51 |
Rôle de la voie de signalisation Insuline dans le couplage des informations nutritionnelles et développementales au cours de l'ovogenèse chez la drosophile / Role of the Insulin signalling pathway in coupling oogenesis rate with nutritional cues in DrosophilaJouandin, Patrick 06 December 2013 (has links)
Au cours de l’ovogenèse, les stades vitellogéniques nécessitent une énergie considérable, et leur formation doit être ajustée en fonction d’autres besoins physiologiques. En utilisant la drosophile comme modèle, j’ai montré que la signalisation Insuline régule une transition du cycle cellulaire, mitose/ endocyle (M/E), une étape critique qui contrôle l’entrée des follicules en vitellogenèse. Mes travaux montrent que la transition M/E porte le rôle d’un point de contrôle nutritionnel. La carence protéique induit un blocage de cette transition au travers d’une interaction entre FoxO, Cut et Notch, empêchant une perte d’énergie. Ce blocage reste réversible, autorisant la reprise de l’ovogenèse sous retour à une alimentation normale. Ce travail montre qu’un point de contrôle nutritionnel au cours de l’ovogenèse permet de coupler des signaux métaboliques et développementaux pour protéger les tissus des dommages liés à la carence. D’autre part, j’ai montré que la signalisation Insuline contrôle la migration d’une cohorte de cellules d’origine épithéliale pour assurer la fertilité de l’ovocyte. L’insuline participe à la formation d’extensions cytoplasmiques riches en actine. Lors de ce processus, la signalisation Insuline contrôle notamment l’expression de chickadee, qui code pour la Profiline, une protéine nécessaire pour la polymérisation de l’actine qui permet la motilité des cellules. L’ensemble de ce travail montre que des tissus somatiques assurent l’homéostasie de l’ovogenèse malgré des conditions de nutritions fluctuantes. Ces travaux posent les bases de l’étude de nouveaux aspects de l’ovogenèse, potentiellement conservés chez les mammifères. / How oogenesis is controlled upon nutrient challenge is a key biological question to understand the balance between reproduction and adult fitness. During Drosophila oogenesis, vitellogenic stages are highly energy consuming so their formation has to be balanced with other physiological needs. We reveal the role of the Insulin pathway and FoxO in regulating the transition from Mitotic-to-Endocycle, a critical step controlling the entry of egg chambers into vitellogenesis. We show that the M/E switch functions as a nutrient checkpoint, blocking the entry into vitellogenesis upon starvation and therefore protecting adults from energy loss. Pausing of the M/E switch involves a previously unknown crosstalk between FoxO, Cut and Notch, a fully reversible process ensuring rapid resuming of oogenesis upon re-feeding. This work reveals a FoxO-dependent nutrient checkpoint integrating metabolic cues with reproduction and protecting tissues from starvation-induced damages. In addition, we show that the Insulin pathway regulates the migration of a subset of epithelial cells to ensure oocyte fertilization. We demonstrate that Insulin signaling regulates the formation of actin-rich cellular extensions in invasive cells. During this process, FoxO represses chickadee expression, which encodes Profilin. Insulin signaling activity leads to the inhibition of FoxO and subsequent Profilin accumulation, which further allows actin polymerization, necessary for cell motility. Altogether, data reveal a crucial role for the conserved Insulin signaling pathway in regulating ovarian follicles through somatic tissues, a process which is likely to share much in common with oogenesis in mammals.
|
52 |
Efeitos da restrição calórica nas vias de sinalização por insulina e óxido nítrico: implicações para biogênese, morfologia e função mitocondriais / Calorie restriction restriction effects on insulin and nitric oxide signaling: implications to mitochondrial biogenesis, morphology and function.Fernanda Menezes Cerqueira 27 February 2012 (has links)
A restrição calórica (RC) estende a expectativa de vida de muitos organismos por mecanismos ainda em estudo. Entre os vários efeitos fisiológicos da RC encontra-se o aumento na biogênese mitocondrial, dependente de óxido nítrico (NO•), sintetizado pela enzima óxido nítrico sintase endotelial (eNOS). Um dos indutores fisiológicos mais potentes da eNOS é a insulina, cujos níveis plasmáticos são consideravelmente reduzidos nos organismos em RC. O objetivo deste trabalho foi investigar os mecanismos associados ao aumento da sinalização por NO• durante a RC in vivo e in vitro, e as conseqüências celulares do aumento de massa mitocondrial no que diz respeito à longevidade e capacidade respiratória celulares. Submetemos camundongos Swiss fêmeas à RC de 40% e observamos um considerável aumento tecido-específico na fosforilação basal de Akt e eNOS em músculo esquelético, tecido adiposo visceral e cérebro, os quais também apresentaram maior massa mitocondrial. A associação entre a sinalização por insulina, NO• e biogênese mitocondrial foi adicionalmente confirmada em um grupo de camundongos tratados com o desacoplador mitocondrial dinitrofenol (DNP), que também reduz a insulinemia e aumenta a longevidade em camundongos. Para o estudo mecanístico deste fenômeno, usamos soros de ratos Sprague-Dawley submetidos à RC de 40% ou alimentados ad libitum (AL) em cultura celular de células vasculares da musculatura lisa (VSMC), reproduzindo um protocolo descrito para RC in vitro. O