• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 3
  • Tagged with
  • 39
  • 39
  • 27
  • 15
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Amyloid-β and lysozyme proteotoxicity in Drosophila : Beneficial effects of lysozyme and serum amyloid P component in models of Alzheimer’s disease and lysozyme amyloidosis

Bergkvist, Liza January 2017 (has links)
In the work presented this thesis, two different conditions that are classified as protein misfolding diseases: Alzheimer's disease and lysozyme amyloidosis and proteins that could have a beneficial effect in these diseases, have been studied using Drosophila melanogaster, commonly known as the fruit fly. The fruit fly has been used for over 100 years to study and better understand fundamental biological processes. Although the fruit fly, unlike humans, is an invertebrate, many of its central biological mechanisms are very similar to ours. The first transgenic flies were designed in the early 1980s, and since then, the fruit fly has been one of the most widely used model organisms in studies on the effects of over-expressed human proteins in a biological system; one can regard the fly as a living, biological test tube. For  most proteins, it is necessary that they fold into a three-dimensional structure to function properly. But sometimes the folding goes wrong; this may be due to mutations that make the protein unstable and subject to misfolding. A misfolded protein molecule can then aggregate with other misfolded proteins. In Alzheimer's disease, which is the most common form of dementia, protein aggregates are present in the brains of patients. These aggregates are composed of the amyloid-β (Aβ) peptide, a small peptide of around 42 amino acids which is cleaved from the larger, membrane-bound, protein AβPP by two different enzymes, BACE1 and γ-secretase. In the first part of this thesis, two different fly models for Alzheimer’s disease were used: the Aβ fly model, which directly expresses the Aβ peptide, and the AβPP-BACE1 fly model, in which all the components necessary to produce the Aβ peptide in the fly are expressed in the fly central nervous system (CNS). The two different fly models were compared and the results show that a significantly smaller amount of the Aβ peptide is needed to achieve the same, or an even greater, toxic effect in the AβPP-BACE1 model compared to the Aβ model. In the second part of the thesis, these two fly models for Alzheimer’s disease were again used, but now to investigate whether lysozyme, a protein involved in our innate immune system, can counteract the toxic effect of Aβ generated in the fly models. And indeed, lysozyme is able to save the flies from Aβ-induced toxicity. Aβ and lysozyme were found to interact with each other in vivo. The second misfolding disease studied in this thesis is lysozyme amyloidosis. It is a rare, dominantly inherited amyloid disease in which mutant variants of lysozyme give rise to aggregates, weighing up to several kilograms, that accumulate around the kidneys and liver, eventually leading to organ failure. In the third part of this thesis, a fly model for lysozyme amyloidosis was used to study the effect of co-expressing the serum amyloid P component (SAP), a protein that is part of all protein aggregates found within this disease class. SAP is able to rescue the toxicity induced by expressing the mutant variant of lysozyme, F57I, in the fly's CNS. To further investigate how SAP was able to do this, double-expressing lysozyme flies, which exhibit stronger disease phenotypes than those of the single-expressing lysozyme flies previously studied, were used in the fourth part of this thesis. SAP was observed to reduce F57I toxicity and promote F57I to form aggregates with more distinct amyloid characteristics. In conclusion, the work included in this thesis demonstrates that: i) Aβ generated from AβPP processing in the fly CNS results in higher proteotoxicity compared with direct expression of Aβ from the transgene, ii) lysozyme can prevent Aβ proteotoxicity in Drosophila and could thus be a potential therapeutic molecule to treat Alzheimer’s disease and iii) in a Drosophila model of lysozyme amyloidosis, SAP can prevent toxicity from the disease-associated lysozyme variant F57I and promote formation of aggregated lysozyme morphotypes with amyloid properties; this is important to take into account when a reduced level of SAP is considered as a treatment strategy for lysozyme amyloidosis.
32

On the Versatility of Microwave-Assisted Chemistry : Exemplified by Applications in Medicinal Chemistry, Heterocyclic Chemistry and Biochemistry

