• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 11
  • 7
  • Tagged with
  • 61
  • 61
  • 59
  • 50
  • 33
  • 33
  • 33
  • 26
  • 22
  • 20
  • 20
  • 16
  • 13
  • 13
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Metallic Ground State of Functionalized Carbon Nanotubes

Rauf, Hendrik 11 July 2007 (has links) (PDF)
Single-wall carbon nanotubes (SWCNTs) are a fascinating material because they exhibit many outstanding properties. Due to their unique geometric structure, they are a paradigm for one-dimensional systems. Furthermore, depending on their chirality, they can be either metallic or semiconducting. The SWCNT are arranged in bundles of some ten nanotubes with a random distribution of semiconducting and metallic tubes. They are thus one-dimensional objects embedded in a three-dimensional arrangement, the bundles. In this thesis, the metallic ground state of one-dimensional (1D) and three-dimensional (3D) systems is investigated on the basis of SWCNTs, using angle-integrated photoemission spectroscopy. In particular, a transition from a 1D to a 3D metallic system, induced by a charge transfer, is studied on SWCNTs and C60 peapods. In general, the metallic ground state of materials is greatly influenced by correlation effects. In classical three-dimensional metals, electron-electron interaction mainly leads to a renormalization of the charge carrier properties (e.g. effective mass), as described in Landau's Fermi liquid theory. One-dimensional metals are influenced to a greater extent by interactions. In fact, the Landau-quasiparticle picture breaks down due to the Peierls instability. Instead, one-dimensional metals are described by Tomonaga-Luttinger liquid (TLL) theory which predicts unusual properties such as spin-charge separation and non-universal power laws in some physical properties such as the electronic density of states (DOS). Angle-integrated photoemission spectroscopy provides direct access to the DOS and as such directly addresses the power law renormalization of a TLL. It is first shown, that the bundles of single-wall carbon nanotubes indeed exhibit a power law scaling of the electronic density of states is observed as it is expected from TLL theory. The main part of the thesis is devoted to the investigation of the metallic ground state of SWCNTs upon functionalization. In general, functionalization is a controlled modification of the structural and/or electronic properties of SWCNT. It can be carried out e.g. by doping with electron donors or acceptors, by filling the nanospace inside the tubes with molecules or by substituting carbon atoms. First, the behavior of the SWCNT upon chemical doping was probed. The overall modification of the electronic band structure can be explained well by a rigid band shift model. The one-dimensional character of the metallic tubes in the bundle is retained at low doping, but when the semiconducting tubes in the sample are also rendered metallic by the charge transfer, a Fermi edge emerges out of the power law renormalization of the spectral weight, signifying a transition to a three-dimensional metallic behavior. This can be explained by an increased interaction between the tubes in the bundle. A crossover from a Tomonaga-Luttinger liquid to a Fermi liquid is observed. The filling of SWCNTs with C60 molecules leads to the formation of so-called peapods. It raises questions concerning the role of the additional bands originating from the C60 filling in the one-dimensional system. In the pristine state, the states of the C60 filling were found to have no influence on the metallic ground state. The TLL power law scaling of the density of states is observed. The overall interaction between the SWCNT host and the C60 filling is small. Upon doping however, the modified band structure leads to a qualitative change in the crossover from a TLL to a Fermi liquid. Upon doping, also states in the conduction band of the C60 are filled. The evolution of the power law scaling at intermediate doping can be interpreted as an opening of an additional conduction channel of one-dimensional metallic chains of C60 inside the tubes. This is in good agreement with transport experiments. Upon further doping, a Fermi edge similar to the highly doped SWCNTs is observed.
12

Nanoskalige Halbleiter und funktionalisierte Kohlenstoffmaterialien: Darstellung, Charakterisierung und Anwendung in Elektrolumineszenzbauteilen

