• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 18
  • 3
  • Tagged with
  • 51
  • 51
  • 30
  • 28
  • 26
  • 25
  • 24
  • 24
  • 14
  • 14
  • 12
  • 12
  • 11
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Logico-Numerical Verification Methods for Discrete and Hybrid Systems / Méthodes logico-numériques pour la vérification des systèmes discrets et hybrides

Schrammel, Peter 18 October 2012 (has links)
Cette thèse étudie la vérification automatique de propriétés de sûreté de systèmes logico-numériques discrets ou hybrides. Ce sont des systèmes ayant des variables booléennes et numériques et des comportements discrets et continus. Notre approche est fondée sur l'analyse statique par interprétation abstraite. Nous adressons les problèmes suivants : les méthodes d'interprétation abstraite numériques exigent l'énumération des états booléens, et par conséquent, ils souffrent du probléme d'explosion d'espace d'états. En outre, il y a une perte de précision due à l'utilisation d'un opérateur d'élargissement afin de garantir la terminaison de l'analyse. Par ailleurs, nous voulons rendre les méthodes d'interprétation abstraite accessibles à des langages de simulation hybrides. Dans cette thèse, nous généralisons d'abord l'accélération abstraite, une méthode qui améliore la précision des invariants numériques inférés. Ensuite, nous montrons comment étendre l'accélération abstraite et l'itération de max-stratégies à des programmes logico-numériques, ce qui aide à améliorer le compromis entre l'efficacité et la précision. En ce qui concerne les systèmes hybrides, nous traduisons le langage de programmation synchrone et hybride Zelus vers les automates hybrides logico-numériques, et nous étendons les méthodes d'analyse logico-numérique aux systèmes hybrides. Enfin, nous avons mis en oeuvre les méthodes proposées dans un outil nommé ReaVer et nous fournissons des résultats expérimentaux. En conclusion, cette thèse propose une approche unifiée à la vérification de systèmes logico-numériques discrets et hybrides fondée sur l'interprétation abstraite qui est capable d'intégrer des méthodes d'interprétation abstraite numériques sophistiquées tout en améliorant le compromis entre l'efficacité et la précision. / This thesis studies the automatic verification of safety properties of logico-numerical discrete and hybrid systems. These systems have Boolean and numerical variables and exhibit discrete and continuous behavior. Our approach is based on static analysis using abstract interpretation. We address the following issues: Numerical abstract interpretation methods require the enumeration of the Boolean states, and hence, they suffer from the state space explosion problem. Moreover, there is a precision loss due to widening operators used to guarantee termination of the analysis. Furthermore, we want to make abstract interpretation-based analysis methods accessible to simulation languages for hybrid systems. In this thesis, we first generalize abstract acceleration, a method that improves the precision of the inferred numerical invariants. Then, we show how to extend abstract acceleration and max-strategy iteration to logico-numerical programs while improving the trade-off between efficiency and precision. Concerning hybrid systems, we translate the Zelus hybrid synchronous programming language to logico-numerical hybrid automata and extend logico-numerical analysis methods to hybrid systems. Finally, we implemented the proposed methods in ReaVer, a REActive System VERification tool, and provide experimental results. Concluding, this thesis proposes a unified approach to the verification of discrete and hybrid logico-numerical systems based on abstract interpretation, which is capable of integrating sophisticated numerical abstract interpretation methods while successfully trading precision for efficiency.
42

Constraint modelling and solving of some verification problems / Modélisation et résolution par contraintes de problèmes de vérification