uso do soro RC aumentou a fosforilação do receptor de insulina e Akt, a expressão de eNOS e nNOS (forma neural da NOS) e a fosforilação de eNOS, o que se refletiu em maior liberação de nitrito (NO2) no meio de cultura. Inibindo-se a Akt, todos os efeitos promovidos pela RC na sinalização por NO• foram revertidos. Ao se imunoprecipitar do soro a adiponectina, citocina conhecida por aumentar a sensibilidade à insulina, aumentada durante a RC, os efeitos do soro RC na via de sinalização de insulina foram abolidos e, conseqüentemente, os efeitos na sinalização por •NO foram prevenidos. Neurônios de células granulosas de cerebelo, que não expressam eNOS, apenas nNOS, foram cultivados com os soros AL ou RC, e também apresentaram considerável aumento na sinalização por •NO. Estas alterações induziram a biogênese mitocondrial e capacidade respiratória, e foram associadas à maior longevidade celular. Os mesmos efeitos mitocondriais foram observados em células secretoras de insulina, INS1, entretanto a secreção de insulina em resposta à glicose tornou-se inibida, por um mecanismo desconhecido, porém associado a reduzidos níveis intracelulares de espécies oxidantes, moléculas-chave para a secreção de insulina; e à alteração da morfologia mitocondrial, provavelmente devido à maior expressão de mitofusina-2 (Mfn-2). Ao se nocautear a Mfn-2, houve um aumento na geração de EROs e as células em RC passaram a secretar insulina a níveis comparáveis aos das células controle. Concluímos que durante a RC a maior sensibilidade à insulina aumenta a atividade de eNOS, via Akt, associada à maior biogênese mitocondrial. A adiponectina é uma molécula-central nestes eventos. A expressão de nNOS também é afetada, por mecanismos desconhecidos. O aumento de biogênese mitocondrial eleva a capacidade respiratória celular e impacta positivamente a longevidade in vitro. A alteração da morfologia mitocondrial associa-se a alterações na produção de oxidantes intracelulares e mudanças na secreção de insulina. / Calorie restriction (RC) is known to extend the lifespan in many organisms, and its mechanisms of action are still under investigation. Enhanced mitochondrial biogenesis driven by nitric oxide (•NO), synthesized by the endothelial nitric oxide synthase (eNOS), is proposed to be a CR central effect. Insulin is one of the most potent physiological activators of eNOS. However, plasmatic insulin levels are dramatically reduced in organisms under CR. The goal of this work was uncover the mechanisms associated with enhanced •NO signaling during CR, in vivo and in vitro, as well as the cellular consequences of increased mitochondrial mass, regarding lifespan and reserve respiratory capability. Female Swiss mice were submitted to 40% of CR. A tissue-specific (skeletal muscle, abdominal adipose tissue and brain) increment in basal Akt and eNOS phosphorylation, which was related to enhanced mitochondrial biogenesis, was observed. Indeed, this association was also verified in tissues from mice treated with low doses of a mitochondrial uncoupler, dinitrophenol (DNP). To unveil the mechanism behind the insulin signaling effects on •NO levels, serum from Sprague-Dawley rats submmited to 40% of CR was used to culture in VSMC cells, an in vitro CR protocol. CR sera enhanced insulin receptor (IR) and Akt phosphorylation, as well as nitrite (NO2-) accumulation in the culture media, the expression of eNOS and nNOS (neural NOS isoform) and eNOS phosphorylation. The effects of CR sera were reversed by Akt inhibition. The immunoprecipitation of serum adiponectin, a cytokine known to improve peripheral insulin sensitivity, also reversed the CR serum effects on insulin and •NO signaling. Cerebellar neurons, which do not express eNOS, just nNOS, were also cultured with CR or AL serum and also presented striking increments in •NO signaling, associated with mitochondrial biogenesis, increased reserve respiratory capability and lifespan extension. The mitochondrial effects promoted by CR were also observed in insulin secreting cells (INS1). However, under the CR condition, insulin secretion stimulated by glucose was impaired. The likely explanations are reduced mitochondrial reactive oxygen species (ROS) generation, or the alteration in mitochondrial morphology, associated, in our model, with enhanced mitofusin-2 expression (Mfn-2). In cells which the Mfn-2 was knocked down, insulin secretion in CR and AL groups was responsive to glucose at the same level, and the intracellular oxidants levels were much higher. Overall, CR improves •NO signaling due to enhanced insulin sensitivity, through Akt, and results in mitochondrial biogenesis. Adiponectin is a key molecule in this phenomenon. Increments in mitochondrial mass enhance the cellular reserve respiratory capability and lifespan. Mitochondrial morphology alterations are associated with possible decreases in ROS generation and impaired insulin release, maintained the low levels of plasmatic insulin.
|
53 |
Gene Expression Profiling And Insights Into The Involvement Of The Insulin Signaling Pathway In Oral CancerChakraborty, Sanjukta 03 1900 (has links)
1. Despite extensive research on oral squamous cell carcinoma (OSCC), its five-year survival rate has not improved for the last two decades. Effective treatment of OSCC requires the identification of molecular targets to design appropriate therapeutic strategies. To this end, DDRT-PCR analysis was used to identify molecular markers, which could be used as
therapeutic targets.