Schrage, Christian 04 October 2010 (has links) (PDF)
In dieser Arbeit werden zwei Schwerpunkte behandelt. Zum Einen soll der Einsatz nanoskaliger Materialien als Funktionskomponenten in Elektrolumineszenzbauteilen beschrieben werden. Dabei wird in einem ersten Aufbau ein transparenter Nanokompositfilm als emittierende Schicht in einem, den organischen Leuchtdioden, analogen Aufbau eingesetzt, während in einer zweiten Struktur eine transparente Elektrode, die auf nanoskaligen Kohlenstoffmaterialien (Kohlenstoffnanoröhren bzw. Graphenen) basiert, hinsichtlich ihrer Eignung als Alternative zu etablierten transparenten Elektroden untersucht werden soll. In weiterführenden Arbeiten werden die Erfahrungen aus der Graphensynthese auf die Generierung poröser, funktionalisierter Kohlenstoffmaterialien angewendet. Verbindend, wird die Röntgenkleinwinkelstreuung eingesetzt, um in vergleichenden Untersuchungen möglichst detailierte Informationen über die jeweiligen Systeme zu erhalten.
13

Growth and field emission characteristics of MWCNTs on different substrates

Ummethala, Raghunandan 20 January 2015 (has links) (PDF)
The first comprehensive discovery of carbon nanotubes (CNTs) by S. Iijima in 1991 sparked a huge scientific interest in investigating its unique structure and attractive properties. A multitude of potential applications of CNTs in modern science and technology has been envisaged very early after their discovery. While a few applications are realized on a commercial scale, many are still constrained to laboratory investigations for a constant improvement to meet the service needs. Moreover, some studies are still aimed at further understanding the very growth mechanism. The work reported in this thesis deals with two main topics: The first part of the thesis was aimed at investigating the influence of various supported catalyst precursors on the growth morphology of multiwalled CNTs (MWCNTs) by low-temperature thermal CVD (chemical vapour deposition). The results were explained with the help of thermodynamic calculations of equilibrium phases formed during the reduction reactions inside the CVD reactor. Striking an equilibrium between the respective oxide phase and the metallic phase of the active catalyst species forms the basis for a vertically aligned growth of CNTs. A new class of supported catalysts based on manganese oxide (MnO) was developed. It has been shown that such a method of thermodynamic analysis paves the way for a theoretical assessment of CNT growth morphology. Second part of the thesis is devoted to the growth and field emission characterization of large-array MWCNTs on diverse substrate materials. One of the burgeoning areas of research involves the application of CNTs as electron field emitters in x-ray computed tomography or display technologies. Although several research groups investigated the field emission behaviour of CNTs on different substrate materials, those studies carry at least two important drawbacks: Firstly, a vast majority of the publications report the emission characteristics of individual CNT or an individual vertically aligned CNT (VACNT) bundle. By measuring so, the electric field shielding effects between various CNTs in an array would not be accounted for. Therefore, in this work, large-area emitters grown on stainless steel, copper, molybdenum and silicon substrates were subjected to emission measurements under similar pulsed operation mode, so that a direct comparison would be possible. Entangled CNTs on stainless steel showed a poor emission current density, but a long-term stable emission of 10 mA for more than 96 hours (4 days). The emission current density of CNTs on Cu and Mo was further low, but the threshold field (ETh) on the former was desirably low (~2 V µm-1). Secondly, the existing literature concerning emission characteristics of large-area CNT emitters reports either a high emission current density (Jmax) or a good long-term stability, but fails to demonstrate both simultaneously. It was shown in this work that VACNTs grown on a specific patterned Si substrate displayed an excellent combination of emission current density (5.78 A cm-2) along with a long-term stable emission of 40 mA current for ~730 hours at 10% duty cycle (effective emission