Bart, Anicet 17 October 2017 (has links)
La programmation par contraintes offre des langages et des outils permettant de résoudre des problèmes à forte combinatoire et à la complexité élevée tels que ceux qui existent en vérification de programmes. Dans cette thèse nous résolvons deux familles de problèmes de la vérification de programmes. Dans chaque cas de figure nous commençons par une étude formelle du problème avant de proposer des modèles en contraintes puis de réaliser des expérimentations. La première contribution concerne un langage réactif synchrone représentable par une algèbre de diagramme de blocs. Les programmes utilisent des flux infinis et modélisent des systèmes temps réel. Nous proposons un modèle en contraintes muni d’une nouvelle contrainte globale ainsi que ses algorithmes de filtrage inspirés de l’interprétation abstraite. Cette contrainte permet de calculer des sur-approximations des valeurs des flux des diagrammes de blocs. Nous évaluons notre processus de vérification sur le langage FAUST, qui est un langage dédié à la génération de flux audio. La seconde contribution concerne les systèmes probabilistes représentés par des chaînes de Markov à intervalles paramétrés, un formalisme de spécification qui étend les chaînes de Markov. Nous proposons des modèles en contraintes pour vérifier des propriétés qualitatives et quantitatives. Nos modèles dans le cas qualitatif améliorent l’état de l’art tandis que ceux dans le cas quantitatif sont les premiers proposés à ce jour. Nous avons implémenté nos modèles en contraintes en problèmes de programmation linéaire en nombres entiers et en problèmes de satisfaction modulo des théories. Les expériences sont réalisées à partir d’un jeu d’essais de la bibliothèque PRISM. / Constraint programming offers efficient languages andtools for solving combinatorial and computationally hard problems such as the ones proposed in program verification. In this thesis, we tackle two families of program verification problems using constraint programming.In both contexts, we first propose a formal evaluation of our contributions before realizing some experiments.The first contribution is about a synchronous reactive language, represented by a block-diagram algebra. Such programs operate on infinite streams and model real-time processes. We propose a constraint model together with a new global constraint. Our new filtering algorithm is inspired from Abstract Interpretation. It computes over-approximations of the infinite stream values computed by the block-diagrams. We evaluated our verification process on the FAUST language (a language for processing real-time audio streams) and we tested it on examples from the FAUST standard library. The second contribution considers probabilistic processes represented by Parametric Interval Markov Chains, a specification formalism that extends Markov Chains. We propose constraint models for checking qualitative and quantitative reachability properties. Our models for the qualitative case improve the state of the art models, while for the quantitative case our models are the first ones. We implemented and evaluated our verification constraint models as mixed integer linear programs and satisfiability modulo theory programs. Experiments have been realized on a PRISM based benchmark.
43

Formal and exact reduction for differential models of signalling pathways in rule-based languages / Réduction formelle et exacte de modèles différentiels de voies de signalisation en Kappa

Camporesi, Ferdinanda 23 January 2017 (has links)
Le comportement d'une cellule dépend de sa capacité à recevoir, propager et intégrer des signaux, constituant ainsi des voies de signalisations. Les protéines s'associent entre elles sur des sites de liaisons, puis modifient la structure spatiale des protéines voisines, ce qui a pour effet de cacher ou de découvrir leurs autres sites de liaisons, et donc d'empêcher ou de faciliter d'autres interactions. En raison du grand nombre de différents complexes bio-moléculaires, nous ne pouvons pas écrire ou générer les systèmes différentiels sous-jacents. Les langages de réécritures de graphes à sites offrent un bon moyen de décrire ces systèmes complexes. Néanmoins la complexité combinatoire resurgit lorsque l'on cherche à calculer de manière effective ce comportement. Ceci justifie l'utilisation d'abstractions. Nous proposons deux méthodes pour réduire la taille des modèles de voies de signalisation, décrits en Kappa. Ces méthodes utilisent respectivement la présence de symétries parmi certains sites et le fait que certaines corrélations entre l'état de différentes parties des complexes biomoléculaires n'ont pas d'impact sur la dynamique du système global. Des sites qui ont la même capacité d'interaction sont liés par une relation de symétrie. Nous montrons que cette relation induit une bisimulation qui peut être utilisée pour réduire la taille du modèle initial. L'analyse du flot d'information détecte les parties du système qui influencent le comportement de chaque site. Ceci nous autorise à couper les espèces moléculaires en petits morceaux pour écrire un nouveau système. Enfin, nous montrons comment raffiner cette analyse pour tenir compte d'information contextuelle. Les deux méthodes peuvent être combinées. La solution analytique du modèle réduit est la projection exacte de la solution originelle. Le calcul du modèle réduit se fait au niveau des règles, en évitant l'exécution du modèle initial. / The behaviour of a cell is driven by its capability to receive, propagate and communicate signals. Proteins can bind together on some binding sites. Post-translational modifications can reveal or hide some sites, so new interactions can be allowed or existing ones can be inhibited. Due to the huge number of different bio-molecular complexes, we can no longer derive or integrate ODE models. A compact way to describe these systems is supplied by rule-based languages. However combinatorial complexity raises again when one attempt to describe formally the behaviour of the models. This motivates the use of abstractions. We propose two methods to reduce the size of the models, that exploit respectively the presence of symmetries between sites and the lack of correlation between different parts of the system. The symmetries relates pairs of sites having the same capability of interactions. We show that this relation induces a bisimulation which can be used to reduce the size of the original model. The information flow analysis detects, for each site, which parts of the system influence its behaviour. This allows us to cut the molecular species in smaller pieces and to write a new system. Moreover we show how this analysis can be tuned with respect to a context. Both approaches can be combined. The analytical solution of the reduced model is the exact projection of the original one. The computation of the reduced model is performed at the level of rules, without the need of executing the original model.
44

