• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 28
  • 8
  • 1
  • Tagged with
  • 87
  • 54
  • 43
  • 30
  • 20
  • 19
  • 19
  • 19
  • 13
  • 13
  • 12
  • 11
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Proximal Splitting Methods in Nonsmooth Convex Optimization

Hendrich, Christopher 17 July 2014 (has links)
This thesis is concerned with the development of novel numerical methods for solving nondifferentiable convex optimization problems in real Hilbert spaces and with the investigation of their asymptotic behavior. To this end, we are also making use of monotone operator theory as some of the provided algorithms are originally designed to solve monotone inclusion problems. After introducing basic notations and preliminary results in convex analysis, we derive two numerical methods based on different smoothing strategies for solving nondifferentiable convex optimization problems. The first approach, known as the double smoothing technique, solves the optimization problem with some given a priori accuracy by applying two regularizations to its conjugate dual problem. A special fast gradient method then solves the regularized dual problem such that an approximate primal solution can be reconstructed from it. The second approach affects the primal optimization problem directly by applying a single regularization to it and is capable of using variable smoothing parameters which lead to a more accurate approximation of the original problem as the iteration counter increases. We then derive and investigate different primal-dual methods in real Hilbert spaces. In general, one considerable advantage of primal-dual algorithms is that they are providing a complete splitting philosophy in that the resolvents, which arise in the iterative process, are only taken separately from each maximally monotone operator occurring in the problem description. We firstly analyze the forward-backward-forward algorithm of Combettes and Pesquet in terms of its convergence rate for the objective of a nondifferentiable convex optimization problem. Additionally, we propose accelerations of this method under the additional assumption that certain monotone operators occurring in the problem formulation are strongly monotone. Subsequently, we derive two Douglas–Rachford type primal-dual methods for solving monotone inclusion problems involving finite sums of linearly composed parallel sum type monotone operators. To prove their asymptotic convergence, we use a common product Hilbert space strategy by reformulating the corresponding inclusion problem reasonably such that the Douglas–Rachford algorithm can be applied to it. Finally, we propose two primal-dual algorithms relying on forward-backward and forward-backward-forward approaches for solving monotone inclusion problems involving parallel sums of linearly composed monotone operators. The last part of this thesis deals with different numerical experiments where we intend to compare our methods against algorithms from the literature. The problems which arise in this part are manifold and they reflect the importance of this field of research as convex optimization problems appear in lots of applications of interest.
82

