• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 3
  • Tagged with
  • 39
  • 24
  • 18
  • 16
  • 12
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Studium av stomsystem och övrigt klimatskal m.a.p. produktion och långsiktig förvaltning av passivhus / Study of structure system and building envelope of passive houses with regard to production and continuing property management

Johansson, Cimone, Klemedtson, Ida January 2010 (has links)
The passive house concept has been known for many years, but it is not yet very well known in Sweden. The increased energy requirements places greater demands on our buildings and to meet these requirements, passive houses is a good option. Svenska Bostäder have built passive houses with good results and intend to continue design some of their new buildings as passive houses. This study is meant to support Svenska Bostäder in their planning of new buildings by analyze and compare the different frameworks and building shells of passive houses. In the first chapters (1,2 and 3) we presents the conditions for passive houses and the differing objects we have examined more generally for the reader to become familiar with the concept and the objects. The subsequent chapter presents an analysis of each object partial based on the specifications from FEBY and finally, in Chapter 5, you will find a table of values where the objects are put into relation to each other and valued there by, together with a brief explanation for the table. This chapter also contains texts on the environment, design and future development which all includes our own thoughts and reflections. Finally, the gist of the whole work and our conclusion is presented and discussed. On the whole, the work has been very enlightening for us and we hope that the concept of passive houses have a wider impact in the future.
12

Glastaket : ett bärande klimatskal

Paczkowski, Michal, Lemón, Jacob January 2012 (has links)
This candidate.’s work includes designing of a house with it.’s structural components and installations. The house had to be actual with Building Regulations (Boverkets Byggregler). Beside designing of all the crucial systems necessary for completing of claimed regulations even an optional topic within building engineering had to be chosen. The task included designing of heating, ventilation, sanitation and electricity systems. Structural engineering models has been made in compliance with Eurocodes. Materials for facades, floors and roof were chosen and evaluated. As recessed portion of the work, evaluating of possibilities in designing of a glass roof was chosen. Glass roof included glass beams and transparent building envelope to achieve maximal interaction with the natural environment around the house. Result of these exciting studies on one of the most successful materials in structural engineering, beside concrete, steel and timber, has been made and presented below. The work on designing the roof was made with accordance to the designed house overall function and systems. When working with this project we learned us that the process of designing a complete house is a hard task to achieve and that all the functions and installations need accurate planning. Also, by studying properties of structural glass, we learned us a lot about that interesting material.
13

Framtidens krav på byggnaders klimatskal : – En utredning åt Sigma Civil AB

Garzon Gamboa, Alirio January 2016 (has links)
Samtidigt som kraven på energieffektivitet inom byggbranschen blir allt hårdare har klimatskalets utformning stor betydelse. Författarens uppgift är att utreda åt Sigma Civil AB hur ett verktyg som beräknar U-värden utformas samt att med hjälp av den göra en jämförande studie på yttertak och ytterväggar, med avseende på klimatskalets påfrestningar.   Andra delar som ingår i klimatskalet är grundkonstruktioner men eftersom det är ett arbete som omfattar 10 veckor avgränsas arbetet till yttertak och ytterväggar. För att arbetet skulle kunna utföras på ett bra sätt som möjligt har författaren genom litteraturstudier i form av böcker, internetbaserade sidor och olika rapporter tagit del av information som hjälpt både vid utförande av beräkningsverktyget men också vid jämförelsen av byggdelar.   Resultatet för den här studien visade att koljerntekniken på grund av sin täta struktur fungerar bäst av de takkonstruktioner som jämfördes i studien. I den analys som gjordes för väggkonstruktioner var det en yttervägg med PIR-isolering som klarade sig bäst. En av de slutsatser som jag drar av studien är att bättre isoleringsmaterial krävs för att klara framtidens krav på klimatskalet. Det andra som är viktigt att ta med sig från studien är att byggbranschen bör vara öppen för nya tekniker, som till exempel koljerntekniken och PIR-isoleringen. / While requirements increasingly become harder in the construction industry that it will be built energy efficient, buildings envelope design plays a very large part. My task is to investigate for Sigma Civil AB how a tool that calculates the U-value is formed as well as using it to make a comparative study on the roof and exterior wall, with respect for the building envelope external influences.   Another part of the building envelope is the basic designs, but because it is a work where is only 10 weeks I need to delimit to the roof and exterior walls. In order that the work could be carried out in the best possible way I did literature study in form of books, internet based pages and various reports to receive information that helped me both when I was performing the calculation tool but also doing the comparison of the building parts.   The result of this study showed that the koljern-technique because of its dense structure works best as a roof, compared to the other roofs in the study. In the analysis made for wall constructions, it was an exterior wall with PIR-insulation that worked best. One of the conclusions that I draw from this study is that better insulation needs to meet future requirements for the building envelope. The other thing that is important to take from the study is that the construction industry should be open to new technologies, such as the koljern-technique and PIR-insulation.
14

