41 |
Cellulose fibres with carbon nanotube networks for water sensingQi, Haisong, Liu, Jianwen, Deng, Yinhu, Gao, Shanglin, Mäder, Edith 02 December 2019 (has links)
Electroconductive cellulose-based fibres were fabricated by depositing multi-walled carbon nanotubes (MWNTs) on the surface using a simple and scalable dip coating. The morphology, mechanical properties and conductive properties of the resultant MWNT–cellulose fibres were investigated by scanning electron microscopy, tensile testing and electrical resistance measurement, respectively. The resistance (RL) of the single MWNT–cellulose fibre can be controlled in a wide range of 50–200 000 kΩ cmˉ¹ by varying the conditions of dip coating. The sensing behaviour of these fibres to liquid water was investigated in detail. The results showed that they exhibit rapid response, high sensitivity and good reproducibility to water, with a relative electrical resistance change of about 100–8000% depending on the initial resistance. It was proposed that the disconnection of MWNT networks caused by swelling effects of the cellulose fibres is the dominant mechanism. Moreover, the sensitivity of the MWNT–cellulose fibres to an electrolyte solution was also investigated.
|
42 |
Synthesis and mechanical properties of iron-filled carbon nanotubesWeißker, Uhland 16 October 2013 (has links)
Carbon forms the basis of a variety of compounds. The allotropic forms of carbon include graphene, fullerenes, graphite, carbon nanotubes and diamond. All these structures possess unique physical and chemical properties. This work focusses on the usage of carbon nanotubes (CNT), especially iron-filled CNT.
An industrial application of CNT requires the understanding of the growth mechanism and the control of the synthesis process parameters. Regarding iron-filled CNT the shell formation as well as the filling process has to be understood in order to control the CNT morphology and distribution and dimension of the iron filling. The thesis involves two topics - synthesis of CNT and characterization of their mechanical properties. Chapter 2 of the present work deals with the synthesis of iron-filled CNT. In this thesis all experiments and the discussion about the growth process were conducted with respect to the demands of magnetic force microscopy probes.
The experimental work was focused on the temperature profile of the furnace, the aluminum layer of the substrate, the precursor mass flow and their impact on the morphology of in-situ iron-filled CNT. By selecting appropriate process parameters for the temperature, sample position, gas flow and by controlling the precursor mass flow, CNT with a continuous filling of several microns in length were created.
Existing growth models have been analyzed and controversially discussed in order to explain the formation of typical morphologies of in-situ filled CNT. In this work a modified growth model for the formation of in-situ filled CNT has been suggested. The combined-growth-mode model is capable to explain the experimental results. Experiments which were conducted with respect to the assumptions of this model, especially the role of the precursor mass flow, resulted in the formation of long and continuous iron nanowires encapsulated inside multi-walled CNT. The modified growth model and the synthesis results showed, that besides the complexity of the parameter interaction, a control of the morphology of in-situ iron-filled CNT is possible.
In chapter 3 the measurements of mechanical properties of in-situ iron-filled CNT are presented. Two different experimental methods and setups were established, whereby one enabled a static bending measurement inside a TEM and another a dynamical excitation of flexural vibration of CNT inside SEM.
For the first time mechanical properties and in particular the effective elastic modulus Eb of in-situ iron-filled CNT were determined based on the Euler-Bernoulli beam model (EBM). This continuum mechanic model can be applied to describe the mechanical properties of CNT and especially MWCNT in consideration of the restriction that CNT represent a macro molecular structure built of nested rolled-up graphene layers. For evaluation and determination of the elastic modulus the envelope of the resonant vibrating state was evaluated by fitting the EBM to the experimental data. The experiments also showed, that at the nanoscale the properties of sample attachment have to be taken into account.
