• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 12
  • 9
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 63
  • 63
  • 23
  • 18
  • 17
  • 13
  • 11
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Investigating non commutative structures - quantum groups and dual groups in the context of quantum probability / Étude des structures non-commutatives : le cas des groupes quantiques et des groupes duaux dans le contexte des probabilités quantiques

Ulrich, Michael 21 June 2016 (has links)
Les Mathématiques non-commutatives sont un domaine en plein essor. L'idée de base consiste à remarquer qu'au lieu de décrire un espace donné comme étant un ensemble de points, on peut de manière équivalente le décrire par l'algèbre des fonctions définies sur cet espace. Cette algèbre est commutative. On remplace alors cette algèbre par une algèbre qui n'est plus forcément commutative et que l'on cherche à interpréter comme une algèbre de fonctions sur un « espace non-commutatif ». Les groupes quantiques sont un exemple de généralisation non-commutative de la notion de groupe. Il s'agit d'une C*-algèbre munie d'une comultiplication à valeur dans le produit tensoriel de l'algèbre avec elle-même. Les groupes quantiques ont été bien étudiés. Les groupes duaux sont similaires aux groupes quantiques, mais la comultiplication est cette fois-ci à valeur dans le produit libre, et non plus dans le produit tensoriel. Bien qu'ils aient été introduits dans les années 80, ils n'ont pas encore été vraiment étudiés. Le but de cette thèse est d'explorer les propriétés des groupes duaux, en se concentrant sur l'un d'entre eux – le groupe dual unitaire – et ce en utilisant les méthodes des probabilités non-commutatives (ou probabilités quantiques) / Noncommutative Mathematics are a very active domain. The idea underlying it is that instead of describing a space as a set of points, it is equivalent to describe it with the algebra of functions defined on said space. This algebra is commutative. Now we replace this algebra with an algebra that is not necessarily commutative any more and we want to interpret it as the algebra of functions defined on a « noncommutative space ». Quantum groups are an example of such a noncommutative generalization of the notion of group. They are C*-algebras equipped with a comultiplication that takes its values in the tensor product of the algebra with itself. Quantum groups are well-known and well studied. Nevertheless we can also define dual groups, which are similar to quantum groups, but the comultiplication takes now its values in the free product of the algebra with itself, instead of the tensor product. Though dual groups have been introduced in the 80s, they have not been much studied so far. The goal of this thesis is to study their properties, especially in the case of one particular dual group called the unitary dual group, by using methods from noncommutative probability (or quantum probability).
32

Path-dependent Risk Measures - Theory and Applications

Möller, Philipp Maximilian 12 January 2021 (has links)
No description available.
33

An Analysis of Markov Regime-Switching Models for Weather Derivative Pricing

Gerdin Börjesson, Fredrik January 2021 (has links)
The valuation of weather derivatives is greatly dependent on accurate modeling and forecasting of the underlying temperature indices. The complexity and uncertainty in such modeling has led to several temperature processes being developed for the Monte Carlo simulation of daily average temperatures. In this report, we aim to compare the results of two recently developed models by Gyamerah et al. (2018) and Evarest, Berntsson, Singull, and Yang (2018). The paper gives a thorough introduction to option theory, Lévy and Wiener processes, and generalized hyperbolic distributions frequently used in temperature modeling. Implementations of maximum likelihood estimation and the expectation-maximization algorithm with Kim's smoothed transition probabilities are used to fit the Lévy process distributions and both models' parameters, respectively. Later, the use of both models is considered for the pricing of European HDD and CDD options by Monte Carlo simulation. The evaluation shows a tendency toward the shifted temperature regime over the base regime, in contrast to the two articles, when evaluated for three data sets. Simulation is successfully demonstrated for the model of Evarest, however Gyamerah's model was unable to be replicated. This is concluded to be due to the two articles containing several incorrect derivations, why the thesis is left unanswered and the articles' conclusions are questioned. We end by proposing further validation of the two models and summarize the alterations required for a correct implementation.
34

Optimální řízení stochastických rovnic s Lévyho procesy v Hilbertových proctorech / Optimal control of Lévy-driven stochastic equations in Hilbert spaces