Static analysis by abstract interpretation of functional temporal properties of programs / Analyse statique par interprétation abstraite de propriétés temporelles fonctionnelles des programmes

Urban, Caterina 09 July 2015 (has links)
L’objectif général de cette thèse est le développement de méthodes mathématiques correctes et efficaces en pratique pour prouver automatiquement la correction de logiciels. Plus précisément, cette thèse est fondée sur la théorie de l’interprétation abstraite, un cadre mathématique puissant pour l’approximation du comportement des programmes. En particulier, cette thèse se concentre sur la preuve des propriétés de vivacité des programmes, qui représentent des conditions qui doivent être réalisés ultimement ou de manière répétée pendant l’exécution du programme. La terminaison des programmes est la propriété de vivacité la plus fréquemment considérée. Cette thèse conçoit des nouvelles approximations, afin de déduire automatiquement des conditions suffisantes pour la terminaison des programmes et synthétiser des fonctions de rang définies par morceaux, qui fournissent des bornes supérieures sur le temps d’attente avant la terminaison. Les approximations sont paramétriques dans le choix entre l’expressivité et le coût des approximations sous-jacentes, qui maintiennent des informations sur l’ensemble des valeurs possibles des variables du programme ainsi que les relations numériques possibles entre elles. Cette thèse développe également un cadre d’interprétation abstraite pour prouver des propriétés de vivacité, qui vient comme une généralisation du cadre proposé pour la terminaison. En particulier, le cadre est dédié à des propriétés de vivacité exprimées dans la logique temporelle, qui sont utilisées pour s’assurer qu’un événement souhaitable se produit une fois ou une infinité de fois au cours de l’exécution du programme. Comme pour la terminaison,des fonctions de rang définies par morceaux sont utilisées pour déduire des préconditions suffisantes pour ces propriétés, et fournir des bornes supérieures sur le temps d’attente avant un événement souhaitable. Les résultats présentés dans cette thèse ont été mis en œuvre dans un prototype d’analyseur. Les résultats expérimentaux montrent qu’il donne de bons résultats sur une grande variété de programmes, il est compétitif avec l’état de l’art, et il est capable d’analyser des programmes qui sont hors de la portée des méthodes existantes. / The overall aim of this thesis is the development of mathematically sound and practically efficient methods for automatically proving the correctness of computer software. More specifically, this thesis is grounded in the theory of abstract interpretation, a powerful mathematical framework for approximating the behavior of programs. In particular, this thesis focuses on provingprogram liveness properties, which represent requirements that must be eventually or repeatedly realized during program execution. Program termination is the most prominent liveness property. This thesis designs new program approximations, in order to automatically infer sufficient preconditions for program termination and synthesize so called piecewisedefined ranking functions, which provide upper bounds on the waiting time before termination. The approximations are parametric in the choice between the expressivity and the cost of the underlying approximations, which maintain information about the set of possible values of the program variables along with the possible numerical relationships between them. This thesis also contributes an abstract interpretation framework for proving liveness properties, which comes as a generalization of the framework proposedfor termination. In particular, the framework is dedicated to liveness properties expressed in temporal logic, which are used to ensure that some desirable event happens once or infinitely many times during program execution. As for program termination, piecewise-defined ranking functions are used to infer sufficient preconditions for these properties, and to provide upper boundson the waiting time before a desirable event. The results presented in this thesis have been implemented into a prototype analyzer. Experimental results show that it performs well on a wide variety of benchmarks, it is competitive with the state of the art, and is able to analyze programs that are out of the reach of existing methods.
45

Computation over partial information : a principled approach to accurate partial evaluation