2. DDRT-PCR in combination with reverse Northern analysis identified 25 differentially expressed genes in oral tumors. Fourteen genes did not show homology to any known gene in the database and therefore may represent non-specific genomic DNA sequences or novel genes that have not yet been identified. The remaining 11 genes showed homology to known genes such as DIAPH1, NJMU-R1, RBM28, PCNA, GLTP, MTATP6, ZKSCAN1, TNKS2, PAM, TUBB2C and C14orf154. TNKS2, PAM, TUBB2C and C14orf154 showed downregulation and the remaining seven genes were upregulated in oral tumor samples.
3. To reconfirm the results of DDRT-PCR and reverse Northern blot analyses, Northern blot analysis was carried out on matched normal and tumor samples for a few genes. As expected, PCNA, NJMU-R1 and ZKSCAN1 showed upregulation, whereas TUBB2C showed
downregulation in the tumor sample. PCNA was also found to be upregulated in tumor
samples at the protein level.
4. The expression of eight differentially expressed genes (viz., DIAPH1, NJMU-R1, RBM28, PCNA, GLTP, TNKS2, PAM and TUBB2C) was also validated in a panel of 16 matched
normal and tumor samples. The mean mRNA expression levels of GLTP, PCNA, RBM28,
NJMU-R1 and DIAPH1 were significantly greater in tumor samples than in normal samples. The mean expression levels of TNKS2, PAM and TUBB2C were significantly lower in tumor samples than in normal samples.
5. As some of the genes like NJMU-R1, RBM28, GLTP and PAM are found to differentially
regulated in a majority of the tumors, they could be used as potential markers in oral cancer.
6. Tuberin and hamartin have been placed as a complex in the insulin signaling pathway and are known to negatively regulate this pathway. Since overexpression of TSC2 has been previously shown to exert antitumor effect on two oral cancer cell lines, and some components of the insulin signaling pathway have already been implicated in head and neck cancers, we reasoned that both TSC genes and other key players of this pathway might be differentially regulated in oral tumors. Northern blot analysis showed downregulation of the TSC2 gene in an oral tumor sample. In order to further validate the expression pattern of the TSC2 gene, a semiquantative RT-PCR analysis was carried out in a panel of 16 matched normal and tumor samples. The mean expression level of TSC2 was significantly lower in tumor samples than in normal tissue samples. The mean expression level of its interacting
partner TSC1 was also significantly lower in tumor samples than in normal tissue samples,
suggesting the involvement of these genes in the etiology of oral cancer. TSC1 and TSC2
were also downregulated in eight matched normal and tumor samples at the protein level. We wanted further to determine the expression of both TSC genes in cell lines. Interestingly, TSC2 did not show a detectable level of expression in an oral cancer cell line SCC 131, whereas it was expressed in two other oral cancer cell lines KB and SCC 104 as well as in
four non-oral cell lines: A549, HEK-293T, HeLa and HepG2 at the protein level. The TSC2 expression in KB was, however, lower than in other cell lines. TSC1 was expressed in all the cell lines, albeit at different levels. The TSC1 expression was lower in SCC 131 as compared to two other cell lines KB and SCC 104.
7. Given the fact that both are tumor suppressors, it was hypothesized that LOH, inactivating somatic mutations and/or promoter methylation might be playing a role for their downregulation in oral tumors. Mutation analysis of all the coding regions of both the TSC genes failed to detect any mutation in a panel of 25 tumor samples. However, seven normal population variants were identified in different patients. Our analysis of the matched peripheral blood and tumor DNA samples from 52 patients showed LOH at both the TSC loci. At the TSC1 locus, 17/48 (35.42%) tumors showed an allelic loss for one or more markers. At the TSC2 locus, LOH was found in 18/48 (37.5%) informative cases. Nine patients (9/48, 18.75%) had LOH at both the TSC loci. Since PTEN is another tumor suppressor in the insulin signaling pathway, we then sought to determine if LOH is also present in the PTEN candidate region in a panel of 50 matched samples. Microsatellite analysis using three markers showed a low LOH rate of 13% in tumor samples.
8. As the OSCC cell line SCC 131 did not show a detectable level of TSC2 expression, we treated this cell line with methylation inhibition drug 5-azacytidine. The treatment restored the expression of TSC2 and increased the expression of TSC1, suggesting that the promoter methylation and LOH are the important mechanisms for their downregulation. In order to see if the downregulation of the TSC genes is due to their promoters being methylated in tumors
from the patients, we examined the methylation status of their promoters in 16 oral tumors, three normal oral tissues, two peripheral blood DNA samples from normal individuals and two cell lines HeLa and SCC 131 by COBRA. Our repeated efforts to amplify the TSC1 promoter using different DNA polymerases failed. However, we were able to successfully amplify the 571 bp long TSC2 promoter. Our analysis showed methylation of the TSC2 promoter in all tumors and two cell lines. As expected, the TSC2 promoter was not methylated in normal oral tissues and control blood DNA samples. Our bisulfite sequencing data suggested a low level and a considerable heterogeneity of methylation.
9. Using Fisher’s exact test, no correlation was found between LOH at the TSC loci and
different clinical parameters such as age, sex, T classification, stage, grade, histology, tobacco habits and lymph node metastasis.
10. Using Fisher’s exact test, no correlation was found between the TSC2 promoter methylation and its downregulation in 16 tumor samples. We believe that this could be due to small sample size.