Thus, instead of a rigid boundary condition a torsion spring like behavior possessing a finite stiffness was used to model an one side clamped CNT. The extended data evaluation considering the elastic boundary conditions resulted in an average elastic modulus of Eb = 0.41 ± 0.11 TPa. The low standard deviation gives evidence for the homogeneity of the grown material. To some extend a correlation between the formation process, the morphology and the mechanical properties has been discussed. The obtained results prove the usability of this material as free standing tips for raster scanning microscopy and especially magnetic force microscopy. The developed methods provide the basis for further investigations of the CNT and the understanding of mechanical behavior in greater detail.
|
43 |
Glass and Jute fibers modified with CNT-based functional coatings for high performance compositesTzounis, Lazaros 16 May 2014 (has links)
Carbon nanotubes are known as one of the strongest materials in nature and since their discovery; they have triggered the scientific interest for fabricating multi-functional polymer composites. However, a well-known problem associated to the incorporation of nanoparticulate materials in polymer matrices is their tendency to agglomerate in order to reduce their surface energy, and the extreme increase of the polymer viscosities (i.e melts, solutions, etc), which makes it very difficult to process them. Polymers can be efficiently reinforced by fibers for applications where high strength and stiffness are required. Micro-scale short fiber reinforced polymer composites have been an alternative way to obtain fiber reinforced composites since the long fiber incorporation is a painful job and not always feasible and easy to produce composites in big scale.
Therefore, use of long glass fibers as the support for depositing CNTs as well as CNTs+other kind of nanoparticles was made, and the resulting interfaces were investigated in detail by single fiber model composites. This approach can bring the CNT functionality, fiber strength and toughness to the final composite, and simultaneously alleviate the manufacturing process from increase of the polymer high viscosities. Finally, very logically the question of whether to improve or destroy the interface integrity comes before implementing the hybrid hierarchical reinforcements in bigger scales, and an output out of this work will be given. Furthermore, several information and functionalities arising from the CNTs at the interphase region will be elucidated like cure monitoring of the epoxy resin matrix, UV-sensing ability, and thermoelectric energy harvesting, giving rise to multi-functional structural composites. CNT-modified natural fibers also have been utillised to fabricate short fiber reinforced composites, and have shown a promising reinforcement effect due to the CNT nanostructured interfaces.
The ‘interface’ in fiber reinforced polymer composites (FRPCs) is known as a very crucial parameter that has to be considered in the design of a composite with desired properties. Interfaces are often considered as surfaces however, they are in fact zones or areas with compositional, structural, and property gradients, typically varying from that of the fiber and the matrix material. Characterization of the mechanical properties of interfaces is necessary for understanding the mechanical behavior of scaled-up composites. In fact, the mechanical characteristics of a fiber/resin composite depend mainly on i) the mechanical properties of the component materials, ii) the surface of the fiber, and iii) the nature of the fiber/resin bonding as well as the mode of stress transfer at the interface. Among the many factors that govern the characteristics of composites involving a glass, carbon, natural or ceramic fiber, and a macromolecular matrix, the adhesion between fiber and matrix plays a predominant role. In specific, the stress transfer at the interface requires an efficient coupling between fiber and matrix. Therefore, it is important to optimize the interfacial bonding since a direct linkage between fiber and matrix gives rise to a rigid, low impact resistance composite material.
|
44 |
Passivierung von Kohlenstoffnanoröhren-Feldeffekttransistoren mit HexamethyldisiloxanRoscher, Willi 27 June 2019 (has links)
Kohlenstoffnanoröhren (engl. carbon nanotubes) bieten hervorragende elektrische
Eigenschaften für neuartige Feldeffekttransistoren (engl. field-effect transistors) auf engstem Raum. Eine Möglichkeit zur Verbesserung der elektrischen Eigenschaften bietet eine geeignete Passivierung mit Hexamethyldisiloxan. In dieser Arbeit werden eine Flüssig- und eine Gasphasenbehandlung von Siliziumoxid-Oberflächen mit Hexamethyldisiloxan untersucht. Die Oberflächen werden dabei in wenigen Minuten hydrophobiert. Nach längeren Behandlungszeiten werden Wasserkontaktwinkel von 95° erreicht, die auch noch nach mehreren Tagen und einer Woche nachweisbar sind.