Sabourin, Ian 07 1900 (has links)
On est habitué à penser comme suit à un programme qui exécute: une donnée entre (un input), un moment passe, et un résultat ressort. On assume tacitement de l'information complète sur le input, le résultat, et n'importe quels résultats intermédiaires. Dans ce travail-ci, on demande ce que ça voudrait dire d'exécuter un programme sur de l'information partielle. Comme réponse possible, on introduit l'interprétation partielle, notre contribution principale. Au lieu de considérer un seul input, on considère un ensemble de inputs possibles. Au lieu de calculer un seul résultat, on calcule un ensemble de résultats possibles, et des ensembles de résultats intermédiaires possibles. On approche l'interprétation partielle à partir du problème de la spécialisation de programme: l'optimisation d'un programme pour certains inputs. Faire ça automatiquement porte historiquement le nom d'évaluation partielle. Ç'a été appliqué avec succès à plusieurs problèmes spécifiques. On croit que ça devrait être un outil de programmation commun, pour spécialiser des librairies générales pour usage spécifique - mais ce n'est pas le cas. Souvent, une implantation donnée de l'évaluation partielle ne fonctionne pas uniformément bien sur tous les programmes. Ça se prête mal à un usage commun. On voit ce manque de régularité comme un problème de précision: si l'évaluateur partiel était très précis, il trouverait la bonne spécialisation, indépendamment de notre style de programme. On propose donc une approche de principe à l'évaluation partielle, visant la précision complète, retirée d'exemples particuliers. On reformule l'évaluation partielle pour la baser sur l'interprétation partielle: le calcul sur de l'information partielle. Si on peut déterminer ce qu'on sait sur chaque donnée dans le programme, on peut décider quelles opérations peuvent être éliminées pour spécialiser le programme: les opérations dont le résultat est unique. On définit une représentation d'ensembles qui ressemble à la définition en compréhension, en mathématiques. On modifie un interpréteur pour des programmes fonctionnels, pour qu'il calcule sur ces ensembles. On utilise un solver SMT pour réaliser les opérations sur les ensembles. Pour assurer la terminaison de l'interpréteur modifié, on applique des idées de l'interprétation abstraite: le calcul de point fixe, et le widening. Notre implantation initiale produit de bons résultats, mais elle est lente pour de plus gros exemples. On montre comment l'accélérer mille fois, en dépendant moins de SMT. / We are used to the following picture of an executing program: an input is provided, the program runs for a while, and a result comes out. We tacitly assume complete information about the input, the result, and any intermediate results in between. In this work, we ask what it would mean to execute a program over partial information. As a possible answer, we introduce partial interpretation, our main contribution. Instead of considering a unique input, we consider a set of possible inputs. Instead of computing a unique result, we compute a set of possible results, and sets of possible intermediate results. We approach partial interpretation from the problem of program specialization: the optimization of a program's execution time for certain inputs. Doing this automatically is historically known as partial evaluation. Partial evaluation has been applied successfully to many specific problems. We believe it should be a mainstream programming tool, to specialize general libraries for specific use - but such a tool has not been delivered. One common problem is that a given implementation of partial evaluation is inconsistent: it does not work uniformly well on all input programs. This inconsistency makes it unsuited for mainstream use. We view this inconsistency as an accuracy problem: if the partial evaluator was very accurate, it would find the correct specialization, no matter how we present the input program. We therefore propose a principled approach to partial evaluation, aimed at complete accuracy, removed from any particular example program. We reformulate partial evaluation to root it in partial interpretation: computation over partial information. If we can determine what we know about every piece of data in the program, we can decide which operations can be removed to specialize the program: those operations whose result is uniquely known. We represent sets with a kind of mathematical set comprehension. We modify an interpreter for functional programs, to compute over these sets. We use an SMT solver (Satisfiability Modulo Theories) to perform set operations. To ensure termination of the modified interpreter, we apply ideas from abstract interpretation: fixed point computation, and widening. Our initial implementation produces good results, but it is slow for larger examples. We show how to speed it up a thousandfold, by relying less on SMT.
46

Analyse de dépendances ML pour les évaluateurs de logiciels critiques. / ML Dependency Analysis for Critical-Software Assessors