Orrling, Kristina M. January 2009 (has links)
Today, the demand for speed in drug discovery is constantly increasing, particularly in the iterative processes of hit validation and expansion and lead optimization. Irradiation with microwaves (MWs) has been applied in the area of organic synthesis to accelerate chemical reactions and to facilitate the generation of new chemical entities since 1986. In the work presented in this thesis, the use of MW-mediated heating has been expanded to address three fields of drug discovery, namely hit expansion, chemical library generation and genomics. In the first project, potential inhibitors of malaria aspartic proteases were designed and synthesized, partly by MW-assisted organic chemistry, and evaluated with regard to their inhibitory efficacy on five malaria aspartic proteases and their selectivity over two human aspartic proteases. The synthetic work included the development of fast and convenient methods of MW-assisted formation of thiazolidines and epoxy esters. Some of the resulting structures proved to be efficacious inhibitors of the aspartic protease that degrades haemoglobin in all four malaria parasites infecting man. No inhibitor affected the human aspartic proteases. Expedient, two-step, single-operation synthetic routes to heterocycles of medicinal interest were developed in the second and third projects. In the former, the use of a versatile synthon, Ph3PCCO, provided α,β-unsaturated lactones, lactams and amides within 5–10 minutes. In the latter project, saturated lactams were formed from amines and lactones in 35 minutes, in the absence of strong additives. These two MW-mediated protocols allowed the reduction of the reaction time from several hours or days to minutes. In the fourth project, a fully automated MW-assisted protocol for the important enzyme-catalysed polymerase chain reaction (PCR) was established. In addition, the PCR reaction could be performed in unusually large volumes, 2.5 mL and 15 mL, with yields corresponding to those from conventional PCR. Good amplification rates suggested that the thermophilic enzyme, Taq polymerase, was not affected by the MW radiation.
33

Multivariate design of molecular docking experiments : An investigation of protein-ligand interactions

Andersson, David January 2010 (has links)
To be able to make informed descicions regarding the research of new drug molecules (ligands), it is crucial to have access to information regarding the chemical interaction between the drug and its biological target (protein). Computer-based methods have a given role in drug research today and, by using methods such as molecular docking, it is possible to investigate the way in which ligands and proteins interact. Despite the acceleration in computer power experienced in the last decades many problems persist in modelling these complicated interactions. The main objective of this thesis was to investigate and improve molecular modelling methods aimed to estimate protein-ligand binding. In order to do so, we have utilised chemometric tools, e.g. design of experiments (DoE) and principal component analysis (PCA), in the field of molecular modelling. More specifically, molecular docking was investigated as a tool for reproduction of ligand poses in protein 3D structures and for virtual screening. Adjustable parameters in two docking software were varied using DoE and parameter settings were identified which lead to improved results. In an additional study, we explored the nature of ligand-binding cavities in proteins since they are important factors in protein-ligand interactions, especially in the prediction of the function of newly found proteins. We developed a strategy, comprising a new set of descriptors and PCA, to map proteins based on their cavity physicochemical properties. Finally, we applied our developed strategies to design a set of glycopeptides which were used to study autoimmune arthritis. A combination of docking and statistical molecular design, synthesis and biological evaluation led to new binders for two different class II MHC proteins and recognition by a panel of T-cell hybridomas. New and interesting SAR conclusions could be drawn and the results will serve as a basis for selection of peptides to include in in vivo studies.
34

Pilicides and Curlicides : Design, synthesis, and evaluation of novel antibacterial agents targeting bacterial virulence

Chorell, Erik January 2010 (has links)
New strategies are needed to counter the growing problem of bacterial resistance to antibiotics. One such strategy is to design compounds that target bacterial virulence, which could work separately or in concert with conventional bacteriostatic or bactericidal antibiotics. Pilicides are a class of compounds based on a ring-fused 2-pyridone scaffold that target bacterial virulence by blocking the chaperone/usher pathway in E. coli and thereby inhibit the assembly of pili. This thesis describes the design, synthesis, and biological evaluation of compounds based on the pilicide scaffold with the goal of improving the pilicides and expanding their utility. Synthetic pathways have been developed to enable the introduction of substituents at the C-2 position of the pilicide scaffold. Biological evaluation of these compounds demonstrated that some C-2 substituents give rise to significant increases in potency. X-ray crystallography was used to elucidate the structural basis of this improved biological activity. Furthermore, improved methods for the preparation of oxygen-analogues and C-7 substituted derivatives of the pilicide scaffold have been developed. These new methods were used in combination with existing strategies to decorate the pilicide scaffold as part of a multivariate design approach to improve the pilicides and generate structure activity relationships (SARs). Fluorescent pilicides were prepared using a strategy where selected substituents were replaced with fluorophores having similar physicochemical properties as the original substituents. Many of the synthesized fluorescent compounds displayed potent pilicide activities and can thus be used to study the complex interactions between pilicide and bacteria. For example, when E. coli was treated with fluorescent pilicides, it was found that the compounds were not uniformly distributed throughout the bacterial population, suggesting that the compounds are primarily associated to bacteria with specific properties. Finally, by studying compounds designed to inhibit the aggregation of Aβ, it was found that some compounds based on the pilicide scaffold inhibit the formation of the functional bacterial amyloid fibers known as curli; these compounds are referred to as 'curlicides'. Some of the curlicides also prevent the formation of pili and thus exhibit dual pilicide-curlicide activity. The potential utility of such 'dual-action' compounds was highlighted by a study of one of the more potent dual pilicide-curlicides in a murine UTI model were the compound was found to significantly attenuate virulence in vivo.
35

