• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

IC Design and Implementation of Fast Bipolar Inner Product Processor and Analog to Digital Converter

Hsueh, Ya-Hsin 20 June 2000 (has links)
This thesis is composed of three independent parts, which are respectively focused on three different applications. 1. A Circuit Design of Fast Bipolar Inner Product Processor for Neural Associative Memory Networks¡G A novel and high-speed realization of the bipolar-valued inner product processor for associative memory networks is presented. The proposed design is verified to speed up the inner product computation compared with prior works. 2. An Area-Saving 8-bit A/D Converter Using A Binary Search Scheme¡G A fast and area-saving analog-to-digital converter using DFFs and a digital-to-analog converter is proposed. This design provides a reasonably fast solution for the embedded ADC with the area penalty growing linearly with the data length. 3. A Smart Battery Monitor Emulator System¡G An efficient smart battery monitor emulator system is designed by using the bq2018 IC of Benchmarq company. This system is aimed to improve the battery monitoring efficiency such that the exact remaining power and time of the battery can be estimated.
12

Inner-product based signal processing: Algorithms and VLSI implementation

Chen, Chiung-Hsing January 1994 (has links)
No description available.
13

Convergence Rates of Spectral Distribution of Random Inner Product Kernel Matrices

Kong, Nayeong January 2018 (has links)
This dissertation has two parts. In the first part, we focus on random inner product kernel matrices. Under various assumptions, many authors have proved that the limiting empirical spectral distribution (ESD) of such matrices A converges to the Marchenko- Pastur distribution. Here, we establish the corresponding rate of convergence. The strategy is as follows. First, we show that for z = u + iv ∈ C, v > 0, the distance between the Stieltjes transform m_A (z) of ESD of matrix A and Machenko-Pastur distribution m(z) is of order O (log n \ nv). Next, we prove the Kolmogorov distance between ESD of matrix A and Marchenko-Pastur distribution is of order O(3\log n\n). It is the less sharp rate for much more general class of matrices. This uses a Berry-Esseen type bound that has been employed for similar purposes for other families of random matrices. In the second part, random geometric graphs on the unit sphere are considered. Observing that adjacency matrices of these graphs can be thought of as random inner product matrices, we are able to use an idea of Cheng-Singer to establish the limiting for the ESD of these adjacency matrices. / Mathematics
14

The Cauchy-Schwarz inequality : Proofs and applications in various spaces / Cauchy-Schwarz olikhet : Bevis och tillämpningar i olika rum

Wigren, Thomas January 2015 (has links)
We give some background information about the Cauchy-Schwarz inequality including its history. We then continue by providing a number of proofs for the inequality in its classical form using various proof techniques, including proofs without words. Next we build up the theory of inner product spaces from metric and normed spaces and show applications of the Cauchy-Schwarz inequality in each content, including the triangle inequality, Minkowski's inequality and Hölder's inequality. In the final part we present a few problems with solutions, some proved by the author and some by others.
15

Geometry of Minkowski Planes and Spaces -- Selected Topics

Wu, Senlin 03 February 2009 (has links) (PDF)
The results presented in this dissertation refer to the geometry of Minkowski spaces, i.e., of real finite-dimensional Banach spaces. First we study geometric properties of radial projections of bisectors in Minkowski spaces, especially the relation between the geometric structure of radial projections and Birkhoff orthogonality. As an application of our results it is shown that for any Minkowski space there exists a number, which plays somehow the role that $\sqrt2$ plays in Euclidean space. This number is referred to as the critical number of any Minkowski space. Lower and upper bounds on the critical number are given, and the cases when these bounds are attained are characterized. Moreover, with the help of the properties of bisectors we show that a linear map from a normed linear space $X$ to another normed linear space $Y$ preserves isosceles orthogonality if and only if it is a scalar multiple of a linear isometry. Further on, we examine the two tangent segments from any exterior point to the unit circle, the relation between the length of a chord of the unit circle and the length of the arc corresponding to it, the distances from the normalization of the sum of two unit vectors to those two vectors, and the extension of the notions of orthocentric systems and orthocenters in Euclidean plane into Minkowski spaces. Also we prove theorems referring to chords of Minkowski circles and balls which are either concurrent or parallel. All these discussions yield many interesting characterizations of the Euclidean spaces among all (strictly convex) Minkowski spaces. In the final chapter we investigate the relation between the length of a closed curve and the length of its midpoint curve as well as the length of its image under the so-called halving pair transformation. We show that the image curve under the halving pair transformation is convex provided the original curve is convex. Moreover, we obtain several inequalities to show the relation between the halving distance and other quantities well known in convex geometry. It is known that the lower bound for the geometric dilation of rectifiable simple closed curves in the Euclidean plane is $\pi/2$, which can be attained only by circles. We extend this result to Minkowski planes by proving that the lower bound for the geometric dilation of rectifiable simple closed curves in a Minkowski plane $X$ is analogously a quarter of the circumference of the unit circle $S_X$ of $X$, but can also be attained by curves that are not Minkowskian circles. In addition we show that the lower bound is attained only by Minkowskian circles if the respective norm is strictly convex. Also we give a sufficient condition for the geometric dilation of a closed convex curve to be larger than a quarter of the perimeter of the unit circle.
16