Benayoun, Vincent 16 May 2014 (has links)
Les logiciels critiques nécessitent l’obtention d’une évaluation de conformité aux normesen vigueur avant leur mise en service. Cette évaluation est obtenue après un long travaild’analyse effectué par les évaluateurs de logiciels critiques. Ces derniers peuvent être aidéspar des outils utilisés de manière interactive pour construire des modèles, en faisant appel àdes analyses de flots d’information. Des outils comme SPARK-Ada existent pour des sous-ensembles du langage Ada utilisés pour le développement de logiciels critiques. Cependant,des langages émergents comme ceux de la famille ML ne disposent pas de tels outils adaptés.La construction d’outils similaires pour les langages ML demande une attention particulièresur certaines spécificités comme les fonctions d’ordre supérieur ou le filtrage par motifs. Cetravail présente une analyse de flot d’information pour de tels langages, spécialement conçuepour répondre aux besoins des évaluateurs. Cette analyse statique prend la forme d’uneinterprétation abstraite de la sémantique opérationnelle préalablement enrichie par desinformations de dépendances. Elle est prouvée correcte vis-à-vis d’une définition formellede la notion de dépendance, à l’aide de l’assistant à la preuve Coq. Ce travail constitue unebase théorique solide utilisable pour construire un outil efficace pour l’analyse de toléranceaux pannes. / Critical software needs to obtain an assessment before commissioning in order to ensure compliance tostandards. This assessment is given after a long task of software analysis performed by assessors. Theymay be helped by tools, used interactively, to build models using information-flow analysis. Tools likeSPARK-Ada exist for Ada subsets used for critical software. But some emergent languages such as thoseof the ML family lack such adapted tools. Providing similar tools for ML languages requires specialattention on specific features such as higher-order functions and pattern-matching. This work presentsan information-flow analysis for such a language specifically designed according to the needs of assessors.This analysis is built as an abstract interpretation of the operational semantics enriched with dependencyinformation. It is proved correct according to a formal definition of the notion of dependency using theCoq proof assistant. This work gives a strong theoretical basis for building an efficient tool for faulttolerance analysis.
47

Optimisation et jeux appliqués à l'analyse statique de programmes par interprétation abstraite

Adje, Assalé 29 April 2011 (has links) (PDF)
L'interprétation abstraite est une méthode générale qui permet de déterminer de manière automatique des invariants de programmes. Cette méthode conduit à résoudre un problème de point fixe non linéaire de grande taille mais qui possède des propriétés de monotonie. Ainsi, déterminer des bornes sur les valeurs prises par une variable au cours de l'exécution d'un programme, est un problème de point fixe équivalent à un problème de jeu à deux joueurs, à somme nulle et avec options d'arrêt. Cette dernière observation explique la mise en oeuvre d'algorithmes d'itérations sur les politiques. Dans un premier temps, nous avons généralisé les domaines numériques polyédriques par un domaine numérique abstrait permettant de représenter des invariants non-linéaires. Nous avons défini une fonction sémantique abstraite sur ce domaine à partir d'une correspondance de Galois. Cependant, l'évaluation de celle-ci est aussi difficile qu'un problème d'optimisation globale non-convexe. Cela nous a amené à définir une fonction sémantique relâchée, construite à partir de la théorie de la dualité, qui sur-approxime de la fonction sémantique abstraite. La théorie de la dualité a également motivé une construction d'une itération sur les politiques dynamique pour calculer des invariants numériques. En pratique pour des programmes écrits en arithmétique affine, nous avons combiné la relaxation de Shor et l'information des fonctions de Lyapunov quadratique pour évaluer la fonction sémantique relâchée et ainsi générer des invariants numériques sous forme d'ellipsoïdes tronquées. Le deuxième travail concerne l'itération sur les politiques et le calcul du plus petit point fixe qui fournit l'invariant le plus précis. Nous avons raffiné l'itération sur les politiques afin de produire le plus petit point fixe dans le cas des jeux stochastiques. Ce raffinement repose sur des techniques de théorie de Perron-Frobenius non-linéaire. En effet, la fonction sémantique abstraite sur les intervalles peut être vue comme un opérateur de Shapley en information parfaite: elle est semidifférentiable. L'approche conjointe de la semidifférentielle et des rayons spectraux non linéaires nous a permis, dans le cas des contractions au sens large de caractériser le plus petit point fixe. Cette approche mène à un critère d'arrêt pour l'itération sur politique dans le cas des fonctions affines par morceaux contractantes au sens large. Quand le point fixe est non minimal, le problème consiste à exhiber un point fixe négatif non nul de la semidifférentielle. Ce vecteur conduit à une nouvelle politique qui fournit un point fixe strictement plus petit que le point fixe courant. Cette approche a été appliquée à quelques exemples de jeux stochastiques à paiements positifs et de vérification de programmes.
48

Static analysis of program by Abstract Interpretation and Decision Procedures / Analyse statique par interprétation abstraite et procédures de décision