Utfackningsvägg av lättbetongblock i passivhus

Sundemo, Sörensson, Malin, Frederic January 2010 (has links)
Abstract This report intends through a case study to investigate if lightweight concrete is appropriate as main material in the outer wall of a seven storey residential building. A technical design is carried out in accordance with the definitions and requirements for passive houses, given by FEBY’s1 “Demand specification for passive houses”. A literature review is also carried out for a comparison between regular bolt wall and light weight concrete wall, with a focus on the safety of moisture. The lightweight concrete block used in the report is as a celblock produced by the company H+H Sweden AB. The methods used have resulted in compliance with requirements and recommendations from authorities. Calculations of energy, noise and moisture risk assessment has been carried out. The work has resulted in the conclusion that the lightweight concrete itself is not able to isolate in the extent necessary to obtain chosen U-value of 0,1 W/m2 ° C, without getting to thick. Therefore additional insulation is needed. There are few relevant reference objects built with only light weight concrete. A villa in Lomma, Sweden, has been designed but is not yet built. The house has no additional insulation and the climate screen consists only of light weight concrete and plaster. The multi storey building designed within this report has generally large windows, also to the north, which in passive house context is unusual. The large window areas result in greater thermal bridges around the windows and greater losses of heat through transmission. As compensation a very low U- value of 0,1 W/m2 ° C was set as a prerequisite from the start ensuring a positive energy balance. This action has proved necessary when implemented energy balance calculation resulted in the heating demand of 42 kWh/m2 per year. Maximum allowable energy for a passive house is according to FEBY under 50 kWh/m2 per year. There are several advantages identified when using light weight concrete. All problems related to moister are avoided with this completely mineral material. Light weight concrete offers good thermal insulation by its porosity. It has heat storing properties during the winters. The material is fireproof and free from chemicals. Together with additional insulation a quiet and healthy indoor environment is derived. It has been difficult to find potential risks of using concrete in the climate screen of a passive house. Passive house technology is relatively new, and passive house technology with concrete is even newer. In fact, the villa in Lomma is said to be the first in Sweden carried out in light weight concrete. A minor estimation upon the costs of a the insulated light weight concrete wall, contra a wood bolt wall has proved the light weight concrete wall to be twice as expensive. Perhaps the future will prove risks that have not yet been revealed?
15