In der Anwendung auf Kohlenstoffnanoröhren-Feldeffekttransistoren (engl. carbon
nanotube field-effect transistors) wird die Hysterese um durchschnittlich 30 % gesenkt. Das Ziel der Behandlung wurde damit erreicht und lässt sich auf die erfolgreiche Beseitigung von Ladungsfallen durch Adsorbate zurückführen. Zusätzlich sinkt der An-Strom um 60 %. Für gute An-Aus-Verhältnisse über mehrere Größenordnungen bedeutet das jedoch keine drastische Verschlechterung der Schalteigenschaften. Die in dieser Arbeit vorgeschlagene Hexamethyldisiloxan-Gasphasenbehandlung kann daher erfolgreich zur Verringerung der Hysterese in Kohlenstoffnanoröhren-Feldeffekttransistoren eingesetzt werden.:1 Einleitung 6
2 Material und Methoden 8
2.1 Siliziumoxid-Oberflächen 8
2.2 Hexamethyldisiloxan als Passivierungsmittel 8
2.3 Flüssigphasenbehandlung 9
2.4 Gasphasenbehandlung 10
2.5 Kontaktwinkelmessung 11
3 Feldeffekttransistoren auf der Basis von Kohlenstoffnanoröhren 13
3.1 Kohlenstoffnanoröhren 13
3.1.1 Struktur und Nomenklatur 13
3.1.2 Elektrische Eigenschaften 14
3.2 Kohlenstoffnanoröhren-Feldeffekttransistoren 16
3.2.1 Aufbau, Herstellung und Funktionsprinzip 16
3.2.2 Kenngrößen zur FET-Charakterisierung 17
3.2.3 IU-Messung 19
4 Ergebnisse und Auswertung 20
4.1 Ergebnisse der Kontaktwinkelmessungen 20
4.1.1 Referenzmessungen auf Siliziumoxidoberflächen 20
4.1.2 Flüssigphasenbehandlung 21
4.1.3 Gasphasenbehandlung 21
4.1.4 Fehlerbetrachtung 25
4.1.5 Vergleich von Flüssig- und Gasphasenbehandlung 26
4.2 HMDSO-Behandlung von CNTFETs 27
4.2.1 Ergebnisse der IU-Messungen 28
4.2.2 Fehlerbetrachtung 31
5 Zusammenfassung der Ergebnisse und Ausblick 32
|
45 |
Selbstorganisation von Kohlenstoffnanoröhren zu FeldeffekttransistorenTaeger, Sebastian 16 January 2008 (has links)
Kohlenstoffnanoröhren (engl. carbon nanotubes, CNT) verfügen über eine Vielzahl von herausragenden und möglicherweise nutzbringenden Eigenschaften. Die kontrollierte Integration von CNT in technische Systeme stellt noch immer eine große Herausforderung dar. Im Rahmen der vorliegenden Arbeit wurden neue Methoden für den Aufbau von Strukturen und Bauelementen aus CNT entwickelt, die auf Selbstorganisation bzw. bottom-up assembly basieren. Dabei kamen sowohl biochemische als auch physikalische Verfahren zum Einsatz. Einzelsträngige DNA wurde verwendet um CNT in wässrigen Medien zu suspendieren und zu vereinzeln. Beides sind wichtige Voraussetzungen, um die günstigen elektronischen Eigenschaften der CNT zugänglich zu machen. DNA-CNT-Suspensionen wurden sowohl spektroskopisch in ihrer Gesamtheit als auch kraftmikroskopisch auf molekularer Ebene untersucht. So konnten wesentliche Parameter des Herstellungsprozesses optimiert werden, um Suspensionen mit einem hohen Gehalt an langen, sauberen, vereinzelten CNT zu erhalten. Durch die Verwendung von funktionalisierten DNA-Molekülen ist es gelungen, Halbleiterquantenpunkte und Goldkolloide an CNT anzubinden. Im Fall der Quantenpunkte gelang dies mit Hilfe der Biotin-Streptavidin Bindung unter Anwendung des Prinzips der molekularen Erkennung. Die Anbindung dieser Nanopartikel kann als Prototyp für den DNA-vermittelten Strukturaufbau aus CNT angesehen werden. Zur Deposition von CNT in Elektrodenstrukturen wurde ein auf Dielektrophorese beruhendes Verfahren eingesetzt. Dabei ist es gelungen, die wesentlichen Parameter zu identifizieren, die für die Morphologie der abgeschiedenen CNT entscheidend sind. So konnte die Dichte der CNT-Verbindungen zwischen Elektroden von einzelnen Verbindungen über wenige bis hin zu sehr vielen parallel assemblierten CNT eingestellt werden. Durch ein sich selbst steuerndes Hintereinanderlagern von CNT war es möglich auch Elektroden zu verbinden, deren Abstand größer war als die Länge der verwendeten CNT. Durch gezieltes Eliminieren metallischer CNT-Strompfade nach der Deposition ist es gelungen, CNT-Feldeffekttransistoren (CNT-FETs) mit Schaltverhältnissen von bis zu sieben Dekaden herzustellen. Auch dieses Verfahren ist skalierbar und unkompliziert, da es sich selbst steuert. Es ist skalierbar und deshalb auch für technische Anwendungen geeignet. An Hand des Beispiels der Detektion von Ethanoldampf konnte gezeigt werden, dass die über Dielektrophorese aufgebauten CNT-FETs auch als Sensoren eingesetzt werden können. Durch eine Kombination der dielektrophoretischen Deposition von CNT und dem dielektrophoretisch gesteuerten Wachstum metallischer Nanodrähte konnte eine neuartige Hybridstruktur aus CNT und Palladium-Nanodrähten erzeugt werden. Ein solches Verfahren ist eine Voraussetzung für den Aufbau integrierter nanoskaliger Schaltkreise. Die vorliegenden Ergebnisse zeigen zahlreiche Möglichkeiten auf, verschiedenartige nanoskopische Objekte miteinander integrieren, um neue Anwendungen zu ermöglichen.