Henry, Julien 13 October 2014 (has links)
L'analyse statique de programme a pour but de prouver automatiquement qu'un programme vérifie certaines propriétés. L'interprétation abstraite est un cadre théorique permettant de calculer des invariants de programme. Ces invariants sont des propriétés sur les variables du programme vraies pour toute exécution. La précision des invariants calculés dépend de nombreux paramètres, en particulier du domaine abstrait et de l'ordre d'itération utilisés pendant le calcul d'invariants. Dans cette thèse, nous proposons plusieurs extensions de cette méthode qui améliorent la précision de l'analyse.Habituellement, l'interprétation abstraite consiste en un calcul de point fixe d'un opérateur obtenu après convergence d'une séquence ascendante, utilisant un opérateur appelé élargissement. Le point fixe obtenu est alors un invariant. Il est ensuite possible d'améliorer cet invariant via une séquence descendante sans élargissement. Nous proposons une méthode pour améliorer un point fixe après la séquence descendante, en recommençant une nouvelle séquence depuis une valeur initiale choisie judiscieusement. L'interprétation abstraite peut égalementêtre rendue plus précise en distinguant tous les chemins d'exécution du programme, au prix d'une explosion exponentielle de la complexité. Le problème de satisfiabilité modulo théorie (SMT), dont les techniques de résolution ont été grandement améliorée cette décennie, permettent de représenter ces ensembles de chemins implicitement. Nous proposons d'utiliser cette représentation implicite à base de SMT et de les appliquer à des ordres d'itération de l'état de l'art pour obtenir des analyses plus précises.Nous proposons ensuite de coupler SMT et interprétation abstraite au sein de nouveaux algorithmes appelés Modular Path Focusing et Property-Guided Path Focusing, qui calculent des résumés de boucles et de fonctions de façon modulaire, guidés par des traces d'erreur. Notre technique a différents usages: elle permet de montrer qu'un état d'erreur est inatteignable, mais également d'inférer des préconditions aux boucles et aux fonctions.Nous appliquons nos méthodes d'analyse statique à l'estimation du temps d'exécution pire cas (WCET). Dans un premier temps, nous présentons la façon d'exprimer ce problème via optimisation modulo théorie, et pourquoi un encodage naturel du problème en SMT génère des formules trop difficiles pour l'ensemble des solveurs actuels. Nous proposons un moyen simple et efficace de réduire considérablement le temps de calcul des solveurs SMT en ajoutant aux formules certaines propriétés impliquées obtenues par analyse statique. Enfin, nous présentons l'implémentation de Pagai, un nouvel analyseur statique pour LLVM, qui calcule des invariants numériques grâce aux différentes méthodes décrites dans cette thèse. Nous avons comparé les différentes techniques implémentées sur des programmes open-source et des benchmarks utilisés par la communauté. / Static program analysis aims at automatically determining whether a program satisfies some particular properties. For this purpose, abstract interpretation is a framework that enables the computation of invariants, i.e. properties on the variables that always hold for any program execution. The precision of these invariants depends on many parameters, in particular the abstract domain, and the iteration strategy for computing these invariants. In this thesis, we propose several improvements on the abstract interpretation framework that enhance the overall precision of the analysis.Usually, abstract interpretation consists in computing an ascending sequence with widening, which converges towards a fixpoint which is a program invariant; then computing a descending sequence of correct solutions without widening. We describe and experiment with a method to improve a fixpoint after its computation, by starting again a new ascending/descending sequence with a smarter starting value. Abstract interpretation can also be made more precise by distinguishing paths inside loops, at the expense of possibly exponential complexity. Satisfiability modulo theories (SMT), whose efficiency has been considerably improved in the last decade, allows sparse representations of paths and sets of paths. We propose to combine this SMT representation of paths with various state-of-the-art iteration strategies to further improve the overall precision of the analysis.We propose a second coupling between abstract interpretation and SMT in a program verification framework called Modular Path Focusing, that computes function and loop summaries by abstract interpretation in a modular fashion, guided by error paths obtained with SMT. Our framework can be used for various purposes: it can prove the unreachability of certain error program states, but can also synthesize function/loop preconditions for which these error states are unreachable.We then describe an application of static analysis and SMT to the estimation of program worst-case execution time (WCET). We first present how to express WCET as an optimization modulo theory problem, and show that natural encodings into SMT yield formulas intractable for all current production-grade solvers. We propose an efficient way to considerably reduce the computation time of the SMT-solvers by conjoining to the formulas well chosen summaries of program portions obtained by static analysis.We finally describe the design and the implementation of Pagai,a new static analyzer working over the LLVM compiler infrastructure,which computes numerical inductive invariants using the various techniques described in this thesis.Because of the non-monotonicity of the results of abstract interpretation with widening operators, it is difficult to conclude that some abstraction is more precise than another based on theoretical local precision results. We thus conducted extensive comparisons between our new techniques and previous ones, on a variety of open-source packages and benchmarks used in the community.
49