Passivhusguiden : Guidning av skissarbetet för passivhus

Kaverén, Erik, Svensson, Johan January 2008 (has links)
Detta examensarbete beskriver arbetsprocessen med att ta fram ett webbverktyg som ska hjälpa arkitekter som är i skisskedet av ett passivhusprojekt att förverkliga sitt projekt på bästa sätt. Det politiska klimat som råder i världen och framförallt Sverige idag manar tillen kraftig sänkning av energiförbrukningen och därigenom koldioxidutsläppen. Detta gäller inte minst för den svenska bostadssektorn som normalt sägs stå för 40 % av Sveriges totala energiförbrukning. Ett av medlen för att sänka denna energiförbrukning är att bygga fler passivhus samt att omvandla befintliga hus till passivhus. Problemet är att många arkitekter och byggherrar inte har någon erfarenhet av passivhus och vågar därför inte starta upp denna typ av projekt. Detta examensarbete syftar till att ta fram ett verktyg som hjälper arkitekter m.m. att utforma denna typ av byggnad, tyngdpunkten ligger på skisskedet. För att få fram lämplig utformning på verktyget så gjordes litteraturstudier,studier av genomförda passivhusprojekt i Sverige samt intervjuer med folk ibyggbranschen som alla har olika erfarenheter av passivhus. Resultatet av detta arbete mynnade ut i en checklista med frågor som arkitekten bör ställa sig i skisskedet av ett passivhus, ett guidedokument som ger tips, råd och till viss del svar på de frågor som ställs i checklistan samt enenergiberäkning. Detta omformades sedan till ett webbaserat verktyg, Passivhusguiden. Det verkliga resultatet av detta arbete är för tidigt för att sia om eftersom detinte går att utvärdera än i vilken omfattning arkitekter kommer att använda sig av det samt vilken påverkan det får för antalet byggda passivhus samtkvaliteten på dessa. I övrigt så uppfyller resultatet till stor del det förväntade. / This final thesis describes the work process to develop a Web Tool that willhelp architects who are in the sketch stage of a passivehouse-project to realisetheir project in the best possible way. The political climate that is prevailing in the world today, especially in Swedencalls for a sharp reduction of energy consumption and thus carbon dioxideemissions. This applies not least for the Swedish housing sector, whichnormally is said to account for 40% of Sweden's total energy consumption. One of the means to reduce this energy consumption is to build more passive houses and to convert existing house to it. The problem is that many architects and developers have no experience of passive houses and dare not therefore to start up this type of project. This final project aims to develop a tool to help architects, etc. to design this type of buildings, the emphasis is on the sketch stage. In order to get the appropriate design of the tool was, literature studies, studies of already accomplished passivehouseprojects in Sweden and interviews with people in the construction industry done, which all have different experiences of passive house. The result of this work resulted in a checklist of questions that the architectshould ask themselves in the sketch stage of a passive house, a guidedocument that provides tips, advice and answers to some of the addressed questions raised in the checklist, and an energy calculation. This was reshaped then into a webbased tool, Passivhusguiden. The real result of this work is too early to predict because it is not possible toevaluate to which extent the architects will make use of it, and the impact it has on the number built passivehouse´s, and the quality of these.
16

Energieffektivisering av äldre byggnader : Konstruktion & ventilation i Växjö kommunhus

Salcin, Elmir January 2012 (has links)
Inom EU vill man sänka energianvändningen med 20 % till 2020. Växjö kommunhus har gamla och ineffektiva installationer, samt ett dåligt isolerat och otät klimatskal. Denna rapport undersöker vad för slags inverkan byte av installationer, samt byte av klimatskal, har för inverkan på kommunhusets energianvändning. Till detta har energiberäkningsprogrammet VIP-Energy 1.5.5 använts. För att sammanfatta resultatet av arbetet så är det mest effektiva och lönsamma alternativet att byta ut installationerna, samt att kylbehovet ökar då man kraftigt isolerar detta hus.
17