time: 73 hours). Based on these results, a hypothesis emphasizing a new parameter, the ratio of the cumulative area of the CNTs to that of the substrate (ACNTs/Asubstrate), was put forth to explain the emission efficiency of large-area emitters. This hypothesis needs further verification by means of simulations. / Iijimas Publikation über Kohlenstoffnanoröhren (CNT) im Jahre 1991 löste ein großes wissenschaftliches Interesse daran aus, die einzigartige Struktur von CNTs und deren attraktive Eigenschaften zu untersuchen. Schon kurz nach der Entdeckung von CNTs wurde das große Potential von CNTs für die moderne Naturwissenschaft und vielfältige Anwendungen erkannt. Einige solcher Anwendungen wurden bereits verwirklicht, viele andere sind gegenwärtig noch im Entwicklungstadium. Auch die Wachstumsmechanismen von CNTs werden momentan weiter untersucht. Die hier vorgelegte Doktorarbeit behandelt zwei Hauptthemen: Der erste Teil widmet sich der Untersuchung des Wachstums von mehrwandigen Kohlenstoffnanoröhren (MWCNTs) durch thermische chemische Gasphasenabscheidung (CVD) bei niedrigen Temperaturen, wobei besonders der Einfluss verschiedener Katalysatormaterialien auf die Nanoröhren-Morphologie im Mittelpunkt steht. Die Ergebnisse können erklärt werden mit Hilfe von thermodynamischen Berechnungen der Gleichgewichtsphasen, die sich während der Reduktionsreaktionen im CVD-Reaktor bilden. Ein Wachstum von senkrecht ausgerichteten CNTs hängt ab von einem Gleichgewicht zwischen der Oxidphase und der metallischen Phase der aktiven Katalysatorkomponenten. Im Rahmen dieser Arbeit wurde eine neue Klasse von Zweikomponenten-Katalysatoren auf der Grundlage von Manganoxid (MnO) entwickelt. Es kann gezeigt werden, dass eine thermodynamische Analyse als Grundlage für eine theoretische Beurteilung des CNT-Wachstumsmechanismus dienen kann. Der zweite Teil der Doktorarbeit ist dem Wachstum von ausgedehnten MWCNT-Anordnungen sowie der Untersuchung der Feldemissionscharakteristik dieser Proben gewidmet, wobei verschiedene Substratmaterialien berücksichtigt wurden. Die Anwendung von CNTs als Elektronen-Feldemitter für Computertomographie und für Bildschirme ist ein attraktives und wachsendes Forschungsgebiet. Zwar wurde das Feldemissionsverhalten von CNTs auf verschiedenen Substraten bereits von mehreren Forschergruppen untersucht, jedoch sind mit diesen Studien Unzulänglichkeiten verbunden: Erstens behandelt die Mehrzahl der Publikationen die Emissionscharakteristik von individuellen CNTs oder von individuellen senkrecht ausgerichteten CNT-Bündeln. Dabei wurden allerdings elektrostatische Abschirmeffekte durch benachbarte CNTs nicht berücksichtigt. Daher wurden im Rahmen dieser Arbeit großflächige Emitter auf Edelstahl-, Kupfer-, Molybdän- und Siliziumsubstraten hergestellt und hinsichtlich ihrer Emissionscharakteristik im gepulsten Regime untersucht, so dass ein direkter Vergleich zwischen den Proben auf verschiedenen Substraten möglich ist. Gegenseitig umschlungene CNTs auf Edelstahl zeigten eine geringe Emissionsstromdichte, dafür war die Emission jedoch langzeitstabil mit 10 mA über mehr als 96 Stunden (vier Tage). Die Emissionsstromdichte von CNTs auf Cu und Mo war ebenfalls niedrig, allerdings im Falle von Cu-Substraten verbunden mit einem vorteilhaft niedrigen Feldschwellwert (ETh) von etwa 2 V µm-1. Zweitens berichtet die vorhandene Literatur über großflächige CNT-Emitter mit einer hohen Emissionsstromdichte (Jmax) oder einer guten Langzeitstabilität, beides gleichzeitig wird allerdings in diesen Arbeiten nicht gezeigt. In der vorliegenden Arbeit werden senkrecht ausgerichtete CNTs auf speziellen strukturierten Si-Substraten vorgestellt, die eine ausgezeichnete Kombination von Emissionsstromdichte (5,78 A/cm2) und einem über 730 Stunden langzeitstabilen Emissionsstrom von 40 mA aufweist, wobei die Arbeitsphase 10 % und damit die effektive Emissionszeit 73 Stunden beträgt. Auf Grundlage dieser Ergebnisse kann ein neuer Erklärungsansatz vorgestellt werden: Das Verhältnis von aufsummierter CNT-Fläche zur Substratfläche (ACNTs/Asubstrate) wird als neuer Parameter eingeführt und zur Erklärung der Emissionseffizienz von großflächigen Emittern verwendet. Diese Arbeitshypothese sollte durch Simulationsrechnungen verifiziert werden.
14