11. Since TSC1 and TSC2 are important regulators of the insulin pathway, it was
hypothesized that other key players of this pathway might also be dysregulated in oral
cancer. To this end, the expression pattern of some of the major regulators of the insulin pathway (viz., PI3K, AKT, PDK1, RHEB, mTOR, S6K1, S6, eIF4E, 4E-BP1, PTEN, 14-3-3゚ and IRS1) was investigated using semiquantative RT-PCR in a panel of 16 matched normal and tumor samples. The mean expression levels of the following genes showed significant upregulation in tumor samples: AKT, PI3K, PDK1, RHEB, mTOR, S6K1, S6 and eIF4E. On the other hand, 4E-BP1 and PTEN showed significant downregulation in tumor tissues. No significant difference in the expression was found for 14-3-3゚ and IRS1 between tumor and normal tissues. The expression pattern of some of these genes was also analyzed at the protein level using Western blot analysis and eight matched normal and tumor tissues. The level of total AKT was upregulated in 2/8 tumor samples only. However, phosphorylated-AKT (Thr308) showed upregulation in 6/8 samples. p70S6K1 and phosphorylated-p70S6K1 (Thr389) were upregulated in 8/8 and 6/8 tumor samples, respectively. Increase in the phosphorylated forms of both AKT and its downstream effector p70S6K1 suggested an increase in their kinase activity, indicating a constitutive activation of this pathway in oral cancer.
12. Based on our findings of mutation analysis, LOH study, 5-azacytidine treatment of an oral cancer cell line and COBRA analysis, we suggest that LOH at the TSC gene loci and promoter methylation are important mechanisms for the downregulation of the TSC genes. Loss of function of these genes may thus contribute to the constitutive activation of the insulin signaling pathway in oral cancer, leading to overall cell growth and proliferation. Our
studies have shown that several key members of this pathway show aberrant expression in a subset of cancers of the oral cavity and can provide useful therapeutic targets. Several inhibitors of the insulin signaling pathway, such as rapamycin and its derivatives which inhibit mTOR and the PI3K inhibitor wortmannin, are now being actively evaluated for clinical trials for other cancers. We suggest that these inhibitors could also be evaluated for the treatment of oral cancer in future. Our differential display analysis has served to identify
several genes that may be important for the onset and progression of oral cancer. Further analysis of these genes is warranted.
|
54 |
Purinergic Signaling and Autophagy Regulate the Secretion of High-Density Lipoprotein and Hepatic LipaseChatterjee, Cynthia 19 April 2013 (has links)
Dyslipidemia can be a comorbidity of both insulin-resistance and atherosclerosis. Hypertriglyceridemia is common in hyperglycemia and is associated with hypoalphalipoproteinemia (low HDL) and with altered nucleotide or purinergic signaling. We therefore hypothesized that extracellular nucleotides may affect hepatic lipoprotein metabolism. Our studies confirm this view and show that nucleotides regulate cellular proteolytic pathways in liver cells and thereby control lipoprotein secretion and their metabolism by hepatic lipase (HL).
Treatment of liver cells with the nucleotide, adenosine diphosphate (ADP), stimulates VLDL-apoB100 and apoE secretion, but blocks HDL-apoA-I and HL secretion. ADP functions like a proteasomal inhibitor to block proteasomal degradation and stimulate apoB100 secretion. Blocking the proteosome is known to activate autophagic pathways. The nucleotide consequently stimulates autophagic degradation in liver cells and increases cellular levels of the autophagic proteins, LC3 and p62. Confocal studies show that ADP increases cellular LC3 levels and promotes co-localization of LC3 and apoA-I in an autophagosomal degradation compartment. ADP acts through the G-protein coupled receptor, P2Y13, to stimulate autophagy and block both HDL and HL secretion. Overexpression of P2Y13 increases cellular LC3 levels and blocks the induction of both HDL and HL secretion, while P2Y13 siRNA reduce LC3 protein levels and cause up to a ten-fold stimulation in HDL and HL secretion. P2Y13 gene expression regulates autophagy through the insulin receptor (IR-β). A reduction in P2Y13 expression increases the phosphorylation of IR-β and protein kinase B (Akt) >3-fold, while increasing P2Y13 expression inhibits the activation of IR-β and Akt. Experiments with epitope-labeled apoA-I and HL show that activation of purinergic pathways has no effect on the internalization and degradation of extracellular apoA-I and HL, which confirms the view that nucleotides primarily impact intracellular protein transport and degradation. In conclusion, elevated blood glucose levels may promote dyslipidemia by stimulating purinergic signaling through P2Y13 and IR-β and perturbing the intracellular degradation and secretion of both HDL and VLDL.