|
46 |
Performance-oriented strategies for integration and wiring of the photosystem I inside 2D and 3D architectures and coupling photocatalysis with enzymatic catalysisCiornii, Dmitri 02 September 2020 (has links)
In der vorliegenden Arbeit sind unterschiedliche Kopplungsstrategien des natürlichen Photosystems I (PSI) aus Cyanobakterium Thermosynechococcus elongatus mit verschiedenen Elektrodenoberflächen sowie Interaktion mit Nanomaterialien und Enzymen bearbeitet worden. Zum einen wurde gezeigt, dass die Immobilisierung des PSI auf modifizierten mehr-wandigen Kohlenstoffnanoröhrchen zur funktionalen Photobiohybridelektrode führt. Dabei wurde das PSI mit der Elektrode elektrisch mit Hilfe eines Redoxproteins, Cytochrom c (cyt c), verknüpft. Das System (PSI-cyt c) wurde auch auf eine dreidimensionale Elektrodenoberfläche des Metaloxids Indiumzinnoxid (eng. ITO) übertragen. Hierbei wurde zusätzlich die TransparenzEigenschaft solcher Oberflächen ausgenutzt. Die Präparation solcher transparenter Elektroden wurde optimiert, um höhere Photoströme zu generieren. Weiterhin wurde eine neue Methode der elektrischen Kontaktierung des PSI mit der Elektrode etabliert. Hierfür wurden Fullerene eingesetzt. Durch erhöhte molekulare Effizienz wurde gezeigt, dass Fullerene effektivere Elektronvermittler zwischen PSI und der Elektrode sind als das cyt c. Zusätzlich wurden im Rahmen dieser Doktorarbeit die photokatalytischen Eigenschaften von PSI mit den biokatalytischen Eigenschaften des Enzyms humane Sulphit Oxidase (hSOx) kombiniert. Hierbei wurde das Enzym als ein alternativer und effizienter Elektronzulieferer für PSI eingesetzt. Ein drittes Protein, das cyt c, fungierte als elektrisches Bindeglied und sicherte die elektrische Kommunikation zwischen den katalytischen Proteinen im System und der Elektrode. Die Komplexität des PSI sowie seine Kommunikation mit anorganischen Nanomaterialien und anderen komplexen Biomolekülen, wie z.B. Enzymen, zeigt ein großes Potential des Einsatzes von PSI-basierter Biohybriden in den Biotechnologien der Zukunft. / In this thesis, different strategies for coupling of the natural complex photosystem I from the cyanobacterium Thermosynechococcus elongatus with different electrode surfaces, and the interaction of PSI with nanomaterials and enzymes has been investigated. First, it was shown that immobilization of PSI on modified multi-walled carbon nanotubes (MWNT) leads to a functional photobiohybrid electrode. Here, PSI has been electrically wired to the electrode via a redox-active protein, cytochrome c (cyt c). The system (PSI-cyt c) has been scaled up to the three-dimensional surface of a metal-oxide, indium tin oxide (ITO). Here, additionally the high transparency property of this material has been exploited. The new preparation procedure of such transparent electrodes has been optimized in order to achieve high pohotocurrents. Furthermore, a new method of electric wiring of the PSI with the electrode has been established. Here, fullerenes have been employed. The high molecular efficiency of such a system proves that fullerenes are more effective wiring agents between the PSI and the electrode as compared to the cyt c. Additionally, in this thesis the photocatalytic property of the PSI has been combined with the biocatalytic property of the enzyme human sulphite oxidase, hSOx. Here, the enzyme has been employed as an alternative electron supplier for PSI. The third protein, cyt c, acted as an electric wiring agent and ensured electric communication between both catalytic proteins of the system and the electrode. The versatility of the PSI as well as its communication with anorganic nanomaterials and biological molecules, e.g. such as enzymes, shows a great potential for use of PSI-based biohybrids in the future biotechnological applications.