Kohlenstoffnanoröhren als potenzielle Wirkstofftransporter

Haase, Diana 20 October 2011 (has links) (PDF)
Zur Untersuchung des Potenzials von Kohlenstoffnanoröhren zum Wirkstofftransport wurden zwei verschiedene Typen mehrwandiger Kohlenstoffnanoröhren mit dem Zytostatikum Carboplatin (Diamminplatin(II)-cyclobutan-1,1-dicarboxylat) beladen. Unter Verwendung einer nasschemischen Methode sollten die Röhren vorwiegend mit dem Wirkstoff gefüllt werden. Verschiedene analytische Methoden, wie Atomabsorptionsspektroskopie, Röntgenpulverdiffraktometrie, Röntgenphotoelektronenspektroskopie und Transmissionselektronenmikroskopie, dienten der Charakterisierung der hergestellten CNT-Carboplatin-Assoziate. Die zytostatische Wirksamkeit wurde anhand von Zellstudien, durchgeführt an zwei verschiedenen Prostatakarzinozelllinien, bewertet. Anhand der Arbeit wurde demonstriert, das CNT ein prinzipielles Potenzial zum Wirkstofftransport besitzen.
15

Metallic Ground State of Functionalized Carbon Nanotubes

Rauf, Hendrik 08 June 2007 (has links)
Single-wall carbon nanotubes (SWCNTs) are a fascinating material because they exhibit many outstanding properties. Due to their unique geometric structure, they are a paradigm for one-dimensional systems. Furthermore, depending on their chirality, they can be either metallic or semiconducting. The SWCNT are arranged in bundles of some ten nanotubes with a random distribution of semiconducting and metallic tubes. They are thus one-dimensional objects embedded in a three-dimensional arrangement, the bundles. In this thesis, the metallic ground state of one-dimensional (1D) and three-dimensional (3D) systems is investigated on the basis of SWCNTs, using angle-integrated photoemission spectroscopy. In particular, a transition from a 1D to a 3D metallic system, induced by a charge transfer, is studied on SWCNTs and C60 peapods. In general, the metallic ground state of materials is greatly influenced by correlation effects. In classical three-dimensional metals, electron-electron interaction mainly leads to a renormalization of the charge carrier properties (e.g. effective mass), as described in Landau's Fermi liquid theory. One-dimensional metals are influenced to a greater extent by interactions. In fact, the Landau-quasiparticle picture breaks down due to the Peierls instability. Instead, one-dimensional metals are described by Tomonaga-Luttinger liquid (TLL) theory which predicts unusual properties such as spin-charge separation and non-universal power laws in some physical properties such as the electronic density of states (DOS). Angle-integrated photoemission spectroscopy provides direct access to the DOS and as such directly addresses the power law renormalization of a TLL. It is first shown, that the bundles of single-wall carbon nanotubes indeed exhibit a power law scaling of the electronic density of states is observed as it is expected from TLL theory. The main part of the thesis is devoted to the investigation of the metallic ground state of SWCNTs upon functionalization. In general, functionalization is a controlled modification of the structural and/or electronic properties of SWCNT. It can be carried out e.g. by doping with electron donors or acceptors, by filling the nanospace inside the tubes with molecules or by substituting carbon atoms. First, the behavior of the SWCNT upon chemical doping was probed. The overall modification of the electronic band structure can be explained well by a rigid band shift model. The one-dimensional character of the metallic tubes in the bundle is retained at low doping, but when the semiconducting tubes in the sample are also rendered metallic by the charge transfer, a Fermi edge emerges out of the power law renormalization of the spectral weight, signifying a transition to a three-dimensional metallic behavior. This can be explained by an increased interaction between the tubes in the bundle. A crossover from a Tomonaga-Luttinger liquid to a Fermi liquid is observed. The filling of SWCNTs with C60 molecules leads to the formation of so-called peapods. It raises questions concerning the role of the additional bands originating from the C60 filling in the one-dimensional system. In the pristine state, the states of the C60 filling were found to have no influence on the metallic ground state. The TLL power law scaling of the density of states is observed. The overall interaction between the SWCNT host and the C60 filling is small. Upon doping however, the modified band structure leads to a qualitative change in the crossover from a TLL to a Fermi liquid. Upon doping, also states in the conduction band of the C60 are filled. The evolution of the power law scaling at intermediate doping can be interpreted as an opening of an additional conduction channel of one-dimensional metallic chains of C60 inside the tubes. This is in good agreement with transport experiments. Upon further doping, a Fermi edge similar to the highly doped SWCNTs is observed.
16