Kadlec, Karel January 2020 (has links)
Controlled linear stochastic evolution equations driven by Lévy processes are studied in the Hilbert space setting. The control operator may be unbounded which makes the results obtained in the abstract setting applicable to parabolic SPDEs with boundary or point control. The first part contains some preliminary technical results, notably a version of Itô formula which is applicable to weak/mild solutions of controlled equations. In the second part, the ergodic control problem is solved: The feedback form of the optimal control and the formula for the optimal cost are found. The control problem is solved in the mean-value sense and, under selective conditions, in the pathwise sense. As examples, various parabolic type controlled SPDEs are studied. 1
35

On temporal coherency of probabilistic models for audio-to-score alignment / Modèles probabilistes temporellement cohérents pour l'alignement audio-sur-partition

Cuvillier, Philippe 15 December 2016 (has links)
Cette thèse porte sur l'alignement automatique d'un enregistrement audio avec la partition de musique correspondante. Nous adoptons une approche probabiliste et proposons une démarche théorique pour la modélisation algorithmique de ce problème d'alignement automatique. La question est de modéliser l'évolution temporelle des événements par des processus stochastiques. Notre démarche part d'une spécificité de l'alignement musical : une partition attribue à chaque événement une durée nominale, qui est une information a priori sur la durée probable d'occurrence de l'événement. La problématique qui nous occupe est celle de la modélisation probabiliste de cette information de durée. Nous définissons la notion de cohérence temporelle à travers plusieurs critères de cohérence que devrait respecter tout algorithme d'alignement musical. Ensuite, nous menons une démarche axiomatique autour du cas des modèles de semi-Markov cachés. Nous démontrons que ces critères sont respectés lorsque des conditions mathématiques particulières sont vérifiées par les lois a priori du modèle probabiliste de la partition. Ces conditions proviennent de deux domaines mathématiques jusqu'ici étrangers à la question de l'alignement : les processus de Lévy et la totale positivité d'ordre deux. De nouveaux résultats théoriques sont démontrés sur l'interrelation entre ces deux notions. En outre, les bienfaits pratiques de ces résultats théoriques sont démontrés expérimentalement sur des algorithmes d'alignement en temps réel. / This thesis deals with automatic alignment of audio recordings with corresponding music scores. We study algorithmic solutions for this problem in the framework of probabilistic models which represent hidden evolution on the music score as stochastic process. We begin this work by investigating theoretical foundations of the design of such models. To do so, we undertake an axiomatic approach which is based on an application peculiarity: music scores provide nominal duration for each event, which is a hint for the actual and unknown duration. Thus, modeling this specific temporal structure through stochastic processes is our main problematic. We define temporal coherency as compliance with such prior information and refine this abstract notion by stating two criteria of coherency. Focusing on hidden semi-Markov models, we demonstrate that coherency is guaranteed by specific mathematical conditions on the probabilistic design and that fulfilling these prescriptions significantly improves precision of alignment algorithms. Such conditions are derived by combining two fields of mathematics, Lévy processes and total positivity of order 2. This is why the second part of this work is a theoretical investigation which extends existing results in the related literature.
36

Parameter Stability in Additive Normal Tempered Stable Processes for Equity Derivatives

Alcantara Martinez, Eduardo Alberto January 2023 (has links)
This thesis focuses on the parameter stability of additive normal tempered stable processes when calibrating a volatility surface. The studied processes arise as a generalization of Lévy normal tempered stable processes, and their main characteristic are their time-dependent parameters. The theoretical background of the subject is presented, where its construction is discussed taking as a starting point the definition of Lévy processes. The implementation of an option valuation model using Fourier techniques and the calibration process of the model are described. The thesis analyzes the parameter stability of the model when it calibrates the volatility surface of a market index (EURO STOXX 50) during three time spans. The time spans consist of the periods from Dec 2016 to Dec 2017 (after the Brexit and the US presidential elections), from Nov 2019 to Nov 2020 (during the pandemic caused by COVID-19) and a more recent time period, April 2023. The findings contribute to the understanding of the model itself and the behavior of the parameters under particular economic conditions.
37

Pièges et vieillissement pour les marches aléatoires sur des environnements aléatoires hautement irréguliers : phénoménologie et étude de cas