Hit Identification and Hit Expansion in Antituberculosis Drug Discovery : Design and Synthesis of Glutamine Synthetase and 1-Deoxy-D-Xylulose-5-Phosphate Reductoisomerase Inhibitors

Nordqvist, Anneli January 2011 (has links)
Since the discovery of Mycobacterium tuberculosis (Mtb) as the bacterial agent causing tuberculosis, the permanent eradication of this disease has proven challenging. Although a number of drugs exist for the treatment of tuberculosis, 1.7 million people still die every year from this infection. The current treatment regimen involves lengthy combination therapy with four different drugs in an effort to combat the development of resistance. However, multidrug-resistant and extensively drug-resistant strains are emerging in all parts of the world. Therefore, new drugs effective in the treatment of tuberculosis are much-needed. The work presented in this thesis was focused on the early stages of drug discovery by applying different hit identification and hit expansion strategies in the exploration of two new potential drug targets, glutamine synthetase (GS) and 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR). A literature survey was first carried out to identify new Mtb GS inhibitors from compounds known to inhibit GS in other species. Three compounds, structurally unrelated to the typical amino acid derivatives of previously known GS inhibitors, were then discovered by virtual screening and found to be Mtb GS inhibitors, exhibiting activities in the millimolar range. Imidazo[1,2-a]pyridine analogues were also investigated as Mtb GS inhibitors. The chemical functionality, size requirements and position of the substituents in the imidazo[1,2-a]pyridine hit were investigated, and a chemical library was designed based on a focused hierarchical design of experiments approach. The X-ray structure of one of the inhibitors in complex with Mtb GS provided additional insight into the structure–activity relationships of this class of compounds. Finally, new α-arylated fosmidomycin analogues were synthesized as inhibitors of Mtb DXR, exhibiting IC50 values down to 0.8 µM. This work shows that a wide variety of aryl groups are tolerated by the enzyme. Cinnamaldehydes are important synthetic intermediates in the synthesis of fosmidomycin analogues. These were prepared by an oxidative Heck reaction from acrolein and various arylboronic acids. Electron-rich, electron-poor, heterocyclic and sterically hindered boronic acids could be employed, furnishing cinnamaldehydes in 43–92% yield.
36

Påverkan på PK(INR)-värdet efter olika preanalytiska behandlingar i venöst humanblod.

Khashayar, Mahdavisabet January 2015 (has links)
Venous thromboembolism that cause blood clotting in blood vessels, prevent blood circulation, depending on changes in one or more of the coagulation factors II, VII, IX and X. Patients who have had a blood clot or cardiovascular diseases are treated with oral anti-vitamin K (Warfarin®) to reducing and prevent relapse. Warfarin is also used as a preventive treatment before the disease. An overdose of Warfarin® may cause bleeding-complications and low dose cause blood clotting. The dosage of the drug is controlled by measuring prothrombin in plasma. The aim of this study was to investigate if prothrombin-complex value changes due to re-spinning and re-analysis after six hours. Fitty whole blood samples from warfarin-treated patients were divided into three subgroups, those with protrombinkomplex-values of 2-4 (n=20), >4 (n=15) and <2 (n=15). The samples were centrifugated and measured (Method A), re-centrifugated and measured (Method B) or re-analysed after six hours (Method C). All results were compared in a Bland-Altman plot as follows: Method B vs. Method A and Method C vs. Method A. The scatter graph yielded a strong correlation between Method A and Method B (R2=0.9984) and Method A and Methods C (R2=0.9977). The results from t-test showed a significance level (p<0.001) for both analyses (statistical significance=p<0.05). In this study we showed that prothrombin complex value ware stable after re-centrifugation and re-measurement after six hours. Statistical calculations yielded a strong correlation between the methods (A, B, C), and there was no significance difference between the methods.
37