Hydrogen Storage In Nanostructured Materials

Assfour, Bassem 28 February 2011 (has links)
Hydrogen is an appealing energy carrier for clean energy use. However, storage of hydrogen is still the main bottleneck for the realization of an energy economy based on hydrogen. Many materials with outstanding properties have been synthesized with the aim to store enough amount of hydrogen under ambient conditions. Such efforts need guidance from material science, which includes predictive theoretical tools. Carbon nanotubes were considered as promising candidates for hydrogen storage applications, but later on it was found to be unable to store enough amounts of hydrogen under ambient conditions. New arrangements of carbon nanotubes were constructed and hydrogen sorption properties were investigated using state-of-the-art simulation methods. The simulations indicate outstanding total hydrogen uptake (up to 19.0 wt.% at 77 K and 5.52wt.% at 300 K), which makes these materials excellent candidates for storage applications. This reopens the carbon route to superior materials for a hydrogen-based economy. Zeolite imidazolate frameworks are subclass of MOFs with an exceptional chemical and thermal stability. The hydrogen adsorption in ZIFs was investigated as a function of network geometry and organic linker exchange. Ab initio calculations performed at the MP2 level to obtain correct interaction energies between hydrogen molecules and the ZIF framework. Subsequently, GCMC simulations are carried out to obtain the hydrogen uptake of ZIFs at different thermodynamic conditions. The best of these materials (ZIF-8) is found to be able to store up to 5 wt.% at 77 K and high pressure. We expected possible improvement of hydrogen capacity of ZIFs by substituting the metal atom (Zn 2+) in the structure by lighter elements such as B or Li. Therefore, we investigated the energy landscape of LiB(IM)4 polymorphs in detail and analyzed their hydrogen storage capacities. The structure with the fau topology was shown to be one of the best materials for hydrogen storage. Its total hydrogen uptake at 77 K and 100 bar amounts to 7.8 wt.% comparable to the total uptake reported of MOF-177 (10 wt.%), which is a benchmark material for high pressure and low temperature H2 adsorption. Covalent organic frameworks are new class of nanoporous materials constructed solely from light elements (C, H, B, and O). The number of adsorption sites as well as the strength of adsorption are essential prerequisites for hydrogen storage in porous materials because they determine the storage capacity and the operational conditions. Currently, to the best of our knowledge, no experimental data are available on the position of preferential H2 adsorption sites in COFs. Molecular dynamics simulations were applied to determine the position of preferential hydrogen sites in COFs. Our results demonstrate that H2 molecule adsorbed at low temperature in seven different adsorption sites in COFs. The calculated adsorption energies are about 3 kJ/mol, comparable to that found for MOF systems. The gravimetric uptake for COF-108 reached 4.17 wt.% at room temperature and 100 bar, which makes this class of materials promising for hydrogen storage applications.
17