Coarse-graining for gradient systems and Markov processes

Stephan, Artur 29 October 2021 (has links)
Diese Arbeit beschäftigt sich mit Coarse-Graining (dt. ``Vergröberung", ``Zusammenfassung von Zuständen") für Gradientensysteme und Markov-Prozesse. Coarse-Graining ist ein etabliertes Verfahren in der Mathematik und in den Naturwissenschaften und hat das Ziel, die Komplexität eines physikalischen Systems zu reduzieren und effektive Modelle herzuleiten. Die mathematischen Probleme in dieser Arbeit stammen aus der Theorie der Systeme interagierender Teilchen. Hierbei werden zwei Ziele verfolgt: Erstens, Coarse-Graining mathematisch rigoros zu beweisen, zweitens, mathematisch äquivalente Beschreibungen für die effektiven Modelle zu formulieren. Die ersten drei Teile der Arbeit befassen sich mit dem Grenzwert schneller Reaktionen für Reaktionssysteme und Reaktions-Diffusions-Systeme. Um effektive Modelle herzuleiten, werden nicht nur die zugehörigen Reaktionsratengleichungen betrachtet, sondern auch die zugrunde liegende Gradientenstruktur. Für Gradientensysteme wurde in den letzten Jahren eine strukturelle Konvergenz, die sogenannte ``EDP-Konvergenz", entwickelt. Dieses Coarse-Graining-Verfahren wird in der vorliegenden Arbeit auf folgende Systeme mit langsamen und schnellen Reaktionen angewandt: lineare Reaktionssysteme (bzw. Markov-Prozesse auf endlichem Zustandsraum), nichtlineare Reaktionssysteme, die das Massenwirkungsgesetz erfüllen, und lineare Reaktions-Diffusions-Systeme. Für den Grenzwert schneller Reaktionen wird eine mathematisch rigorose und strukturerhaltende Vergröberung auf dem Level des Gradientensystems inform von EDP-Konvergenz bewiesen. Im vierten Teil wird der Zusammenhang zwischen Gleichungen mit Gedächtnis und Markov-Prozessen untersucht. Für Gleichungen mit Gedächtnisintegralen wird explizit ein größer Markov-Prozess konstruiert, der die Gleichung mit Gedächtnis als Teilsystem enthält. Der letzte Teil beschäftigt sich mit verschieden Diskretisierungen für den Fokker-Planck-Operator. Dazu werden numerische und analytische Eigenschaften untersucht. / This thesis deals with coarse-graining for gradient systems and Markov processes. Coarse-graining is a well-established tool in mathematical and natural sciences for reducing the complexity of a physical system and for deriving effective models. The mathematical problems in this work originate from interacting particle systems. The aim is twofold: first, providing mathematically rigorous results for physical coarse-graining, and secondly, formulating mathematically equivalent descriptions for the effective models. The first three parts of the thesis deal with fast-reaction limits for reaction systems and reaction-diffusion systems. Instead of deriving effective models by solely investigating the associated reaction-rate equation, we derive effective models using the underlying gradient structure of the evolution equation. For gradient systems a structural convergence, the so-called ``EDP-convergence", has been derived in recent years. In this thesis, this coarse-graining procedure has been applied to the following systems with slow and fast reactions: linear reaction systems (or Markov process on finite state space), nonlinear reaction systems of mass-action type, and linear reaction-diffusion systems. For the fast-reaction limit, we perform rigorous and structural coarse-graining on the level of the gradient system by proving EDP-convergence. In the fourth part, the connection between memory equations and Markov processes is investigated. Considering linear memory equations, which can be motivated from spatial homogenization, we explicitly construct a larger Markov process that includes the memory equation as a subsystem. The last part deals with different discretization schemes for the Fokker–Planck operator and investigates their analytical and numerical properties.
83

Stochastic Modeling of Intraday Electricity Markets

Milbradt, Cassandra 29 November 2023 (has links)
Limit-Orderbücher sind das Standardinstrument der Preisbildung in modernen Finanzmärkten. Während Strom traditionell in Auktionen gehandelt wird, gibt es Intraday Strommärkte wie beispielsweise den SIDC-Markt, in welchem Käufer und Verkäufer über Limit-Orderbücher zusammentreffen. In dieser Arbeit werden wir stochastische Modelle von Limit-Orderbüchern auf der Grundlage der zugrundeliegenden Marktmikrostruktur entwickeln. Einen besonderen Schwerpunkt legen wir dabei auf die Berücksichtigung besonderer Merkmale der Intraday-Strommärkte, die sich zum Teil deutlich von denen der Finanzmärkte unterscheiden. Die in dieser Arbeit entwickelten Modelle beginnen mit einer realistischen und mikroskopischen Beschreibung der Marktdynamik. Große Preisänderungen über kurze Zeiträume werden ebenso berücksichtigt wie begrenzte grenzüberschreitende Aktivitäten. Diese mikroskopischen Modelle sind im Allgemeinen zu rechenintensiv für praktische Anwendungen. Das Hauptziel dieser Arbeit ist es daher, geeignete Approximationen dieser mikroskopischen Modelle durch sogenannte Skalierungsgrenzprozesse herzuleiten. Zu diesem Zweck werden sorgfältig Skalierungsannahmen formuliert und in die mikroskopischen Modelle eingebaut. Diese Annahmen ermöglichen es uns, ihr Hochfrequenzverhalten zu untersuchen, vorausgesetzt, dass die Größe eines einzelnen Auftrags gegen Null konvergiert, während die Auftragseingangsrate gegen unendlich tendiert. Die Kalibrierung mathematischer Modelle ist aus Anwendersicht eines der Hauptanliegen. Dabei ist bekannt, dass Änderungspunkte (abrupte Schwankungen) in hochfrequenten Finanzdaten vorhanden sind. Falls sie durch endogene Effekte verursacht wurden, muss bei der Schätzung solcher Änderungspunkte die Abhängigkeit von den zugrundeliegenden Daten berücksichtigt werden. Daher erweitern wir im letzten Teil dieser Arbeit die bestehende Literatur zur Erkennung von Änderungspunkten, so dass auch zufällige, von den Daten abhängige Änderungspunkte gehandhabt werden können. / Limit order books are the standard instrument for price formation in modern financial markets. While electricity has traditionally been traded through auctions, there are intraday electricity markets, such as the SIDC market, in which buyers and sellers meet via limit order books. In this thesis, stochastic models of limit order books are developed based on the underlying market microstructure. A particular focus is set on incorporating unique characteristics of intraday electricity markets, some of which are quite different from those of financial markets. The developed models in this thesis start with a realistic and microscopic description of the market dynamics. Large price changes over short time periods are considered, as well as limited cross-border activities. These microscopic models are generally computationally too intensive for practical applications. The main goal of this thesis is therefore to derive suitable approximations of these microscopic models by so-called scaling limits. For this purpose, appropriate scaling assumptions are carefully formulated and incorporated into the microscopic models which allow us to study their high-frequency behavior when the size of an individual order converges to zero while the order arrival rate tends to infinity. Calibration of mathematical models is one of the main concerns from a practitioner’s point of view. It is well known that change points (abrupt variations) are present in high-frequency financial data. If they are caused by endogenous effects, the dependence on the underlying data must be considered when estimating such change points. In the final part of this thesis, we extend the existing literature on change point detection so that random change points depending on the data can also be handled.
84

