The product characterization of catalyst recycling experiments was accompanied with the characterization of the active phase to evaluate the performance of an aging catalyst. Additionally, the evolution of the reactivity of the recycled product was studied. The results obtained allow us to evaluate the feasibility of the recycling mode
|
6 |
Étude de la contribution catalytique à la stabilité des effluents en hydroconversion des résidus sous vide / Impact of catalyst on effluents stability during vacuum residues hydroconversionMarchal, Charles 18 November 2010 (has links)
Ce travail porte sur la compréhension du phénomène d'instabilité qui se produit dans le procédé d'hydroconversion des résidus sous vide (RSV). Au delà de 60% de conversion du RSV, l'instabilité se manifeste par un dépôt solide d'hydrocarbures lourds dans les unités industrielles de conversion des résidus, ce qui empêche d'atteindre un niveau de conversion du RSV plus élevé. L'objectif de cette thèse consiste à mieux comprendre l'influence du catalyseur utilisé dans le procédé d'hydroconversion sur l'apparition du phénomène d'instabilité. Des catalyseurs dopés au fluor et sodium ont été préparés par ajout de dopants à la surface d'un catalyseur NiMo/Al2O3 de référence. Après leur caractérisation, les catalyseurs ont été testés sur charge réelle RSV en réacteur autoclave. Les tests catalytiques ont été réalisés à haute température dans les conditions industrielles (430°C) et à plus basse température (390°C), afin de favoriser les réactions catalytiques par rapport aux réactions thermiques. Les tests catalytiques réalisés à 390 et 430°C montrent une teneur en sédiments deux fois moins importante avec le catalyseur F-NiMo, ce qui est expliqué par une amélioration de la conversion des asphaltènes. Celle-ci est expliquée par l'amélioration des réactions d'hydrogénation et de l'acidité, et par une meilleure résistance au cokage à 390°C. L'effet de la température sur la stabilité a également été étudié. Les résultats démontrent que la teneur en sédiments des effluents est deux fois supérieure pour les tests réalisés à 430°C par rapport aux tests réalisés à 390°C. Cet accroissement de l'instabilité est attribué à un caractère plus aromatique et condensé des molécules qui précipitent (asphaltènes), qui ont en conséquence une tendance accrue à s'agréger, et par la désalkylation des molécules qui stabilisent (résines). / This work focuses on the instability phenomena occurring during vacuum residue hydroconversion. At high level of residue conversion, carbonaceous sediments (sediments) are formed and have detrimental effects on the industrial units during the hydroprocessing operations. The aim of this work is investigate the influence of the catalyst used inhydroconversion process on the sediments formation. Modified catalysts have been prepared by sodium and fluorine deposition on a NiMo/Al2O3 reference catalyst. After having been characterized, the catalysts have been tested in a perfectly stirred batch reactor. Catalytic tests have been performed at high temperature (430°C) in industrial conditions and at lower temperature (390°C) in order to favor catalytic reactions rather thermic reactions. The catalytic tests at the two temperatures show that the amount of sediments is two times lower with F-NiMo catalyst. This is explained by the improvement of asphaltenes conversion due to an increase of catalyst acidity and hydrogenation reactions. At 390°C, coking with F-NiMo catalyst is reduced so that porous volume is higher. The temperature effect on effluents stability has also been studied. Results show that the amount of sediments is twice lower at 390°C for a same catalyst. The increase of instability at 430°C is attributed to more condensed and aromatic asphaltenes and resins dealkylation which increase selfaggregation tendency of asphaltenes.