Kohlenstoffnanoröhren als potenzielle Wirkstofftransporter

Haase, Diana 10 March 2011 (has links)
Zur Untersuchung des Potenzials von Kohlenstoffnanoröhren zum Wirkstofftransport wurden zwei verschiedene Typen mehrwandiger Kohlenstoffnanoröhren mit dem Zytostatikum Carboplatin (Diamminplatin(II)-cyclobutan-1,1-dicarboxylat) beladen. Unter Verwendung einer nasschemischen Methode sollten die Röhren vorwiegend mit dem Wirkstoff gefüllt werden. Verschiedene analytische Methoden, wie Atomabsorptionsspektroskopie, Röntgenpulverdiffraktometrie, Röntgenphotoelektronenspektroskopie und Transmissionselektronenmikroskopie, dienten der Charakterisierung der hergestellten CNT-Carboplatin-Assoziate. Die zytostatische Wirksamkeit wurde anhand von Zellstudien, durchgeführt an zwei verschiedenen Prostatakarzinozelllinien, bewertet. Anhand der Arbeit wurde demonstriert, das CNT ein prinzipielles Potenzial zum Wirkstofftransport besitzen.
18

Development of thermoelectric materials based on polymer nanocomposites

Gnanaseelan, Minoj 09 August 2019 (has links)
Composites based on ICP with conductive (SWCNT and Te) and insulating fillers (TiO2 and CuO and insulating polymers with conducting fillers (rGO, modified rGO, and SWCNT) were prepared and their thermoelectric properties were investigated. Attempts to enhance the thermoelectric properties of PEOT:PSS composites did not bring about a significant change. But, the attempts to modify rGO brought about a considerable improvement in the thermoelectric properties. At the end, the use of SWCNT provided the maximum ZT in case of insulating polymer composites. Eventually, SEBS/4 wt% SWCNT with a ZT of 0.0017 and SBS/0.5 wt% SWCNT with a ZT 6  10-6 stood out as the best p-type and n-type thermoelectric material, respectively, in this work. This success paved the way to build 2 modules of thermoelectric generators which generated a maximum potential of 93.2 mV at a temperature difference of 40 K.
19

Wachstumsmechanismen und Oberflächeneigenschaften undotierter und N-dotierter Kohlenstoffnanoröhren