Utfackningsvägg av lättbetongblock i passivhus

Sundemo, Sörensson, Malin, Frederic January 2010 (has links)
<p><strong>Abstract</strong></p><p>This report intends through a case study to investigate if lightweight concrete is</p><p>appropriate as main material in the outer wall of a seven storey residential building.</p><p>A technical design is carried out in accordance with the definitions and requirements</p><p>for passive houses, given by FEBY’s1 <em>“Demand specification for passive houses”</em>.</p><p>A literature review is also carried out for a comparison between regular bolt wall and</p><p>light weight concrete wall, with a focus on the safety of moisture.</p><p>The lightweight concrete block used in the report is as a celblock produced by the</p><p>company H+H Sweden AB.</p><p>The methods used have resulted in compliance with requirements and</p><p>recommendations from authorities. Calculations of energy, noise and moisture risk</p><p>assessment has been carried out.</p><p>The work has resulted in the conclusion that the lightweight concrete itself is not</p><p>able to isolate in the extent necessary to obtain chosen U-value of 0,1 W/m2 ° C,</p><p>without getting to thick. Therefore additional insulation is needed. There are few</p><p>relevant reference objects built with only light weight concrete. A villa in Lomma,</p><p>Sweden, has been designed but is not yet built. The house has no additional</p><p>insulation and the climate screen consists only of light weight concrete and plaster.</p><p>The multi storey building designed within this report has generally large windows,</p><p>also to the north, which in passive house context is unusual. The large window areas</p><p>result in greater thermal bridges around the windows and greater losses of heat</p><p>through transmission.</p><p>As compensation a very low U- value of 0,1 W/m2 ° C was set as a prerequisite from</p><p>the start ensuring a positive energy balance. This action has proved necessary when</p><p>implemented energy balance calculation resulted in the heating demand of 42</p><p>kWh/m2 per year. Maximum allowable energy for a passive house is according to</p><p>FEBY under 50 kWh/m2 per year.</p><p>There are several advantages identified when using light weight concrete. All</p><p>problems related to moister are avoided with this completely mineral material. Light</p><p>weight concrete offers good thermal insulation by its porosity. It has heat storing</p><p>properties during the winters. The material is fireproof and free from chemicals.</p><p>Together with additional insulation a quiet and healthy indoor environment is</p><p>derived.</p><p>It has been difficult to find potential risks of using concrete in the climate screen of</p><p>a passive house. Passive house technology is relatively new, and passive house</p><p>technology with concrete is even newer. In fact, the villa in Lomma is said to be the</p><p>first in Sweden carried out in light weight concrete. A minor estimation upon the</p><p>costs of a the insulated light weight concrete wall, contra a wood bolt wall has proved</p><p>the light weight concrete wall to be twice as expensive. Perhaps the future will prove</p><p>risks that have not yet been revealed?</p>
18

Passivhusguiden : Guidning av skissarbetet för passivhus

Kaverén, Erik, Svensson, Johan January 2008 (has links)
<p>Detta examensarbete beskriver arbetsprocessen med att ta fram ett webbverktyg som ska hjälpa arkitekter som är i skisskedet av ett passivhusprojekt att förverkliga sitt projekt på bästa sätt.</p><p>Det politiska klimat som råder i världen och framförallt Sverige idag manar tillen kraftig sänkning av energiförbrukningen och därigenom koldioxidutsläppen. Detta gäller inte minst för den svenska bostadssektorn som normalt sägs stå för 40 % av Sveriges totala energiförbrukning. Ett av medlen för att sänka denna energiförbrukning är att bygga fler passivhus samt att omvandla befintliga hus till passivhus. Problemet är att många arkitekter och byggherrar inte har någon erfarenhet av passivhus och vågar därför inte starta upp denna typ av projekt. Detta examensarbete syftar till att ta fram ett verktyg som hjälper arkitekter m.m. att utforma denna typ av byggnad, tyngdpunkten ligger på skisskedet.</p><p>För att få fram lämplig utformning på verktyget så gjordes litteraturstudier,studier av genomförda passivhusprojekt i Sverige samt intervjuer med folk ibyggbranschen som alla har olika erfarenheter av passivhus.</p><p>Resultatet av detta arbete mynnade ut i en checklista med frågor som arkitekten bör ställa sig i skisskedet av ett passivhus, ett guidedokument som ger tips, råd och till viss del svar på de frågor som ställs i checklistan samt enenergiberäkning. Detta omformades sedan till ett webbaserat verktyg, Passivhusguiden.</p><p>Det verkliga resultatet av detta arbete är för tidigt för att sia om eftersom detinte går att utvärdera än i vilken omfattning arkitekter kommer att använda sig av det samt vilken påverkan det får för antalet byggda passivhus samtkvaliteten på dessa. I övrigt så uppfyller resultatet till stor del det förväntade.</p> / <p>This final thesis describes the work process to develop a Web Tool that willhelp architects who are in the sketch stage of a passivehouse-project to realisetheir project in the best possible way.</p><p>The political climate that is prevailing in the world today, especially in Swedencalls for a sharp reduction of energy consumption and thus carbon dioxideemissions. This applies not least for the Swedish housing sector, whichnormally is said to account for 40% of Sweden's total energy consumption. One of the means to reduce this energy consumption is to build more passive houses and to convert existing house to it. The problem is that many architects and developers have no experience of passive houses and dare not therefore to start up this type of project. This final project aims to develop a tool to help architects, etc. to design this type of buildings, the emphasis is on the sketch stage.</p><p>In order to get the appropriate design of the tool was, literature studies, studies of already accomplished passivehouseprojects in Sweden and interviews with people in the construction industry done, which all have different experiences of passive house.</p><p>The result of this work resulted in a checklist of questions that the architectshould ask themselves in the sketch stage of a passive house, a guidedocument that provides tips, advice and answers to some of the addressed questions raised in the checklist, and an energy calculation. This was reshaped then into a webbased tool, Passivhusguiden.</p><p>The real result of this work is too early to predict because it is not possible toevaluate to which extent the architects will make use of it, and the impact it has on the number built passivehouse´s, and the quality of these.</p>
19