|
55 |
Obesidade e resistência à insulina induzida pela restrição crônica no consumo de sal em ratos Wistar: efeitos sobre o balanço energético, sistema renina-angiotensina (SRA) e sinalização da insulina. / Obesity and insulin resistance due to chronic low salt intake in Wistar rats: effects on energy balance, renin angiotensin system (RAS) and insulin signaling.Michella Soares Coelho Araújo 09 December 2005 (has links)
A restrição de sal na dieta está associada com resistência à ação da insulina e obesidade. O mecanismo molecular pelo qual a dieta hipossódica (HO) pode induzir resistência à insulina e obesidade não está totalmente compreendido. O objetivo do presente estudo foi avaliar a influência da ingestão crônica de sal sobre o peso corporal (PC), sinalização da insulina no fígado, músculo e tecido adiposo branco (TAB) e sua associação com adiposidade e resistência à insulina. Com esta finalidade, ratos Wistar foram alimentados com dieta HO, normossódica (NR) ou hipersódica (HR) desde o desmame. O PC foi avaliado desde o desmame. Ao completarem 12 semanas de vida, foram avaliados pressão arterial, balanço energético, consumo de ração, glicemia, angiotensina II (ANGIO II) plasmática e perfil hormonal. A atividade motora espontânea foi estudada em ratos com 8 e 12 semanas. A sensibilidade à insulina foi analisada pelo índice de HOMA. A expressão da proteína desacopladora mitocondrial 1 (UPC-1) foi quantificada no tecido adiposo marrom (TAM) e o conteúdo de ANGIO II no TAM, TAB e hipotálamo. As etapas iniciais da sinalização da insulina foram avaliadas por imunoprecipitação e immunoblotting das proteínas envolvidas como o receptor da insulina (IR), substrato 1 e 2 do IR (IRS-1 e IRS-2), enzima fosfatidilinositol 3 quinase (PI-3q), proteína quinase B (Akt/PKB), ativação da proteína c-jun NH2-terminal quinase (JNK) e fosforilação em serina 307 do IRS-1. O PC no desmame foi semelhante entre os grupos de dieta. No entanto, na idade adulta os ratos em dieta HO apresentaram maior PC, adiposidade visceral, glicemia e insulinemia de jejum, concentração de ANGIO II plasmática e aumento do conteúdo de ANGIO II no TAM. Por outro lado, nestes mesmos animais a dieta HO diminuiu o consumo de ração, o gasto energético, a expressão da proteína UCP-1, adiponectina plasmática e o conteúdo de ANGIO II no TAB. A atividade motora não foi diferente entre os grupos estudados. A dieta HO diminuiu a via IR/PI-3q/Akt/Foxo1 de sinalização da insulina no fígado e músculo. Por outro lado, parte desta via (IRS-2/Akt/Foxo1) mostrou-se aumentada no TAB. No fígado e músculo houve um aumento da fosforilação da proteína JNK associada com maior fosforilação do IRS-1ser307 no grupo HO. Em conclusão, a restrição ou sobrecarga crônica de sal altera a evolução ponderal associada com modificações no balanço energético e no perfil hormonal na idade adulta. A resistência à insulina induzida pela dieta HO é tecido-específico e foi acompanhada por uma ativação da proteína JNK e um aumento da fosforilação dos resíduos de serina 307 do IRS-1. / Restriction of sodium chloride intake has been associated with insulin resistance (INS-R) and obesity. The molecular mechanisms by which the low salt diet (LSD) can induce INS-R and obesity have not yet been established.The aim of the present study was to evaluate the influences of salt intake on body weight (BW) and on insulin signaling in liver, muscle and white adipose tissue (WAT). Wistar rats were fed a LSD, normal (NSD), or high (HSD) salt diet since weaning. At 12 weeks of age, BW, blood pressure(BP),energy balance, food intake, plasma glucose and angiotesin II (ANGIO II), and hormonal profile were evaluated. Afterward, motor activity, HOMA index, uncoupling protein 1 expression (UCP-1) and tissue adipose ANGIO II content was determined. The early steps of insulin signaling (IR: insulin receptor, IRS-1 and IRS-2: IR substrate 1 and 2, PI-3K: phosphatidylinositol 3-kinase), Akt (protein kinase B) phosphorylation, JNK (c-jun NH2-terminal kinase) activation and IRS-1ser307 (serine 307 of IRS-1) phosphorylation were evaluated by immunoprecipitation and immunoblotting. LSD increased BW, visceral adiposity, blood glucose, insulin, leptin, plasma ANGIO II and its content in BAT. Otherwise, LSD decreased food intake, energy expenditure, UCP-1 expression, adiponectin and ANGIO II content in WAT. Motor activity was not influenced by the dietary salt content. In LSD, a decreasing in IR/PI-3K/Akt/Foxo1 was observed in liver and muscle and an increase in this pathway was showed in adipose tissue. JNK activity and IRS-1ser307 phosphorylation were higher in liver and muscle. In conclusion, LSD induced obesity and insulin resistance due to changes in energy expenditure, SRA and insulin signaling. The INS-R is tissuespecific and is accompanied by JNK activation and IRS-1ser307 phosphorylation.