Stabilised finite element approximation for degenerate convex minimisation problems

Boiger, Wolfgang Josef 19 August 2013 (has links)
Infimalfolgen nichtkonvexer Variationsprobleme haben aufgrund feiner Oszillationen häufig keinen starken Grenzwert in Sobolevräumen. Diese Oszillationen haben eine physikalische Bedeutung; Finite-Element-Approximationen können sie jedoch im Allgemeinen nicht auflösen. Relaxationsmethoden ersetzen die nichtkonvexe Energie durch ihre (semi)konvexe Hülle. Das entstehende makroskopische Modell ist degeneriert: es ist nicht strikt konvex und hat eventuell mehrere Minimalstellen. Die fehlende Kontrolle der primalen Variablen führt zu Schwierigkeiten bei der a priori und a posteriori Fehlerschätzung, wie der Zuverlässigkeits- Effizienz-Lücke und fehlender starker Konvergenz. Zur Überwindung dieser Schwierigkeiten erweitern Stabilisierungstechniken die relaxierte Energie um einen diskreten, positiv definiten Term. Bartels et al. (IFB, 2004) wenden Stabilisierung auf zweidimensionale Probleme an und beweisen dabei starke Konvergenz der Gradienten. Dieses Ergebnis ist auf glatte Lösungen und quasi-uniforme Netze beschränkt, was adaptive Netzverfeinerungen ausschließt. Die vorliegende Arbeit behandelt einen modifizierten Stabilisierungsterm und beweist auf unstrukturierten Netzen sowohl Konvergenz der Spannungstensoren, als auch starke Konvergenz der Gradienten für glatte Lösungen. Ferner wird der sogenannte Fluss-Fehlerschätzer hergeleitet und dessen Zuverlässigkeit und Effizienz gezeigt. Für Interface-Probleme mit stückweise glatter Lösung wird eine Verfeinerung des Fehlerschätzers entwickelt, die den Fehler der primalen Variablen und ihres Gradienten beschränkt und so starke Konvergenz der Gradienten sichert. Der verfeinerte Fehlerschätzer konvergiert schneller als der Fluss- Fehlerschätzer, und verringert so die Zuverlässigkeits-Effizienz-Lücke. Numerische Experimente mit fünf Benchmark-Tests der Mikrostruktursimulation und Topologieoptimierung ergänzen und bestätigen die theoretischen Ergebnisse. / Infimising sequences of nonconvex variational problems often do not converge strongly in Sobolev spaces due to fine oscillations. These oscillations are physically meaningful; finite element approximations, however, fail to resolve them in general. Relaxation methods replace the nonconvex energy with its (semi)convex hull. This leads to a macroscopic model which is degenerate in the sense that it is not strictly convex and possibly admits multiple minimisers. The lack of control on the primal variable leads to difficulties in the a priori and a posteriori finite element error analysis, such as the reliability-efficiency gap and no strong convergence. To overcome these difficulties, stabilisation techniques add a discrete positive definite term to the relaxed energy. Bartels et al. (IFB, 2004) apply stabilisation to two-dimensional problems and thereby prove strong convergence of gradients. This result is restricted to smooth solutions and quasi-uniform meshes, which prohibit adaptive mesh refinements. This thesis concerns a modified stabilisation term and proves convergence of the stress and, for smooth solutions, strong convergence of gradients, even on unstructured meshes. Furthermore, the thesis derives the so-called flux error estimator and proves its reliability and efficiency. For interface problems with piecewise smooth solutions, a refined version of this error estimator is developed, which provides control of the error of the primal variable and its gradient and thus yields strong convergence of gradients. The refined error estimator converges faster than the flux error estimator and therefore narrows the reliability-efficiency gap. Numerical experiments with five benchmark examples from computational microstructure and topology optimisation complement and confirm the theoretical results.
85