Functional encryption for inner-product evaluations / Chiffrement fonctionnel pour l'évaluation de produits scalaires

Bourse, Florian 13 December 2017 (has links)
Le chiffrement fonctionnel est une technique émergente en cryptographie dans laquelle une autorité toute puissante est capable de distribuer des clés permettant d’effectuer des calculs sur des données chiffrées de manière contrôlée. La mode dans ce domaine est de construire des schémas qui sont aussi expressifs que possible, c’est-à-dire du chiffrement fonctionnel qui permet l’évaluation de n’importe quel circuit. Ces contributions délaissent souvent l’efficacité ainsi que la sécurité. Elles reposent sur des hypothèses fortes, très peu étudiées, et aucune construction n’est proche d’être pratique. Le but de cette thèse est d’attaquer ce défi sous un autre angle : nous essayons de construire des schémas de chiffrement fonctionnel les plus expressifs que nous le pouvons en se basant sur des hypothèses standards, tout en conservant la simplicité et l’efficacité des constructions. C’est pourquoi nous introduisons la notion de chiffrement fonctionnel pour l’évaluation de produits scalaires, où les messages sont des vecteurs ~x, et l’autorité peut transmettre des clés correspondants à des vecteurs ~y qui permettent l’évaluation du produit scalaire h~x, ~yi. Cette fonctionnalité possède immédiatement des applications directes, et peut aussi être utilisé dans d’autres constructions plus théoriques, leproduit scalaire étant une opération couramment utilisée. Enfin, nous présentons deux structures génériques pour construire des schémas de chiffrement fonctionnels pour le produit scalaire, ainsi que des instanciations concrètes dont la sécurité repose sur des hypothèses standards. Nous comparons aussi les avantages et inconvénients de chacune d’entre elles. / Functional encryption is an emerging framework in which a master authority can distribute keys that allow some computation over encrypted data in a controlled manner. The trend on this topic is to try to build schemes that are as expressive possible, i.e., functional encryption that supports any circuit evaluation. These results are at the cost of efficiency and security. They rely on recent, not very well studied assumptions, and no construction is close to being practical. The goal of this thesis is to attack this challenge from a different angle: we try to build the most expressive functional encryption scheme we can get from standard assumption, while keeping the constructions simple and efficient. To this end, we introduce the notion of functional encryption for inner-product evaluations, where plaintexts are vectors ~x, and the trusted authority delivers keys for vectors ~y that allow the evaluation of the inner-product h~x, ~yi. This functionality already offers some direct applications, and it can also be used for theoretical constructions, as inner-product is a widely used operation. Finally, we present two generic frameworks to construct inner-product functional encryption schemes, as well as some concrete instantiations whose security relies on standard assumptions. We also compare their pros and cons.
17

Analysis of Covariance with Linear Regression Error Model on Antenna Control Unit Tracking

Laird, Daniel T. 10 1900 (has links)
ITC/USA 2015 Conference Proceedings / The Fifty-First Annual International Telemetering Conference and Technical Exhibition / October 26-29, 2015 / Bally's Hotel & Convention Center, Las Vegas, NV / Over the past several years DoD imposed constraints on test deliverables, requiring objective measures of test results, i.e., statistically defensible test and evaluation (SDT&E) methods and results. These constraints force the tester to employ statistical hypotheses, analyses and perhaps modeling to assess test results objectively, i.e., based on statistical metrics, probability of confidence and logical inference to supplement rather than rely solely on expertise, which is too subjective. Experts often disagree on interpretation. Numbers, although interpretable, are less variable than opinion. Logic, statistical inference and belief are the bases of testable, repeatable and refutable hypothesis and analyses. In this paper we apply linear regression modeling and analysis of variance (ANOVA) to time-space position information (TSPI) to determine if a telemetry (TM) antenna control unit (ACU) under test (AUT) tracks statistically, thus as efficiently, in C-band while receiving both C- and S-band signals. Together, regression and ANOVA compose a method known as analysis of covariance (ANCOVA). In this, the second of three papers, we use data from a range test, but make no reference to the systems under test, nor to causes of error. The intent is to present examples of tools and techniques useful for SDT&E methodologies in testing.
18