|
56 |
Efeito in vitro do deidroepiandrosterona (DHEA) sobre a via IRS/PI3-K/Akt e secreção de insulina em ilhotas pancreáticas de ratos. / Effect in vitro of dehydroepiandrosterone (DHEA) on IRS/PI3-K/Akt pathway and insulin secretion on rats pancreatic islets.João Paulo Gabriel Camporez 28 April 2008 (has links)
A administração de deidroepiandrosterona (DHEA) tem resultado em efeitos anti-diabetogênicos em animais de experimentação e no homem. Assim, o objetivo desse trabalho é avaliar o efeito do DHEA in vitro na expressão protéica do IR, do IRS-1, IRS-2, PI3-K, Akt, ERK-1/2; na expressão gênica do PDX-1, do PGC-1, da insulina, do GLUT-2 e da glicocinase; e avaliar a secreção estática de insulina de ilhotas pancreáticas de ratos. O cultivo das ilhotas por 24 horas com DHEA, não induziu nenhuma alteração tanto na expressão das proteínas quanto na secreção estática de insulina estimulada por glicose. Ocorreu aumento da fosforilação de ERK-1/2 e na expressão gênica do PGC-1. As células RINm5F, cultivadas por 72 horas com DHEA, apresentaram aumento da expressão total de IRS-1 e IRS-2. Concluímos, que 24 horas de cultura com ilhotas não é tempo suficiente para observar nenhuma alteração induzida pelo DHEA, na secreção de insulina, e na expressão das proteínas da via IRS/PI3-K/Akt. Células RINm5F podem ser um modelo alternativo para investigar os efeitos diretos do DHEA. / The dehydroepiandrosterone (DHEA) administration has resulted in reduction of abdominal fat and protection against insulin resistance from experimental animals and humans. So, the purpose of this project is measure the in vitro effects from DHEA: on protein expression of insulin receptor, the proteins IRS-1, IRS-2, PI3-K, Akt, and ERK-1/2; on gene expression of transcriptional factors PDX-1 and PGC-1, insulin, glucose transport GLUT-2 and glicocinase; and to measure the static insulin secretion, on cultured pancreatic islets of the rat. The culture of pancreatic islet for 24 hours with DHEA, did not induce nothing alteration on protein expression of the IR, IRS-1, IRS-2, PI3-K, Akt-1 and ERK-1/2, and static insulin secretion induced by glucose. However, happened increase ERK-1/2 phosphorylation and PGC-1 gene expression. The RINm5F cells, cultured by 72 hours, showed increase of the IRS-1 and IRS-2 expression. We conclude that 24 hours of the pancreatic islets culture are not sufficient time to look any alteration induced by DHEA, on insulin secretion, and on protein expression involved on IRS/PI3-K/Akt pathway. RINm5F cells can be an alternative model to research the direct effects from DHEA.
|
57 |
Model-Based Hypothesis Testing in Biomedicine : How Systems Biology Can Drive the Growth of Scientific KnowledgeJohansson, Rikard January 2017 (has links)
The utilization of mathematical tools within biology and medicine has traditionally been less widespread compared to other hard sciences, such as physics and chemistry. However, an increased need for tools such as data processing, bioinformatics, statistics, and mathematical modeling, have emerged due to advancements during the last decades. These advancements are partly due to the development of high-throughput experimental procedures and techniques, which produce ever increasing amounts of data. For all aspects of biology and medicine, these data reveal a high level of inter-connectivity between components, which operate on many levels of control, and with multiple feedbacks both between and within each level of control. However, the availability of these large-scale data is not synonymous to a detailed mechanistic understanding of the underlying system. Rather, a mechanistic understanding is gained first when we construct a hypothesis, and test its predictions experimentally. Identifying interesting predictions that are quantitative in nature, generally requires mathematical modeling. This, in turn, requires that the studied system can be formulated into a mathematical model, such as a series of ordinary differential equations, where different hypotheses can be expressed as precise mathematical expressions that influence the output of the model. Within specific sub-domains of biology, the utilization of mathematical models have had a long tradition, such as the modeling done on electrophysiology by Hodgkin and Huxley in the 1950s. However, it is only in recent years, with the arrival of the field known as systems biology that mathematical modeling has become more commonplace. The somewhat slow adaptation of mathematical modeling in biology is partly due to historical differences in training and terminology, as well as in a lack of awareness of showcases illustrating how modeling can make a difference, or even be required, for a correct analysis of the experimental data. In this work, I provide such showcases by demonstrating the universality and applicability of mathematical modeling and hypothesis testing in three disparate biological systems. In Paper II, we demonstrate how mathematical modeling is necessary for the correct interpretation and analysis of dominant negative inhibition data in insulin signaling in primary human adipocytes. In Paper III, we use modeling to determine transport rates across the nuclear membrane in yeast cells, and we show how this technique is superior to traditional curve-fitting methods. We also demonstrate the issue of population heterogeneity and the need to account for individual differences between cells and the population at large. In Paper IV, we use mathematical modeling to reject three hypotheses concerning the phenomenon of facilitation in pyramidal nerve cells in rats and mice. We also show how one surviving hypothesis can explain all data and adequately describe independent validation data. Finally, in Paper I, we develop a method for model selection and discrimination using parametric bootstrapping and the combination of several different empirical distributions of traditional statistical tests. We show how the empirical log-likelihood ratio test is the best combination of two tests and how this can be used, not only for model selection, but also for model discrimination. In conclusion, mathematical modeling is a valuable tool for analyzing data and testing biological hypotheses, regardless of the underlying biological system. Further development of modeling methods and applications are therefore important