Supervisory control of infinite state systems under partial observation / Contrôle supervisé des systèmes à états infinis sous observation partielle

Kalyon, Gabriel 26 November 2010 (has links)
A discrete event system is a system whose state space is given by a discrete set and whose state transition mechanism is event-driven i.e. its state evolution depends only on the occurrence of discrete events over the time. These systems are used in many fields of application (telecommunication networks, aeronautics, aerospace,). The validity of these systems is then an important issue and to ensure it we can use supervisory control methods. These methods consist in imposing a given specification on a system by means of a controller which runs in parallel with the original system and which restricts its behavior. In this thesis, we develop supervisory control methods where the system can have an infinite state space and the controller has a partial observation of the system (this implies that the controller must define its control policy from an imperfect knowledge of the system). Unfortunately, this problem is generally undecidable. To overcome this negative result, we use abstract interpretation techniques which ensure the termination of our algorithms by overapproximating, however, some computations. The aim of this thesis is to provide the most complete contribution it is possible to bring to this topic. Hence, we consider more and more realistic problems. More precisely, we start our work by considering a centralized framework (i.e. the system is controlled by a single controller) and by synthesizing memoryless controllers (i.e. controllers that define their control policy from the current observation received from the system). Next, to obtain better solutions, we consider the synthesis of controllers that record a part or the whole of the execution of the system and use this information to define the control policy. Unfortunately, these methods cannot be used to control an interesting class of systems: the distributed systems. We have then defined methods that allow to control distributed systems with synchronous communications (decentralized and modular methods) and with asynchronous communications (distributed method). Moreover, we have implemented some of our algorithms to experimentally evaluate the quality of the synthesized controllers. / <p><p>Un système à événements discrets est un système dont l'espace d'états est un ensemble discret et dont l'évolution de l'état courant dépend de l'occurrence d'événements discrets à travers le temps. Ces systèmes sont présents dans de nombreux domaines critiques tels les réseaux de communications, l'aéronautique, l'aérospatiale. La validité de ces systèmes est dès lors une question importante et une manière de l'assurer est d'utiliser des méthodes de contrôle supervisé. Ces méthodes associent au système un dispositif, appelé contrôleur, qui s'exécute en parrallèle et qui restreint le comportement du système de manière à empêcher qu'un comportement erroné ne se produise. Dans cette thèse, on s'intéresse au développement de méthodes de contrôle supervisé où le système peut avoir un espace d'états infini et où les contrôleurs ne sont pas toujours capables d'observer parfaitement le système; ce qui implique qu'ils doivent définir leur politique de contrôle à partir d'une connaissance imparfaite du système. Malheureusement, ce problème est généralement indécidable. Pour surmonter cette difficulté, nous utilisons alors des techniques d'interprétation abstraite qui assurent la terminaison de nos algorithmes au prix de certaines sur-approximations dans les calculs. Le but de notre thèse est de fournir la contribution la plus complète possible dans ce domaine et nous considèrons pour cela des problèmes de plus en plus réalistes. Plus précisement, nous avons commencé notre travail en définissant une méthode centralisée où le système est contrôlé par un seul contrôleur qui définit sa politique de contrôle à partir de la dernière information reçue du système. Ensuite, pour obtenir de meilleures solutions, nous avons défini des contrôleurs qui retiennent une partie ou la totalité de l'exécution du système et qui définissent leur politique de contrôle à partir de cette information. Malheureusement, ces méthodes ne peuvent pas être utilisées pour contrôler une classe intéressante de systèmes: les sytèmes distribués. Nous avons alors défini des méthodes permettant de contrôler des systèmes distribués dont les communications sont synchrones (méthodes décentralisées et modulaires) et asynchrones (méthodes distribuées). De plus, nous avons implémenté certains de nos algorithmes pour évaluer expérimentalement la qualité des contrôleurs qu'ils synthétisent. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
50