Influence of Nrf2 Activators and Keap1 Inhibitors on Antioxidative Phenotypes of THP-1-Derived M1 and M2 macrophages: Therapeutic Potential for Systemic Lupus Erythematosus

Svahn, Leo January 2023 (has links)
POPULAR SCIENTIFIC SUMMARY Systemic lupus erythematosus (SLE) is not your average disorder. It behaves like a mischievous troublemaker, wreaking havoc throughout the body, causing inflammation that affects multiple organs. SLE presents a puzzle that keeps health care professionals worldwide intrigued, searching for answers amidst its complex of immunologic manifestations and clinical symptoms. While we’ve made progress in understanding SLE, its specific cause remains a mystery. What we do know is that SLE triggers a fascinating interplay between genetic, hormonal, and environmental factors in susceptible individuals. Macrophages, specialized white blood cells, can be likened to moody actors on a stage wearing different masks and wielding functional props. Among them are M1 macrophages, fiery troublemakers who provoke pro-inflammatory responses, and M2 macrophages, peacemakers striving for balance by generating anti-inflammatory responses. Then there is NRF2, the vigilante, normally held by its captor, KEAP1. However, when cells stress NRF2 manages to break free from KEAP1 and spring into action, embarking on a crucial journey into the cell nucleus where DNA is stored. Once inside, NRF2 binds specific regions of the DNA, promoting genes associated with protective activities, including antioxidative responses and detoxification processes, thereby shielding cells from further harm. Now, let us envision a therapeutic strategy that utilizes this; if we can deliberately unleashNRF2 on command, triggering a powerful cascade of antioxidative responses throughout the body,such a treatment would offer tremendous promise and serve as a paradigm for patients sufferingfrom chronic inflammation. But the question remains: Is it possible? In this study, we investigated the effects of certain chemicals on macrophages in a controlledlab environment. Our goal was to explore their potential for therapeutic purposes. Excitingly, wediscovered that these chemicals can indeed influence macrophages to produce a stronger antiinflammatory and antioxidant response. These findings could be promising for developing futuretreatments, especially in patients diagnosed with conditions such as SLE. / ABSTRACT Systemic lupus erythematosus (SLE) is a multifaceted, chronic autoimmune disorder that leads to inflammation and affects various organs. A wide range of immunologic manifestations and clinical symptoms characterizes SLE. While the specific cause remains unknown, it is thought to result from a combination of genetic susceptibility and the intricate interplay between environmental and hormonal factors. A significant subset of SLE patients also experience renal manifestation, lupus nephritis (LN), characterized by distinct inflammatory responses in which macrophages play a role. Macrophages exhibit different functional characteristics depending on their environment, and generally display two contrasting phenotypes; M1, which elicits proinflammatory responses, and M2, which generates anti-inflammatory responses Homeostasis is vital, yet environmental stress is inevitable. NRF2, a transcription factor known for its involvement in oxidative stress response, plays a pivotal role. Under basal conditions, NRF2 resides in the cytoplasm and is targeted for degradation by the protein KEAP1. However, during cellular stress, the NRF2-KEAP1 complex dissociates, allowing NRF2 to translocate into the nucleus where it binds specific regulatory regions of genes that promote cytoprotective activities. The NRF2 pathway has gained attention as a potential target for therapeutic strategies in inflammatory conditions, including SLE. This study aimed to assess the effects of certain chemical NRF2 activators and a KEAP1 inhibitor on an in vitro model of M1 and M2 macrophage polarization. The objective was to investigate whether these compounds could enhance antioxidative response. To evaluate this, key genes and proteins involved in antioxidative pathways were analyzed. Gene expression was assessed using quantitative real-time PCR (qPCR), and protein presence was determined through immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA). The findings of this study indicate that stimulation of macrophage subgroups with the selected compounds promotes a shift towards anti-inflammatory and antioxidative response. / <p>Rektor tilldelade Leo Svahn stipendie Österby för <em>välartade obemedlade studier</em>.</p>
38

High-throughput screening using multicellular tumor spheroids to reveal and exploit tumor-specific vulnerabilities