since these will in all likelihood play a crucial role in all future aspects of biology and medicine, especially in dealing with the burden of increasing amounts of data that is made available with new experimental techniques. / Användandet av matematiska verktyg har inom biologi och medicin traditionellt sett varit mindre utbredd jämfört med andra ämnen inom naturvetenskapen, såsom fysik och kemi. Ett ökat behov av verktyg som databehandling, bioinformatik, statistik och matematisk modellering har trätt fram tack vare framsteg under de senaste decennierna. Dessa framsteg är delvis ett resultat av utvecklingen av storskaliga datainsamlingstekniker. Inom alla områden av biologi och medicin så har dessa data avslöjat en hög nivå av interkonnektivitet mellan komponenter, verksamma på många kontrollnivåer och med flera återkopplingar både mellan och inom varje nivå av kontroll. Tillgång till storskaliga data är emellertid inte synonymt med en detaljerad mekanistisk förståelse för det underliggande systemet. Snarare uppnås en mekanisk förståelse först när vi bygger en hypotes vars prediktioner vi kan testa experimentellt. Att identifiera intressanta prediktioner som är av kvantitativ natur, kräver generellt sett matematisk modellering. Detta kräver i sin tur att det studerade systemet kan formuleras till en matematisk modell, såsom en serie ordinära differentialekvationer, där olika hypoteser kan uttryckas som precisa matematiska uttryck som påverkar modellens output. Inom vissa delområden av biologin har utnyttjandet av matematiska modeller haft en lång tradition, såsom den modellering gjord inom elektrofysiologi av Hodgkin och Huxley på 1950‑talet. Det är emellertid just på senare år, med ankomsten av fältet systembiologi, som matematisk modellering har blivit ett vanligt inslag. Den något långsamma adapteringen av matematisk modellering inom biologi är bl.a. grundad i historiska skillnader i träning och terminologi, samt brist på medvetenhet om exempel som illustrerar hur modellering kan göra skillnad och faktiskt ofta är ett krav för en korrekt analys av experimentella data. I detta arbete tillhandahåller jag sådana exempel och demonstrerar den matematiska modelleringens och hypotestestningens allmängiltighet och tillämpbarhet i tre olika biologiska system. I Arbete II visar vi hur matematisk modellering är nödvändig för en korrekt tolkning och analys av dominant-negativ-inhiberingsdata vid insulinsignalering i primära humana adipocyter. I Arbete III använder vi modellering för att bestämma transporthastigheter över cellkärnmembranet i jästceller, och vi visar hur denna teknik är överlägsen traditionella kurvpassningsmetoder. Vi demonstrerar också frågan om populationsheterogenitet och behovet av att ta hänsyn till individuella skillnader mellan celler och befolkningen som helhet. I Arbete IV använder vi matematisk modellering för att förkasta tre hypoteser om hur fenomenet facilitering uppstår i pyramidala nervceller hos råttor och möss. Vi visar också hur en överlevande hypotes kan beskriva all data, inklusive oberoende valideringsdata. Slutligen utvecklar vi i Arbete I en metod för modellselektion och modelldiskriminering med hjälp av parametrisk ”bootstrapping” samt kombinationen av olika empiriska fördelningar av traditionella statistiska tester. Vi visar hur det empiriska ”log-likelihood-ratio-testet” är den bästa kombinationen av två tester och hur testet är applicerbart, inte bara för modellselektion, utan också för modelldiskriminering. Sammanfattningsvis är matematisk modellering ett värdefullt verktyg för att analysera data och testa biologiska hypoteser, oavsett underliggande biologiskt system. Vidare utveckling av modelleringsmetoder och tillämpningar är därför viktigt eftersom dessa sannolikt kommer att spela en avgörande roll i framtiden för biologi och medicin, särskilt när det gäller att hantera belastningen från ökande datamängder som blir tillgänglig med nya experimentella tekniker.
|
58 |
Purinergic Signaling and Autophagy Regulate the Secretion of High-Density Lipoprotein and Hepatic LipaseChatterjee, Cynthia January 2013 (has links)
Dyslipidemia can be a comorbidity of both insulin-resistance and atherosclerosis. Hypertriglyceridemia is common in hyperglycemia and is associated with hypoalphalipoproteinemia (low HDL) and with altered nucleotide or purinergic signaling. We therefore hypothesized that extracellular nucleotides may affect hepatic lipoprotein metabolism. Our studies confirm this view and show that nucleotides regulate cellular proteolytic pathways in liver cells and thereby control lipoprotein secretion and their metabolism by hepatic lipase (HL).
Treatment of liver cells with the nucleotide, adenosine diphosphate (ADP), stimulates VLDL-apoB100 and apoE secretion, but blocks HDL-apoA-I and HL secretion. ADP functions like a proteasomal inhibitor to block proteasomal degradation and stimulate apoB100 secretion. Blocking the proteosome is known to activate autophagic pathways. The nucleotide consequently stimulates autophagic degradation in liver cells and increases cellular levels of the autophagic proteins, LC3 and p62. Confocal studies show that ADP increases cellular LC3 levels and promotes co-localization of LC3 and apoA-I in an autophagosomal degradation compartment. ADP acts through the G-protein coupled receptor, P2Y13, to stimulate autophagy and block both HDL and HL secretion. Overexpression of P2Y13 increases cellular LC3 levels and blocks the induction of both HDL and HL secretion, while P2Y13 siRNA reduce LC3 protein levels and cause up to a ten-fold stimulation in HDL and HL secretion. P2Y13 gene expression regulates autophagy through the insulin receptor (IR-β). A reduction in P2Y13 expression increases the phosphorylation of IR-β and protein kinase B (Akt) >3-fold, while increasing P2Y13 expression inhibits the activation of IR-β and Akt. Experiments with epitope-labeled apoA-I and HL show that activation of purinergic pathways has no effect on the internalization and degradation of extracellular apoA-I and HL, which confirms the view that nucleotides primarily impact intracellular protein transport and degradation. In conclusion, elevated blood glucose levels may promote dyslipidemia by stimulating purinergic signaling through P2Y13 and IR-β and perturbing the intracellular degradation and secretion of both HDL and VLDL.