The Fixpoint checking problem: an abstraction refinement perspective

Ganty, Pierre 28 September 2007 (has links)
<P align="justify">Model-checking is an automated technique which aims at verifying properties of computer systems. A model-checker is fed with a model of the system (which capture all its possible behaviors) and a property to verify on this model. Both are given by a convenient mathematical formalism like, for instance, a transition system for the model and a temporal logic formula for the property.</P><p><p><P align="justify">For several reasons (the model-checking is undecidable for this class of model or the model-checking needs too much resources for this model) model-checking may not be applicable. For safety properties (which basically says "nothing bad happen"), a solution to this problem uses a simpler model for which model-checkers might terminate without too much resources. This simpler model, called the abstract model, over-approximates the behaviors of the concrete model. However the abstract model might be too imprecise. In fact, if the property is true on the abstract model, the same holds on the concrete. On the contrary, when the abstract model violates the property, either the violation is reproducible on the concrete model and so we found an error; or it is not reproducible and so the model-checker is said to be inconclusive. Inconclusiveness stems from the over-approximation of the concrete model by the abstract model. So a precise model yields the model-checker to conclude, but precision comes generally with an increased computational cost.</P><p><p><P align="justify">Recently, a lot of work has been done to define abstraction refinement algorithms. Those algorithms compute automatically abstract models which are refined as long as the model-checker is inconclusive. In the thesis, we give a new abstraction refinement algorithm which applies for safety properties. We compare our algorithm with previous attempts to build abstract models automatically and show, using formal proofs that our approach has several advantages. We also give several extensions of our algorithm which allow to integrate existing techniques used in model-checking such as acceleration techniques.</P><p><p><P align="justify">Following a rigorous methodology we then instantiate our algorithm for a variety of models ranging from finite state transition systems to infinite state transition systems. For each of those models we prove the instantiated algorithm terminates and provide encouraging preliminary experimental results.</P><p><br><p><br><p><P align="justify">Le model-checking est une technique automatisée qui vise à vérifier des propriétés sur des systèmes informatiques. Les données passées au model-checker sont le modèle du système (qui en capture tous les comportements possibles) et la propriété à vérifier. Les deux sont donnés dans un formalisme mathématique adéquat tel qu'un système de transition pour le modèle et une formule de logique temporelle pour la propriété.</P><p><p><P align="justify">Pour diverses raisons (le model-checking est indécidable pour cette classe de modèle ou le model-checking nécessite trop de ressources pour ce modèle) le model-checking peut être inapplicable. Pour des propriétés de sûreté (qui disent dans l'ensemble "il ne se produit rien d'incorrect"), une solution à ce problème recourt à un modèle simplifié pour lequel le model-checker peut terminer sans trop de ressources. Ce modèle simplifié, appelé modèle abstrait, surapproxime les comportements du modèle concret. Le modèle abstrait peut cependant être trop imprécis. En effet, si la propriété est vraie sur le modèle abstrait alors elle l'est aussi sur le modèle concret. En revanche, lorsque le modèle abstrait enfreint la propriété :soit l'infraction peut être reproduite sur le modèle concret et alors nous avons trouvé une erreur ;soit l'infraction ne peut être reproduite et dans ce cas le model-checker est dit non conclusif. Ceci provient de la surapproximation du modèle concret faite par le modèle abstrait. Un modèle précis aboutit donc à un model-checking conclusif mais son coût augmente avec sa précision.</P><p><P align="justify">Récemment, différents algorithmes d'abstraction raffinement ont été proposés. Ces algorithmes calculent automatiquement des modèles abstraits qui sont progressivement raffinés jusqu'à ce que leur model-checking soit conclusif. Dans la thèse, nous définissons un nouvel algorithme d'abstraction raffinement pour les propriétés de sûreté. Nous comparons notre algorithme avec les algorithmes d'abstraction raffinement antérieurs. A l'aide de preuves formelles, nous montrons les avantages de notre approche. Par ailleurs, nous définissons des extensions de l'algorithme qui intègrent d'autres techniques utilisées en model-checking comme les techniques d'accélérations.</P><p><P align="justify">Suivant une méthodologie rigoureuse, nous instancions ensuite notre algorithme pour une variété de modèles allant des systèmes de transitions finis aux systèmes de transitions infinis. Pour chacun des modèles nous établissons la terminaison de l'algorithme instancié et donnons des résultats expérimentaux préliminaires encourageants.</P><p><p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.1626 seconds