Eckert, Victoria 12 August 2019 (has links)
Die Synthese von Kohlenstoffnanoröhren mit maßgeschneiderten Morphologien stellt bis heute eine große Herausforderung dar. In der vorliegenden Arbeit liegt der Fokus zunächst auf gerade gewachsene MWCNTs, welche insbesondere mit N-Dotierung erhalten werden können. Im Allgemeinen führt eine Dotierung mit Stickstoff zu Defekten im Kohlenstoff-Gitter und verursacht dadurch eine gekrümmte MWCNT-Morphologie. Dennoch konnten in dieser Arbeit gerade gewachsene, nadelförmige MWCNTs insbesondere unter Verwendung der N-haltigen Präkursoren Acetonitril sowie Pyrazin (30 Ma.-% in Toluol) bei einer Temperatur von 750 °C erfolgreich synthetisiert werden. Dafür eignete sich besonders eine CVD-Methode, bei welcher der Fe-Katalysatorpräkursor Ferrocen in einem separaten Ofen sublimiert wurde. Es stellte sich heraus, dass sich in einer stickstoffhaltigen Gasphase bevorzugt einkristalline Fe3C-Katalysatorpartikel bilden. Im Fall einer homogenen Katalysatormorphologie, d.h. ohne Krümmungen, scheiden sich Kohlenstoffwände an einer bestimmten Facette des Katalysatorpartikels ab. Nicht nur die Zusammensetzung und Beschaffenheit des Katalysatorpartikels bestimmen die MWCNT-Morphologie, die Konzentration an Stickstoff sowie dessen Bindungszustand sind ebenso von großer Bedeutung. Für eine gerade MWCNT-Morphologie sollte daher das Vorkommen pyridinischer sowie pyrrolischer N-Bindungen möglichst gering gehalten werden, da diese Defekte im Kohlenstoff-Gitter verursachen. Die Art der Stickstoffbindung beeinflusst nicht nur die MWCNT-Morphologie, sondern ebenso die Oberflächenpolarität von MWCNTs. Grundsätzlich wird angenommen, dass Stickstoff die Polarität an der MWCNT-Oberfläche erhöht. Jedoch weisen in dieser Arbeit selbst MWCNTs mit bis zu 2,5 at.-% Stickstoff hydrophobe Oberflächen auf, im Vergleich zu hydrophilen MWCNTs, welche bis zu 3,7 at.-% Stickstoff enthalten. XPS-Messungen ergaben dabei nur einen signifikanten Unterschied bezüglich des Anteils an molekularen Stickstoff innerhalb beider MWCNT-Typen. Mit Hilfe von DFT-Berechnungen konnte anschließend nachgewiesen werden, dass zwischen den CNT-Wänden interkalierter molekularer Stickstoff, im Vergleich zu pyridinisch und graphitisch gebundenen Stickstoff, den größten Einfluss auf die π-Elektronendichte der Röhrenoberflächen besitzt. Die Anwesenheit des Stickstoffs verursacht dabei eine signifikante Verschiebung der π-Elektronendichte in Richtung der Stickstoffmoleküle hin. Ist die Konzentration an molekularen Stickstoff zudem so hoch, dass sich die Stickstoffmoleküle ebenso zwischen den äußeren CNT-Wänden anreichern, so können diese die Oberflächenpolarität der äußersten CNT-Wand begünstigen. Pyridinische und graphitische N-Bindungen verursachen nur eine geringfügige Verschiebung der π-Elektronendichte der CNT-Wände. Da sie sich zudem bevorzugt in den inneren CNT-Wänden befinden, beeinflussen sie die Polarität der äußersten MWCNT-Oberfläche nur unzureichend. Aufgrund der vielfältigen Anwendungsmöglichkeiten von MWCNTs in Abhängigkeit von ihrer Morphologie und Oberflächeneigenschaften, wurde zusätzlich das toxische Potential verschiedener MWCNT-Typen untersucht. Die toxikologischen Untersuchungen ergaben dabei, dass insbesondere lange und hydrophobe MWCNTs, ähnlich wie Amosit Asbest, ein hohes toxisches Potential aufweisen. / The synthesis of carbon nanotubes with tailor-made morphologies is still a challenge. First of all, this thesis is focused on the synthesis of straight MWCNTs, especially obtained with N doping. In principle, N doping causes defects in the carbon lattice, leading to a curved MWCNT morphology. Nevertheless, straight and needle-like MWCNTs were successfully synthesized especially when using N-containing precursors like acetonitrile and pyrazine (30 wt.-% in toluene) at 750 °C. Therefore, a CVD method, allowing a separate sublimation of the Fe catalyst precursor ferrocene, was suitable for the synthesis of such straight MWCNTs. It could be emphasized that single crystalline Fe3C catalyst particles were formed in the presence of nitrogen before the beginning of the MWCNT synthesis. In case of a homogeneous catalyst morphology (without curvatures), the tube walls will grow on a specific facet. Not only the composition and constitution of the catalyst particle have a strong influence on the MWCNT morphology, but also the concentration of nitrogen and it’s kind of incorporation in the carbon lattice. Meaning, the presence of pyridinic or pyrrolic nitrogen should be minimized to decrease the defects in the carbon lattice. Furthermore, the kind of nitrogen bond has also a strong influence on the surface polarity of the MWCNTs. As a dopant, nitrogen should generally increase the polarity of the MWCNT surfaces. In contrast, even MWCNTs containing up to 2.5 at.-% N in this work exhibit hydrophobic surfaces, whereas surfaces of MWCNTs containing up to 3.7 at.-% N are very hydrophilic. The only significant difference between both MWCNT types is the amount of molecular nitrogen intercalated between the tube walls, confirmed by XPS measurements. Using DFT calculations it could be highlighted that molecular nitrogen has the strongest influence on the π-electron density of the tube walls, compared to pyridinic and graphitic nitrogen. The presence of nitrogen causes a significant shift of the π-electron density from the tube walls towards the nitrogen molecules. In case of a high concentration of molecular nitrogen, the nitrogen molecules can be intercalated more between the outer tube walls, so they are able to enhance the polarity of the outermost tube wall. The pyridinic and graphitic nitrogen are preferentially incorporated between the inner tube walls and thus cause only a slight π-electron density shift. So their influence on the polarity of the outermost tube wall is not sufficient enough. Due to the various application possibilities of MWCNTs depending on their morphology and surface properties, the toxic potential of different MWCNT types was additionally investigated in this work. The toxicological investigations revealed that especially long MWCNTs with hydrophobic surfaces, similar to amosite asbestos, exhibit a high toxic potential.
20