Beiträge zur Regularisierung inverser Probleme und zur bedingten Stabilität bei partiellen Differentialgleichungen

Shao, Yuanyuan 17 January 2013 (has links) (PDF)
Wir betrachten die lineare inverse Probleme mit gestörter rechter Seite und gestörtem Operator in Hilberträumen, die inkorrekt sind. Um die Auswirkung der Inkorrektheit zu verringen, müssen spezielle Lösungsmethode angewendet werden, hier nutzen wir die sogenannte Tikhonov Regularisierungsmethode. Die Regularisierungsparameter wählen wir aus das verallgemeinerte Defektprinzip. Eine typische numerische Methode zur Lösen der nichtlinearen äquivalenten Defektgleichung ist Newtonverfahren. Wir schreiben einen Algorithmus, die global und monoton konvergent für beliebige Startwerte garantiert. Um die Stabilität zu garantieren, benutzen wir die Glattheit der Lösung, dann erhalten wir eine sogenannte bedingte Stabilität. Wir demonstrieren die sogenannte Interpolationsmethode zur Herleitung von bedingten Stabilitätsabschätzungen bei inversen Problemen für partielle Differentialgleichungen.
86

Beiträge zur Regularisierung inverser Probleme und zur bedingten Stabilität bei partiellen Differentialgleichungen

Shao, Yuanyuan 14 January 2013 (has links)
Wir betrachten die lineare inverse Probleme mit gestörter rechter Seite und gestörtem Operator in Hilberträumen, die inkorrekt sind. Um die Auswirkung der Inkorrektheit zu verringen, müssen spezielle Lösungsmethode angewendet werden, hier nutzen wir die sogenannte Tikhonov Regularisierungsmethode. Die Regularisierungsparameter wählen wir aus das verallgemeinerte Defektprinzip. Eine typische numerische Methode zur Lösen der nichtlinearen äquivalenten Defektgleichung ist Newtonverfahren. Wir schreiben einen Algorithmus, die global und monoton konvergent für beliebige Startwerte garantiert. Um die Stabilität zu garantieren, benutzen wir die Glattheit der Lösung, dann erhalten wir eine sogenannte bedingte Stabilität. Wir demonstrieren die sogenannte Interpolationsmethode zur Herleitung von bedingten Stabilitätsabschätzungen bei inversen Problemen für partielle Differentialgleichungen.
87

Direct guaranteed lower eigenvalue bounds with quasi-optimal adaptive mesh-refinement