|
47 |
Metal nanoparticles reveal the organization of single-walled carbon nanotubes in bundlesRodriguez, Raul D., Blaudeck, Thomas, Kalbacova, Jana, Sheremet, Evgeniya, Schulze, Steffen, Adner, David, Hermann, Sascha, Hietschold, Michael, Lang, Heinrich, Schulz, Stefan E., Zahn, Dietrich R. T. 12 February 2016 (has links)
Single-walled carbon nanotubes (SWCNTs) were decorated with metal nanoparticles. Using a complementary analysis with spatially resolved micro-Raman spectroscopy, high resolution transmission electron microscopy, electron diffraction, and tip-enhanced Raman spectroscopy, we show that the SWCNTs form bundles in which smaller diameter SWCNTs are the ones preferentially affected by the presence of Au and Ag nanoparticles. This result is exploited to evaluate the structural organization of SWCNTs with mixed chiralities in bundles, leading us to postulate that smaller diameter SWCNTs surround larger ones. We found that this effect occurs for very distinct scenarios including SWCNTs both in nanometer thin films and in field effect transistor configurations at the wafer-level, suggesting a universal phenomenon for SWCNTs deposited from dispersions. / Einwandige Kohlenstoffnanoröhren (SWCNTs) wurden mit Metallnanopartikeln dekoriert. Nach Anwendung von ortsauflösender Raman-Mikroskopie und -Spektroskopie, Transmissionselektronenmikroskopie, Elektronenbeugung und spitzenverstärkter Ramanspektroskopie wird festgestellt, dass sich aus den SWCNTs fasrige Bündel formen, wobei die analytischen Signaturen der SWCNTs mit kleinerem Durchmesser stärker von der Präsenz der Gold- und Silbernanopartikel beeinflusst werden als die der größeren. Dieses Resultat kann damit erklärt werden, dass in der Struktur solcher Bündel SWCNTs mit kleinerem Durchmesser außen und SWCNTs mit größerem Durchmesser innen zu liegen kommen. Wir konnten diesen Effekt für verschiedene Szenarien nachweisen: i) für SWCNTs in nanometerdünnen ungeordneten Filmen und ii) für SWCNTs, ausgerichtet zwischen Elektroden in der Geometrie eines Feldeffekttransistors. Diese Feststellung legt nahe, dass es sich um ein universelles Phänomen für aus flüssigen Dispersionen abgeschiedene SWCNTs handelt. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
48 |
Preparation and characterization of Carbon Nanotube based vertical interconnections for integrated circuits / Herstellung und Charakterisierung von auf Kohlenstoffnanoröhren basierenden vertikalen Kontakten im Metallisierungssystem für integrierte SchaltkreiseFiedler, Holger 25 September 2014 (has links) (PDF)
(ULSI) causes an increase of the resistance of the wiring system by increased scattering of electrons at side walls and grain boundaries in the state of the art Cu technology, which increases the RC delay of the interconnect system and thus degrades the performance of the device. The outstanding properties of carbon nanotubes (CNT) such as a large mean free path, a high thermal conductance and a large resistance against electromigration make them an ideal candidate to replace Cu in future feature nodes. The present thesis contributes to the preparation and properties of CNT based vertical interconnections (vias). In addition, all processes applied during the fabrication are compatible to ULSI and an interface between CNT based vias and a Cu metallization is studied. The methodology for the evaluation of CNT based vias is improved; it is highlighted that by measuring the resistance of one multiwall CNT and taking into account the CNT density, the performance of the CNT based vias can be predicted