Åtgärdsplan för energieffektiviseringav ett flerbostadshus från 1940-talet : En fallstudie av Vindelgatan 15 i Ludvika / Improving energy efficiency for an apartment buildingfrom the 1940s : A case study of Vindelgatan 15 in Ludvika

Djärv, Oskar January 2015 (has links)
A housing association in Ludvika owns an apartment building built 1942 with a heating system based on district heating. The housing association is interested in reducing their annual energy cost, which corresponds to reducing their energy consumption. The yearly energy consumption for the building at the moment is about 40 % above the average for Swedish apartment buildings. This report investigates the possibilities of reducing the total energy consumption for the building, in a profitable way, and at the same time meeting the governmental targets for 2050 and the maximum specific energy demand for new buildings presented by the building regulation. The method used in this report was to conduct simulations of models of the building where proposals in terms of reducing the use of heat were evaluated. The proposals were related to the ventilation system, the building envelope, and solar power installations. The simulations returned results of many proposals that could reduce the energy consumption, but just a few turned out to be financially viable. Installing an exhaust air heat pump in combination with solar panels for heat supply and solar cells for electricity was found to be the most viable solution. A combination of these three proposals was calculated to reduce the yearly heat consumption with 188 MWh and the total energy consumption by 50 %, which meets the 2050 target. The specific energy consumption of the building per square meter of heated area is 97 kWh, which means that the maximum specific energy demand of 110 kWh is met.
20

Nära-nollenergibyggnader : En fallstudie av ett flerbostadshus förutsättningar att klara Boverkets framtida krav

Andersson, Ellen January 2017 (has links)
In order to develop energy-efficient constructions all new buildings will be nearly-zero energy buildings by year 2021. A nearly-zero energy facility is a building with high energy performance and very low energy consumption, where the amount of energy that needs to be supplied to the building will largely originate from renewable sources that are often self-produced on site or nearby. On December 15, 2016 BFS 2016: 13 - BBR 24 was introduced with requirements for verification of the building's specific energy use. The new regulations for nearly-zero energy buildings will be introduced in two stages through BBR (A) and BBR (B). BBR (A) implies no aggravation of requirements, but introduces a new way of calculating the energy performance of the building measured in primary energy. Primary energy factors are introduced per energy carrier, where the energy carrier for electric heating receives a higher value then other energy carriers. A projected five-storey apartment building located in Sigtuna, Stockholm has been investigated and energy calculations and simulations have been carried out in the energy calculation program IDA Indoor Climate and Energy. Simulations have been carried out on a reference object, focusing on analyzing how the energy utilization of the building is affected by various actions. The measures investigated are energy supply and origin of this, changes in the building construction and technical systems. The result shows that with relatively small changes the required demands of close-zero energy buildings can be reached. Changes to the building construction through better exterior wall insulation, better U-values ​​of building constructions and increased efficiency of heat exchanger, make demands for near-zero energy buildings in BBR (B). With self-produced electricity via solar cells the primary energy for the building will be even lower. The hardest challenge comes for the electricity heated buildings which due to an increased primary energy factor, will get harder to meet the future requirements due to a higher demand level.

Page generated in 0.068 seconds