Puttkammer, Sophie Louise 19 January 2024 (has links)
Garantierte untere Eigenwertschranken (GLB) für elliptische Eigenwertprobleme partieller Differentialgleichungen sind in der Theorie sowie in praktischen Anwendungen relevant. Auf Grund des Rayleigh-Ritz- (oder) min-max-Prinzips berechnen alle konformen Finite-Elemente-Methoden (FEM) garantierte obere Schranken. Ein Postprocessing nichtkonformer Methoden von Carstensen und Gedicke (Math. Comp., 83.290, 2014) sowie Carstensen und Gallistl (Numer. Math., 126.1, 2014) berechnet GLB. In diesen Schranken ist die maximale Netzweite ein globaler Parameter, das kann bei adaptiver Netzverfeinerung zu deutlichen Unterschätzungen führen. In einigen numerischen Beispielen versagt dieses Postprocessing für lokal verfeinerte Netze komplett. Diese Dissertation präsentiert, inspiriert von einer neuen skeletal-Methode von Carstensen, Zhai und Zhang (SIAM J. Numer. Anal., 58.1, 2020), einerseits eine modifizierte hybrid-high-order Methode (m=1) und andererseits ein allgemeines Framework für extra-stabilisierte nichtkonforme Crouzeix-Raviart (m=1) bzw. Morley (m=2) FEM. Diese neuen Methoden berechnen direkte GLB für den m-Laplace-Operator, bei denen eine leicht überprüfbare Bedingung an die maximale Netzweite garantiert, dass der k-te diskrete Eigenwert eine untere Schranke für den k-ten Dirichlet-Eigenwert ist. Diese GLB-Eigenschaft und a priori Konvergenzraten werden für jede Raumdimension etabliert. Der neu entwickelte Ansatz erlaubt adaptive Netzverfeinerung, die für optimale Konvergenzraten auch bei nichtglatten Eigenfunktionen erforderlich ist. Die Überlegenheit der neuen adaptiven FEM wird durch eine Vielzahl repräsentativer numerischer Beispiele illustriert. Für die extra-stabilisierte GLB wird bewiesen, dass sie mit optimalen Raten gegen einen einfachen Eigenwert konvergiert, indem die Axiome der Adaptivität von Carstensen, Feischl, Page und Praetorius (Comput. Math. Appl., 67.6, 2014) sowie Carstensen und Rabus (SIAM J. Numer. Anal., 55.6, 2017) verallgemeinert werden. / Guaranteed lower eigenvalue bounds (GLB) for elliptic eigenvalue problems of partial differential equation are of high relevance in theory and praxis. Due to the Rayleigh-Ritz (or) min-max principle all conforming finite element methods (FEM) provide guaranteed upper eigenvalue bounds. A post-processing for nonconforming FEM of Carstensen and Gedicke (Math. Comp., 83.290, 2014) as well as Carstensen and Gallistl (Numer. Math., 126.1,2014) computes GLB. However, the maximal mesh-size enters as a global parameter in the eigenvalue bound and may cause significant underestimation for adaptive mesh-refinement. There are numerical examples, where this post-processing on locally refined meshes fails completely. Inspired by a recent skeletal method from Carstensen, Zhai, and Zhang (SIAM J. Numer. Anal., 58.1, 2020) this thesis presents on the one hand a modified hybrid high-order method (m=1) and on the other hand a general framework for an extra-stabilized nonconforming Crouzeix-Raviart (m=1) or Morley (m=2) FEM. These novel methods compute direct GLB for the m-Laplace operator in that a specific smallness assumption on the maximal mesh-size guarantees that the computed k-th discrete eigenvalue is a lower bound for the k-th Dirichlet eigenvalue. This GLB property as well as a priori convergence rates are established in any space dimension. The novel ansatz allows for adaptive mesh-refinement necessary to recover optimal convergence rates for non-smooth eigenfunctions. Striking numerical evidence indicates the superiority of the new adaptive eigensolvers. For the extra-stabilized nonconforming methods (a generalization of) known abstract arguments entitled as the axioms of adaptivity from Carstensen, Feischl, Page, and Praetorius (Comput. Math. Appl., 67.6, 2014) as well as Carstensen and Rabus (SIAM J. Numer. Anal., 55.6, 2017) allow to prove the convergence of the GLB towards a simple eigenvalue with optimal rates.

Page generated in 0.064 seconds