accurately. This provides the means for a systematic evaluation of different integration procedures and materials. The lowest contact resistance is obtained for carbide forming metals, as long as oxidation during the integration is avoided. Even though metal-nitrides exhibit an enhanced contact resistance, they are recommended to be used at the bottom metallization in order to minimize the oxidation of the metal-CNT contact during subsequent processing steps. Overall a ranking for the materials from the lowest to the highest contact resistance is obtained: Ta < Ti < TaN < TiN « TiO2 « Ta2O5 Furthermore the impact of post CNT growth procedures as chemical mechanical planarization, HF treatment and annealing procedures after the CNT based via fabrication are evaluated. The conductance of the incorporated CNTs and the applicable electrical transport regime relative to the CNT quality and the CNT length is discussed. In addition, a strong correlation between the temperature coefficient of resistance and the initial resistance of the CNT based vias at room temperature has been observed. / Die kontinuierliche Miniaturisierung der charakteristischen Abmessungen in hochintegrierten Schaltungen (ULSI) verursacht einen Anstieg des Widerstandes im Zuleitungssystem aufgrund der erhöhten Streuung von Elektronen an Seitenwänden und Korngrenzen in der Cu-Technologie, wodurch die Verzögerungszeit des Zuleitungssystems ansteigt. Die herausragenden Eigenschaften von Kohlenstoffnanoröhren (CNT), wie eine große mittlere freie Weglänge, hohe thermische Leitfähigkeit und eine starke Resistenz gegenüber Elektromigration machen diese zu einem idealen Kandidaten, um Cu in zukünftigen Technologiegenerationen zu ersetzen. Die vorliegende Arbeit beschreibt die Herstellung und daraus resultierenden Eigenschaften von Zwischenebenenkontakten (Vias) basierend auf CNTs. Alle verwendeten Prozessierungsschritte sind kompatibel mit der Herstellung von hochintegrierten Schaltkreisen und eine Schnittstelle zwischen den CNT Vias und einer Cu-Metallisierung ist vorhanden. Insbesondere das Verfahren zur Evaluierung von CNT Vias wurde durch den Einsatz verschiedener Methoden verbessert. Insbesondere soll hervorgehoben werden, dass durch die Messung des Widerstandes eines einzelnen CNTs, bei bekannter CNT Dichte, der Via Widerstand sehr genau vorausgesagt werden kann. Dies ermöglicht eine systematische Untersuchung des Einflusses der verschiedenen Prozessschritte und der darin verwendeten Materialien auf den Via Widerstand. Der niedrigste Kontaktwiderstand wird für Karbidformierende Metalle erreicht, solange Oxidationsprozesse ausgeschlossen werden können. Obwohl Metallnitride einen höheren Kontaktwiderstand aufweisen, sind diese für die Unterseitenmetallisierung zu empfehlen, da dadurch die Oxidation der leitfähigen Schicht minimiert wird. Insgesamt kann eine Reihenfolge beginnend mit dem niedrigsten zum höchsten Kontaktwiderstand aufgestellt werden: Ta < Ti < TaN < TiN « TiO2 « Ta2O5 Desweiteren wurde der Einfluss von Verfahren nach dem CNTWachstum wie die chemischmechanische Planarisierung, eine HF Behandlung und einer Temperaturbehandlung evaluiert, sowie deren Einfluss auf die elektrischen Parameter des Vias untersucht. Die Leitfähigkeit der integrierten CNTs und die daraus resultierenden elektrischen Transporteigenschaften in Abhängigkeit der CNT Qualität und Länge werden besprochen. Ebenso wird die starke Korrelation zwischen dem Temperaturkoeffizienten des elektrischen Widerstandes und des Ausgangswiderstandes der CNT basierten Vias bei Raumtemperatur diskutiert.