Metal nanoparticles reveal the organization of single-walled carbon nanotubes in bundles

Rodriguez, Raul D., Blaudeck, Thomas, Kalbacova, Jana, Sheremet, Evgeniya, Schulze, Steffen, Adner, David, Hermann, Sascha, Hietschold, Michael, Lang, Heinrich, Schulz, Stefan E., Zahn, Dietrich R. T. 12 February 2016 (has links) (PDF)
Single-walled carbon nanotubes (SWCNTs) were decorated with metal nanoparticles. Using a complementary analysis with spatially resolved micro-Raman spectroscopy, high resolution transmission electron microscopy, electron diffraction, and tip-enhanced Raman spectroscopy, we show that the SWCNTs form bundles in which smaller diameter SWCNTs are the ones preferentially affected by the presence of Au and Ag nanoparticles. This result is exploited to evaluate the structural organization of SWCNTs with mixed chiralities in bundles, leading us to postulate that smaller diameter SWCNTs surround larger ones. We found that this effect occurs for very distinct scenarios including SWCNTs both in nanometer thin films and in field effect transistor configurations at the wafer-level, suggesting a universal phenomenon for SWCNTs deposited from dispersions. / Einwandige Kohlenstoffnanoröhren (SWCNTs) wurden mit Metallnanopartikeln dekoriert. Nach Anwendung von ortsauflösender Raman-Mikroskopie und -Spektroskopie, Transmissionselektronenmikroskopie, Elektronenbeugung und spitzenverstärkter Ramanspektroskopie wird festgestellt, dass sich aus den SWCNTs fasrige Bündel formen, wobei die analytischen Signaturen der SWCNTs mit kleinerem Durchmesser stärker von der Präsenz der Gold- und Silbernanopartikel beeinflusst werden als die der größeren. Dieses Resultat kann damit erklärt werden, dass in der Struktur solcher Bündel SWCNTs mit kleinerem Durchmesser außen und SWCNTs mit größerem Durchmesser innen zu liegen kommen. Wir konnten diesen Effekt für verschiedene Szenarien nachweisen: i) für SWCNTs in nanometerdünnen ungeordneten Filmen und ii) für SWCNTs, ausgerichtet zwischen Elektroden in der Geometrie eines Feldeffekttransistors. Diese Feststellung legt nahe, dass es sich um ein universelles Phänomen für aus flüssigen Dispersionen abgeschiedene SWCNTs handelt. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.

Page generated in 0.0633 seconds