Senkowski, Wojciech January 2017 (has links)
High-throughput drug screening (HTS) in live cells is often a vital part of the preclinical anticancer drug discovery process. So far, two-dimensional (2D) monolayer cell cultures have been the most prevalent model in HTS endeavors. However, 2D cell cultures often fail to recapitulate the complex microenvironments of in vivo tumors. Monolayer cultures are highly proliferative and generally do not contain quiescent cells, thought to be one of the main reasons for the anticancer therapy failure in clinic. Thus, there is a need for in vitro cellular models that would increase predictive value of preclinical research results. The utilization of more complex three-dimensional (3D) cell cultures, such as multicellular tumor spheroids (MCTS), which contain both proliferating and quiescent cells, has therefore been proposed. However, difficult handling and high costs still pose significant hurdles for application of MCTS for HTS. In this work, we aimed to develop novel assays to apply MCTS for HTS and drug evaluation. We also set out to identify cellular processes that could be targeted to selectively eradicate quiescent cancer cells. In Paper I, we developed a novel MCTS-based HTS assay and found that nutrient-deprived and hypoxic cancer cells are selectively vulnerable to treatment with inhibitors of mitochondrial oxidative phosphorylation (OXPHOS). We also identified nitazoxanide, an FDA-approved anthelmintic agent, to act as an OXPHOS inhibitor and to potentiate the effects of standard chemotherapy in vivo. Subsequently, in Paper II we applied the high-throughput gene-expression profiling method for MCTS-based drug screening. This led to discovery that quiescent cells up-regulate the mevalonate pathway upon OXPHOS inhibition and that the combination of OXPHOS inhibitors and mevalonate pathway inhibitors (statins) results in synergistic toxicity in this cell population. In Paper III, we developed a novel spheroid-based drug combination-screening platform and identified a set of molecules that synergize with nitazoxanide to eradicate quiescent cancer cells. Finally, in Paper IV, we applied our MCTS-based methods to evaluate the effects of phosphodiesterase (PDE) inhibitors in PDE3A-expressing cell lines. In summary, this work illustrates how MCTS-based HTS yields potential to reveal and exploit previously unrecognized tumor-specific vulnerabilities. It also underscores the importance of cell culture conditions in preclinical drug discovery endeavors.
39

Thiopurine S-methyltransferase - characterization of variants and ligand binding

Blissing, Annica January 2017 (has links)
Thiopurine S-methyltransferase (TPMT) belongs to the Class I S-adenosylmethionine-dependent methyltransferase (SAM-MT) super family of structurally related proteins. Common to the members of this large protein family is the catalysis of methylation reactions using S-adenosylmethionine (SAM) as a methyl group donor, although SAM-MTs act on a wide range of different substrates and carry out numerous biologically important functions. While the natural function of TPMT is unknown, this enzyme is involved in the metabolism of thiopurines, a class of pharmaceutical substances administered in treatment of immune-related disorders. Specifically, methylation by TPMT inactivates thiopurines and their metabolic intermediates, which reduces the efficacy of clinical treatment and increases the risk of adverse side effects. To further complicate matters, TPMT is a polymorphic enzyme with over 40 naturally occurring variants known to date, most of which exhibit lowered methylation activity towards thiopurines. Consequently, there are individual variations in TPMTmediated thiopurine inactivation, and the administered dose has to be adjusted prior to clinical treatment to avoid harmful side effects. Although the clinical relevance of TPMT is well established, few studies have investigated the molecular causes of the reduced methylation activity of variant proteins. In this thesis, the results of biophysical characterization of two variant proteins, TPMT*6 (Y180F) and TPMT*8 (R215H), are presented. While the properties of TPMT*8 were indistinguishable from those of the wild-type protein, TPMT*6 was found to be somewhat destabilized. Interestingly, the TPMT*6 amino acid substitution did not affect the functionality or folding pattern of the variant protein. Therefore, the decreased in vivo functionality reported for TPMT*6 is probably caused by increased proteolytic degradation in response to the reduced stability of this protein variant, rather than loss of function. Also presented herein are novel methodological approaches for studies of TPMT and its variants. Firstly, the advantages of using 8-anilinonaphthalene-1-sulfonic acid (ANS) to probe TPMT tertiary structure and active site integrity are presented. ANS binds exclusively to the native state of TPMT with high affinity (KD ~ 0.2 μm) and a 1:1 ratio. The stability of TPMT was dramatically increased by binding of ANS, which was shown to co-localize with the structurally similar adenine moiety of the cofactor SAM. Secondly, an enzyme activity assay based on isothermal titration calorimetry (ITC) is presented. Using this approach, the kinetics of 6-MP and 6-TG methylation by TPMT has been characterized.

Page generated in 0.3636 seconds