|
49 |
Ab initio Berechnung des Elektronentransports in metallbeschichteten Kohlenstoffnanoröhrchen: Ab initio Berechnung des Elektronentransports inmetallbeschichteten KohlenstoffnanoröhrchenSommer, Jan 20 September 2011 (has links)
Kohlenstoffnanoröhrchen (engl. carbon nanotube, CNT) sind vielversprechende Kandidaten für den Ersatz von Kupferleitbahnen die bei weiterer Strukturverkleinerung von integrierten Schaltkreisen notwendig wird. In dieser Arbeit wird mit Hilfe von ab-initio Simulationen auf Basis der Dichtefunktionaltheorie die elektronische Struktur von halbleitenden CNTs beispielhaft anhand des (8,4)-CNTs untersucht. Nach Besetzung des CNT mit Metallatomen, hier Kobalt, zeigen sich massive Änderungen der Bandstruktur. Es reichen bereits überraschend kleine Mengen des Metalls aus, um einen starken Effekt zu erreichen. Die Änderungen der elektronischen Struktur sind stark abhängig von der genauen Position der Metallatome relativ zum Kohlenstoffgerüst der CNTs, der Einfluss der mechanischen Verformung des CNTs als Reaktion auf die Anlagerung ist hingegen sehr gering. Die relevanten Bänder der Kobaltatome liegen leicht unterhalt der Fermi-Energie und sorgen bei der Integration in die Bandstruktur des CNTs für die Schließung der Bandlücke und somit für die Transformation eines vorher halbleitenden CNTs in ein leitendes.
Diese Transformation konnte auch mit Simulationsrechnungen zum Elektronentransport bestätigt werden. Ferner wurden bei weiteren Rechnungen eine ausgeprägte Spinabhängigkeit der Bandstruktur ermittelt, welche noch weiterer Untersuchung bedarf.
|
50 |
Atomic Layer Deposition and Microanalysis of Ultrathin LayersMelzer, Marcel 17 October 2012 (has links)
Carbon nanotubes (CNTs) are a highly promising material for future interconnects. It is expected that the decoration of CNTs with Cu particles or also the filling of the interspaces between the CNTs with Cu instead of the currently used SiO2 can enhance the performance of CNT-based interconnects.
Due to the high aspect ratio of CNTs an appropriate deposition technique has to be applied which is able to coat such structures uniformly. The current work is therefore considered with thermal atomic layer deposition (ALD) of CuxO from the liquid Cu (I) β-diketonate precursor [(nBu3P)2Cu(acac)] and wet oxygen at 135°C on variously pretreated multi-walled CNTs.
The different in-situ pre-treatments of the CNTs with oxygen, water vapor and wet oxygen in a temperature range from 100 to 300°C at a pressure of 1.33 mbar have been carried out prior to the ALD to enable uniform nucleation on the otherwise chemical inert CNT surface. The reduction of the CuxO as well as the filling of the space between the CNTs is not part of this work.
Variations of the oxidation temperature as well as the oxidation agents resulted in different growth modes of the CuxO. An oxidation with wet oxygen at 300°C yielded in a partially layer like growth of the CuxO. It is expected that this growth mode is connected to a partial destruction of the outer CNT shell due to the oxidation. However, the damage introduced to the CNTs was not high enough to be detected by Raman spectroscopy.
For all other investigated pretreatments, the formation of nanoparticles (NPs) was observed by electron microscopy. This formation of CuxO NPs can be explained by the metal-tube-interaction. Furthermore, the NPs probably decorate defect sites of the CNTs due to their higher reactivity. Additionally, analysis of energy-dispersive X-ray spectroscopy and spectroscopic ellipsometry measurements suggests that the used precursor [(nBu3P)2Cu(acac)] requires reactive oxygen surface groups for initiating the ALD growth.
The observation of layer-like growth of CuxO on CNTs pretreated with wet oxygen at 300°C appears promising for deposition processes of Cu seed layers on CNTs. However, more aggressive pretreatments at higher temperatures or with more aggressive oxidation agents could be required to enable layer like growth on the entire CNTs.
|
Page generated in 0.077 seconds