Davignon, Élise 11 1900 (has links)
Nous présentons d’abord une introduction au sujet des marches aléatoires en milieux aléatoires. Nous nous penchons en particulier sur les phénomènes de ralentissement, et plus précisément sur la propriété de vieillissement qu’exhibent plusieurs de ces systèmes lorsque les paramètres sont tels qu’ils conduisent l’environnement aléatoire à produire fréquemment des « pièges », soient des structures qui retiennent la marche aléatoire dans la même région de l’environnement pour de longues durées de temps. Nous illustrons ces notions à l’aide de résultats connus pour deux modèles. Nous présentons par la suite une preuve pour une propriété de vieillissement dans le cas de la marche aléatoire biaisée sur les conductances aléatoires à queues lourdes dans la grille infinie hyper-cubique à d dimensions, qui est le sujet d’un article en attente de publication. / We first present an introduction to the topic of random walks on random environments (RWRE). In particular, we look at slow-down phenomena and, more specifically, ageing properties exhibited by multiple such systems when parameters are chosen such that the random environment frequently produces large “traps”: structures that hold up the progress of the random walk by keeping it in the same region of the environment for long periods of time. We illustrate these behaviours by presenting known results for two such models. We then present a proof for an ageing property in the case of the biased random walk on heavy-tailed random conductances in the infinite hyper-cubic lattice in d dimensions; this is the subject of a research article pending publication.
38

Étude empirique de distributions associées à la Fonction de Pénalité Escomptée

Ibrahim, Rabï 03 1900 (has links)
On présente une nouvelle approche de simulation pour la fonction de densité conjointe du surplus avant la ruine et du déficit au moment de la ruine, pour des modèles de risque déterminés par des subordinateurs de Lévy. Cette approche s'inspire de la décomposition "Ladder height" pour la probabilité de ruine dans le Modèle Classique. Ce modèle, déterminé par un processus de Poisson composé, est un cas particulier du modèle plus général déterminé par un subordinateur, pour lequel la décomposition "Ladder height" de la probabilité de ruine s'applique aussi. La Fonction de Pénalité Escomptée, encore appelée Fonction Gerber-Shiu (Fonction GS), a apporté une approche unificatrice dans l'étude des quantités liées à l'événement de la ruine été introduite. La probabilité de ruine et la fonction de densité conjointe du surplus avant la ruine et du déficit au moment de la ruine sont des cas particuliers de la Fonction GS. On retrouve, dans la littérature, des expressions pour exprimer ces deux quantités, mais elles sont difficilement exploitables de par leurs formes de séries infinies de convolutions sans formes analytiques fermées. Cependant, puisqu'elles sont dérivées de la Fonction GS, les expressions pour les deux quantités partagent une certaine ressemblance qui nous permet de nous inspirer de la décomposition "Ladder height" de la probabilité de ruine pour dériver une approche de simulation pour cette fonction de densité conjointe. On présente une introduction détaillée des modèles de risque que nous étudions dans ce mémoire et pour lesquels il est possible de réaliser la simulation. Afin de motiver ce travail, on introduit brièvement le vaste domaine des mesures de risque, afin d'en calculer quelques unes pour ces modèles de risque. Ce travail contribue à une meilleure compréhension du comportement des modèles de risques déterminés par des subordinateurs face à l'éventualité de la ruine, puisqu'il apporte un point de vue numérique absent de la littérature. / We discuss a simulation approach for the joint density function of the surplus prior to ruin and deficit at ruin for risk models driven by Lévy subordinators. This approach is inspired by the Ladder Height decomposition for the probability of ruin of such models. The Classical Risk Model driven by a Compound Poisson process is a particular case of this more generalized one. The Expected Discounted Penalty Function, also referred to as the Gerber-Shiu Function (GS Function), was introduced as a unifying approach to deal with different quantities related to the event of ruin. The probability of ruin and the joint density function of surplus prior to ruin and deficit at ruin are particular cases of this function. Expressions for those two quantities have been derived from the GS Function, but those are not easily evaluated nor handled as they are infinite series of convolutions with no analytical closed form. However they share a similar structure, thus allowing to use the Ladder Height decomposition of the Probability of Ruin as a guiding method to generate simulated values for this joint density function. We present an introduction to risk models driven by subordinators, and describe those models for which it is possible to process the simulation. To motivate this work, we also present an application for this distribution, in order to calculate different risk measures for those risk models. An brief introduction to the vast field of Risk Measures is conducted where we present selected measures calculated in this empirical study. This work contributes to better understanding the behavior of subordinators driven risk models, as it offers a numerical point of view, which is absent in the literature.
39