|
7 |
Catalyseur idéal en Hydroconversion du Résidu : quelle balance entre force Hydro/déshydrogénante et acidité pour la conversion d'un Résidu Sous Vide pétrolier ? / Ideal catalyst for hydroconversion of Residue : Balance between acidity and hydrogenating power for the conversion of a Vacuum Residue OilMagendie, Guillaume 20 November 2013 (has links)
Le travail de thèse effectué a porté sur l'applicabilité et la compréhension d’un système catalytique bifonctionnel acide et hydro/déshydrogénante sur l'hydroconversion et l’hydrotraitement d'un Résidu Sous Vide. En amont de ce travail, il est rappelé qu'au-delà de 400 °C (régime thermique), la forte conversion du RSV conduit à des phénomènes indésirables de précipitation et d’instabilité, liés à l'augmentation de la polarité des asphaltènes. L’objectif de la thèse était donc de favoriser les réactions de craquage et d’hydrogénolyse à plus faible température (370 °C), grâce à la fonction acide du catalyseur, et d’étudier la nature des structures asphalteniques résultantes. Des catalyseurs modèles, de formulation NiMo, supportés sur des aluminosilicates préparés par greffage de silicium à la surface d'une alumine, ont été utilisés. Ces catalyseurs développent une acidité faible, apportée par le support. Cette acidité a été quantifiée et caractérisée sur les aluminosilicates synthétisés, comme sur le catalyseur fini. La phase hydrogénante, ainsi que la texture des solides, ont aussi été caractérisées en détail. Des catalyseurs, dont les trois paramètres précités ont pu être modifiés indépendamment, ont ainsi été obtenus.Les performances catalytiques ont ensuite été évaluées en hydroconversion d’un RSV Safaniya, en réacteur batch. Les résultats révèlent un impact limité de l’acidité sur les grandeurs globales du test. Les modifications successives des phases hydrogénantes, et l’apport de macroporosité, n’ont pas permis d’améliorer cet impact par la suite. L’analyse détaillée conduite sur les asphaltènes après conversion a mis en relief des modifications de structures moléculaires nettes. Celles-ci ont pu être illustrées via une méthode de reconstitution moléculaire. L'introduction d’acidité a ainsi favorisé les réactions de craquage des chaines aliphatiques ou naphténique des asphaltènes, sans pour autant augmenter l'aromaticité de la molécule. / The aim of this work was to study and investigated bifunctional sulfided and acidic catalyst for the hydroconversion and the hydrotraitment of a Vacuum Residue. Upstream works have already demonstrate that high level of residue conversion, at high temperatures ( > 400 °C), leads to create carbonaceous sediments (sediments), link to asphaltenes polarity and aromaticity. Thus, our objective was to promote hydrocracking reactions at lower temperatures (370 °C), by enhancing acidity of conventional sulfided catalysts. Structures of consequent asphaltenes, modified by acidity, were also studied. Model NiMo catalysts were obtained by grafting silica on the surface of alumina carriers. Characterization on carriers and sulfided catalysts reveal the improvement of a weak acidity. Hydrogenating phase and textures properties have also been characterized in this work. In the end, we have obtained catalysts with same texture, same hydrogenating power, but also different level of acidity strength. Catalytic performances were evaluated in batch reactor, for the hydroconversion reaction of a Safaniya Vacuum Residue. Results reveal no changes in hydroconversion or hydrotraitment reactions parameters with acidity. No improvement was observed by enhancing the hydrogenating power or by adding macroporosity on textures with acidic sulfided catalysts. Nonetheless, combinated asphaltenes analysis and molecular reconstructions methods have shown that acidity can modify asphaltènes structures and properties. Acidity enhances cracking reactions of aliphatic chains and naphthenic units, without improving the aromaticity of the molecules.