Logistics Regression Model on Antenna Control Unit Autotracking Mode

Laird, Daniel T. 10 1900 (has links)
ITC/USA 2015 Conference Proceedings / The Fifty-First Annual International Telemetering Conference and Technical Exhibition / October 26-29, 2015 / Bally's Hotel & Convention Center, Las Vegas, NV / Over the past several years DoD imposed constraints on test deliverables, requiring objective measures of test results, i.e., statistically defensible test and evaluation (SDT&E) methods and results. These constraints force testers to employ statistical hypotheses, analyses and modeling to assess test results objectively, i.e., based on statistical metrics, analytical methods, probability of confidence complemented by, rather than solely on expertise, which is too subjective. In this and companion papers we discuss methods of objectifying testing. We employ an earth coordinate model and statistical modeling of telemetry (TM) tracking antenna employing time-space position information (TSPI) and derived statistical measures for tracking-error and auto-tracking mode. Test data were statistically analyzed via analysis of covariance (ANCOVA) which revealed that the antenna control unit (ACU) under test (AUT) does not track statistically identically, nor as practically or efficiently in C-band while receiving data carriers in both S- and C-bands. The conclusions of this paper add support to that hypothesis. In this third of three papers we use data from a range test, but make no reference to the systems under test as the purpose of this paper is to present an example of tools useful for employing a SDT&E methodology.
19

The Symmetric Meixner-Pollaczek polynomials

Araaya, Tsehaye January 2003 (has links)
<p>The Symmetric Meixner-Pollaczek polynomials are considered. We denote these polynomials in this thesis by <i>p</i><i>n</i><sup>(λ)</sup>(<i>x</i>) instead of the standard notation <i>p</i><i>n</i><sup>(λ)</sup> (<i>x</i>/2, <i>π</i>/2), where λ > 0. The limiting case of these sequences of polynomials <i>p</i><i>n</i><sup>(0)</sup> (<i>x</i>) =lim<sub>λ→0</sub> <i>p</i><i>n</i><sup>(λ)</sup>(<i>x</i>), is obtained, and is shown to be an orthogonal sequence in the strip, <i>S</i> = {<i>z</i> ∈ ℂ : −1≤ℭ (<i>z</i>)≤1}.</p><p>From the point of view of Umbral Calculus, this sequence has a special property that makes it unique in the Symmetric Meixner-Pollaczek class of polynomials: it is of convolution type. A convolution type sequence of polynomials has a unique associated operator called a delta operator. Such an operator is found for <i>p</i><i>n</i><sup>(0)</sup> (<i>x</i>), and its integral representation is developed. A convolution type sequence of polynomials may have associated Sheffer sequences of polynomials. The set of associated Sheffer sequences of the sequence <i>p</i><i>n</i><sup>(0)</sup>(<i>x</i>) is obtained, and is found</p><p>to be ℙ = {{<i>p</i><i>n</i><sup>(λ)</sup> (<i>x</i>)} =0 : λ ∈ R}. The major properties of these sequences of polynomials are studied.</p><p>The polynomials {<i>p</i><i>n</i><sup>(λ)</sup> (<i>x</i>)}<sup>∞</sup><i>n</i><sub>=0</sub>, λ < 0, are not orthogonal polynomials on the real line with respect to any positive real measure for failing to satisfy Favard’s three term recurrence relation condition. For every λ ≤ 0, an associated nonstandard inner product is defined with respect to which <i>p</i><i>n</i><sup>(λ)</sup>(x) is orthogonal. </p><p>Finally, the connection and linearization problems for the Symmetric Meixner-Pollaczek polynomials are solved. In solving the connection problem the convolution property of the polynomials is exploited, which in turn helps to solve the general linearization problem.</p>
20

The Symmetric Meixner-Pollaczek polynomials

Araaya, Tsehaye January 2003 (has links)
The Symmetric Meixner-Pollaczek polynomials are considered. We denote these polynomials in this thesis by pn(λ)(x) instead of the standard notation pn(λ) (x/2, π/2), where λ &gt; 0. The limiting case of these sequences of polynomials pn(0) (x) =limλ→0 pn(λ)(x), is obtained, and is shown to be an orthogonal sequence in the strip, S = {z ∈ ℂ : −1≤ℭ (z)≤1}. From the point of view of Umbral Calculus, this sequence has a special property that makes it unique in the Symmetric Meixner-Pollaczek class of polynomials: it is of convolution type. A convolution type sequence of polynomials has a unique associated operator called a delta operator. Such an operator is found for pn(0) (x), and its integral representation is developed. A convolution type sequence of polynomials may have associated Sheffer sequences of polynomials. The set of associated Sheffer sequences of the sequence pn(0)(x) is obtained, and is found to be ℙ = {{pn(λ) (x)} =0 : λ ∈ R}. The major properties of these sequences of polynomials are studied. The polynomials {pn(λ) (x)}∞n=0, λ &lt; 0, are not orthogonal polynomials on the real line with respect to any positive real measure for failing to satisfy Favard’s three term recurrence relation condition. For every λ ≤ 0, an associated nonstandard inner product is defined with respect to which pn(λ)(x) is orthogonal. Finally, the connection and linearization problems for the Symmetric Meixner-Pollaczek polynomials are solved. In solving the connection problem the convolution property of the polynomials is exploited, which in turn helps to solve the general linearization problem.

Page generated in 0.0428 seconds