|
59 |
Novel roles of sterol regulatory element-binding protein-1 in liverJideonwo, Victoria N. 26 April 2016 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Sterol Regulatory Element Binding Protein-1 (SREBP-1) is a conserved transcription factor of the basic helix-loop-helix leucine zipper family (bHLH-Zip) that primarily regulates glycolytic and lipogenic enzymes such as L-pyruvate kinase, acetyl-CoA carboxylase, fatty acid synthase, stearoyl-CoA desaturase 1, and mitochondrial glycerol-3-phosphate acyltransferase 1. SREBP-1c activity is higher in the liver of human obese patients, as well as ob/ob and db/db mouse models of obesity and type 2 diabetes, underscoring the role of this transcription factor as a contributor to hepatic steatosis and insulin resistance. Nonetheless, SREBP-1 deficient ob/ob mice, do not display improved glycemia despite a significant decrease in hepatic lipid accumulation, suggesting that SREBP-1 might play a role at regulating carbohydrate metabolism. By silencing SREBP-1 in the liver of normal and type 2 diabetes db/db mice, we showed that indeed, SREBP-1 is needed for appropriate regulation of glycogen synthesis and gluconeogenesis enzyme gene expression. Depleting SREBP-1 activity more than 90%, resulted in a significant loss of glycogen deposition and increased expression of Pck1 and G6pc. Hence, the benefits of reducing de novo lipogenesis in db/db mice were offset by the negative impact on gluconeogenesis and glycogen synthesis. Some studies had also indicated that SREBP-1 regulates the insulin signaling pathway, through regulation of IRS2 and a subunit of the PI3K complex, p55g. To gain insight on the consequences of silencing SREBP-1 on insulin sensitivity, we analyzed the insulin signaling and mTOR pathways, as both are interconnected through feedback mechanisms. These studies suggest that SREBP-1 regulates S6K1, a downstream effector of mTORC1, and a key molecule to activate the synthesis of protein. Furthermore, these analyses revealed that depletion of SREBP-1 leads to reduced insulin sensitivity. Overall, our data indicates that SREBP-1 regulates pathways important for the fed state, including lipogenesis, glycogen and protein synthesis, while inhibiting gluconeogenesis. Therefore, SREBP-1 coordinates multiple aspects of the anabolic response in response to nutrient abundance. These results are in agreement with emerging studies showing that SREBP-1 regulates a complex network of genes to coordinate metabolic responses needed for cell survival and growth, including fatty acid metabolism; phagocytosis and membrane biosynthesis; insulin signaling; and cell proliferation.
|
60 |
Functional in vivo characterization of Neprilysin as a central regulator of insulin signaling and muscle contraction in Drosophila melanogasterSchiemann, Ronja Thea 14 October 2022 (has links)
Peptides play pivotal roles in the regulation of various physiological processes. As neuropeptides or peptide hormones, they can bind to a range of receptors and thereby trigger the activation of different pathways, including insulin signaling. Another central functionality is facilitated by the action of the as regulins summarized transmembrane micropeptides. By binding to the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA), the regulins control Ca2+ homeostasis and muscle contraction. With the ongoing identification of novel modulatory micropeptides encoded by small open reading frames, the urgency to understand peptide-dependent regulatory networks rises. In this regard, especially impact and physiological relevance exerted by the enzymatic inactivation of the mature, biologically active peptides are far from completely understood.
Neprilysins are metalloendopeptidases expressed throughout the animal kingdom. Based on their broad substrate specificity, the activity of neprilysins is crucial for the modulation of multiple peptide-dependent processes. This work aimed to identify new peptide substrates of the Drosophila melanogaster Neprilysin 4 (Nep4) and investigate the enzyme's physiological impact on the affected regulatory mechanisms.
The first part of the work could identify 16 novel Nep4 peptide substrates that play essential roles in insulin signaling and the regulation of food intake: allatostatin A1-A4, adipokinetic hormone, corazonin, diuretic hormone 31, drosulfakinin 1 and 2, leucokinin, two short neuropeptide F peptides, and tachykinin 1-4. Thereby, aberrant expression of Nep4 leads to severe phenotypes linked to misregulation of insulin signaling, including reduced body size and weight, compromised food intake, and a characteristic shift in metabolomic composition.
To further investigate and understand the complex functionality of the newly discovered Nep4 substrates, these peptides were tested for their ability to modulate the Drosophila heartbeat. A combined in vitro/in vivo screen revealed that the tested substrates exert chronotropic as well as inotropic effects, rendering the peptides as essential novel modulators of the heartbeat in Drosophila.
The main project of this thesis was based on the initial finding that animals with Nep4 overexpression exhibit severe impairments of body wall muscle and heart functionality. By applying various experiments, including analyses of muscle and heart contraction, measurement of Ca2+ transients, pull-down studies, STED super-resolution microscopy, and mass spectrometry, Neprilysin 4 was identified as a novel modulator of SERCA activity. The molecular underpinning of this regulatory mechanism is the Nep4 mediated cleavage and inactivation of Drosophila SERCA-inhibitory Sarcolamban micropeptides SCLA and SCLB. Strikingly, cleavage experiments using the mammalian neprilysin and apparent colocalization of Neprilysin and SERCA in human heart tissue indicate evolutionary conservation of this mechanism.
In summary, this work could identify a range of so far unknown Nep4 substrates and thereby point out the critical roles these class of enzymes plays in insulin signaling as well as the physiology of muscle and heart contraction.
|
Page generated in 0.0971 seconds