|
8 |
Catalyseurs supportés pour la conversion des liquéfiats de charbon / Supported catalysts for the upgrading of coal liquidsStihle, Jérôme 07 October 2011 (has links)
Ce travail porte sur la compréhension des paramètres du catalyseur (texture, effet de support) permettant d’améliorer la réaction de conversion de liquéfiats de charbon. En effet, le catalyseur actuellement employé est un catalyseur du type conversion de résidu sous vide de brut de pétrole. Or ces matrices sont différentes en termes de poids moléculaires et de teneur en hétéroélément (O et N). Pour atteindre l’objectif de cette thèse, une caractérisation poussée du liquéfiat a été menée à l’aide de diverses techniques (GCxGC, HR-13C-RMN, FT-ICR/MS,…). Cette analyse détaillée du liquéfiat a mis avant son caractère fortement aromatique. Les extractions aux solvants ont permis d’isoler les asphaltènes et préasphaltènes de ce liquéfiat. Leurs analyses montrent que ces familles de composés sont de plus faible masse moléculaire que les asphaltènes des résidus pétroliers, et que leur teneur en hétéroélément est plus importante. Les tests catalytiques de conversion de liquéfiat ont été réalisés à 420°C 15MPa d’H2 pendant 8h. Ils montrent que l’augmentation de la taille de pore (mésoporeux) ainsi que l’apport d’une bimodalité du support (méso+macroporosité) permettent d’augmenter le transfert de matière et donc d’augmenter le coefficient de diffusion ce qui a pour conséquence d’améliorer le rendement en produits plus légers. Concernant la nature du support, de part sa capacité à favoriser les réactions d’HDO le TiO2 (vs Al2O3) permet de limiter la compétition entre les composés oxygénés et les composés hydrocarbonés. En conclusion, ce travail montre que plusieurs paramètres sont susceptibles d’améliorer les performances des catalyseurs de conversion des liquéfiats de charbon / This work focuses on the comprehension of the catalyst parameters (textural properties and support effect) that increase the yield of the coal liquid upgrading. The current in use catalyst was design for the petroleum vacuum residue conversion. However, these two feeds present different characteristics such as the average molecular weight and the amount of heteroelement (especially O and N). To reach our goal, an in-depth characterization of the coal liquid was carried out using techniques such as GCxGC, HR-13C-NMR, FT-ICR/MS. This coal liquid analysis pointed out its strong aromatic character. Extractive solvent experiments isolated the asphaltenes and preasphaltenes and their analysis show that they have a smaller average molecular weight distribution than that of petroleum asphaltenes. Catalytic experiments were carried out at 420°C, 15MPa of H2 for 8h. It shows that the increasing mesoporous size and the bimodality (meso + macroporosity) enable to raise the mass transfer thus the diffusion coefficient which enhances the yield in lighter products. The capability of TiO2 (as a support vs Al2O3) to promote HDO reaction, enables to restrain the competition between oxygen containing compounds and pure hydrocarbons. To conclude, this work demonstrates that several parameters can enhance catalyst’s performance for the coal liquid upgrading
|
9 |
Procédé d’hydroconversion par catalyse dispersée des résidus lourds pétroliers / Study of heavy oil hydroconversion process in a continuous pilot using dispersed phase catalystGotteland, Delphine 11 October 2011 (has links)
Résumé confidentiel / Résumé confidentiel
|
10 |
Modélisation cinétique de l'hydroconversion catalytique de la lignine pour la production d'aromatiques / Kinetic modeling of catalytic lignin hydroconversion for aromatic productionPu, Junjie 06 November 2018 (has links)
De nos jours, en raison de l'épuisement des combustibles fossiles et des préoccupations environnementales, la transformation de la biomasse lignocellulosique devient un gros challenge pour fournir des biocarburants et des bioproduits dans un futur proche. La lignine, qui représente près de 30 %pds de la biomasse lignocellulosique, est la bioressource la plus pertinente et la plus abondante pour produire des composés aromatiques grâce à sa structure polymérique composée d’unités phénylpropane avec des liaisons éthers. Dans ce contexte, l’utilisation de la lignine en tant que précurseur de composés aromatiques suscite beaucoup d’attention de par son faible coût et sa haute disponibilité puisque co-produit dans l’industrie papetière ou les bio-raffineries. Dans la littérature, il apparaît que l'hydroconversion catalytique de la lignine constitue une méthode thermochimique intéressante pour obtenir des rendements élevés en produits liquides. Le but de ce travail était d'étudier les processus réactionnels lors de ce procédé et de développer un modèle cinétique pour l'hydroconversion catalytique de la lignine sur un catalyseur sulfure (CoMoS/Al2O3). Dans la première partie de ce travail, des mesures cinétiques ont été effectuées dans un solvant donneur d’hydrogène (tétraline) à 350 °C et 80 bar en utilisant un réacteur semi-continu, ouvert en phase gazeuse avec l’alimentation continue en H2 et équipé d’un condenseur à reflux et de pièges refroidis. Les produits récupérés ont été isolés en quatre fractions : gaz (méthane, dioxyde de carbone, hydrocarbures légers, etc.), liquide organique (phénols, aromatiques, naphtènes, etc.), résidus solubles dans le THF et insolubles dans le THF. Grâce à plusieurs outils analytiques appropriés (GPC, RMN, GCXGC, etc.), l'évolution et la composition de ces différentes fractions en fonction du temps de réaction ont été étudiés afin de comprendre les transformations lors de la conversion. Un schéma réactionnel (approche regroupée) a été établi sur la base de ces observations. La deuxième partie de ce travail a été consacrée au développement d'un modèle cinétique paramétré permettant de décrire mathématiquement chaque étape de réaction au cours de l'hydroconversion de la lignine. Premièrement, les phénomènes physiques impliqués (comportement hydrodynamique des gaz dans notre installation, équilibre vapeur-liquide des mélanges et transfert de masse liquide gaz) ont été caractérisés. Par la suite, un modèle complet de réacteur a été construit en couplant la cinétique chimique appropriée et les caractérisations physiques. En prenant les données expérimentales recueillies comme base, des paramètres cinétiques fiables (constantes de vitesse et coefficients stoechiométriques) pour chaque étape de réaction ont été obtenus au moyen d'une technique de régression non linéaire. Le modèle résultant nous permet d'avoir une compréhension approfondie du processus de conversion de la lignine / Nowadays, due to the fossil fuels depletion and environmental concerns, transformation of lignocellulosic biomass is becoming a great challenge in order to provide biofuels and biochemicals in a near future. Lignin, which accounts for nearly 30 wt% of lignocellulosic biomass, is the most relevant and abundant bio-resource to produce aromatic compounds because of its original polymeric structure composed by phenylpropane units with ether linkages. In this context, the use of lignin as a precursor of aromatic compounds attracts lots of attention thanks to its low cost and high availability in pulp industry or bio-refinery. In the literature, it appears that an interesting thermochemical method for obtaining high yields of liquid products was the catalytic hydroconversion of lignin. The aim of this work was to investigate the reaction scheme of the catalytic process and develop a kinetic model for catalytic lignin hydroconversion over a sulfided CoMoS/Al2O3. In the first part of this work, kinetic measurements were carried out in a H-donor solvent (tetralin) at 350 °C and 80 bar using a semi-continuous batch reactor, which is opened for gas phase with continuous supply of H2 and equipped with a condensing reflux followed by cooled traps. The recovered products were isolated in four fractions: gases (methane, carbon dioxide, light hydrocarbons, etc.), organic liquid (phenols, aromatics, naphthenes, etc.), THF-soluble and THF-insoluble residues. Thanks to several appropriate analytical tools (GPC, NMR, GCXGC, etc.), the evolution of these different fractions as a function of reaction time was followed in order to understand the transformations occurring during the conversion. Accordingly, a lumped reaction network was established based on the observed reaction schemes. The second part of this work was dedicated to the development of a parameterized kinetic model allowing to have a mathematical description for each reaction step involved in the lignin hydroconversion. Firstly, physical phenomena involved (the gas hydrodynamic behavior of our set-up, the vapor-liquid equilibrium of mixtures and the liquid-gas mass transfer) were characterized. Subsequently, a complete reactor model was constructed by coupling the suitable chemical kinetics and these physical characterizations. Taking the gathered experimental data as a basis, reliable kinetic parameters (rate constants and stoichiometric coefficients) for each reaction step were obtained by means of non-linear regression technique. The resulting model allows us to have an in-depth understanding of the lignin conversion process
|
Page generated in 0.1 seconds