On parabolic stochastic integro-differential equations : existence, regularity and numerics

Leahy, James-Michael January 2015 (has links)
In this thesis, we study the existence, uniqueness, and regularity of systems of degenerate linear stochastic integro-differential equations (SIDEs) of parabolic type with adapted coefficients in the whole space. We also investigate explicit and implicit finite difference schemes for SIDEs with non-degenerate diffusion. The class of equations we consider arise in non-linear filtering of semimartingales with jumps. In Chapter 2, we derive moment estimates and a strong limit theorem for space inverses of stochastic flows generated by Lévy driven stochastic differential equations (SDEs) with adapted coefficients in weighted Hölder norms using the Sobolev embedding theorem and the change of variable formula. As an application of some basic properties of flows of Weiner driven SDEs, we prove the existence and uniqueness of classical solutions of linear parabolic second order stochastic partial differential equations (SPDEs) by partitioning the time interval and passing to the limit. The methods we use allow us to improve on previously known results in the continuous case and to derive new ones in the jump case. Chapter 3 is dedicated to the proof of existence and uniqueness of classical solutions of degenerate SIDEs using the method of stochastic characteristics. More precisely, we use Feynman-Kac transformations, conditioning, and the interlacing of space inverses of stochastic flows generated by SDEs with jumps to construct solutions. In Chapter 4, we prove the existence and uniqueness of solutions of degenerate linear stochastic evolution equations driven by jump processes in a Hilbert scale using the variational framework of stochastic evolution equations and the method of vanishing viscosity. As an application, we establish the existence and uniqueness of solutions of degenerate linear stochastic integro-differential equations in the L2-Sobolev scale. Finite difference schemes for non-degenerate SIDEs are considered in Chapter 5. Specifically, we study the rate of convergence of an explicit and an implicit-explicit finite difference scheme for linear SIDEs and show that the rate is of order one in space and order one-half in time.
40

Nonparametric adaptive estimation for discretely observed Lévy processes

Kappus, Julia Johanna 30 October 2012 (has links)
Die vorliegende Arbeit hat nichtparametrische Schätzmethoden für diskret beobachtete Lévyprozesse zum Gegenstand. Ein Lévyprozess mit endlichen zweiten Momenten und endlicher Variation auf Kompakta wird niederfrequent beobachtet. Die Sprungdynamik wird vollständig durch das endliche signierte Maß my(dx):= x ny(dx) beschrieben. Ein lineares Funktional von my soll nichtparametrisch geschätzt werden. Im ersten Teil werden Kernschätzer konstruiert und obere Schranken für das korrespondierende Risiko bewiesen. Daraus werden Konvergenzraten unter Glattheitsannahmen an das Lévymaß hergeleitet. Für Spezialfälle werden untere Schranken bewiesen und daraus Minimax-Optimalität gefolgert. Der Schwerpunkt liegt auf dem Problem der datengetriebenen Wahl des Glättungsparameters, das im zweiten Teil untersucht wird. Da die nichtparametrische Schätzung für Lévyprozesse starke strukturelle Ähnlichkeiten mit Dichtedekonvolutionsproblemen mit unbekannter Fehlerdichte aufweist, werden beide Problemstellungen parallel diskutiert und die Methoden allgemein sowohl für Lévyprozesse als auch für Dichtedekonvolution entwickelt. Es werden Methoden der Modellwahl durch Penalisierung angewandt. Während das Prinzip der Modellwahl im üblichen Fall darauf beruht, dass die Fluktuation stochastischer Terme durch Penalisierung mit einer deterministischen Größe beschränkt werden kann, ist die Varianz im hier betrachteten Fall unbekannt und der Strafterm somit stochastisch. Das Hauptaugenmerk der Arbeit liegt darauf, Strategien zum Umgang mit dem stochastischen Strafterm zu entwickeln. Dabei ist ein modifizierter Schätzer für die charakteristische Funktion im Nenner zentral, der es erlaubt, die punktweise Kontrolle der Abweichung dieses Objects von seiner Zielgröße auf die gesamte reelle Achse zu erweitern. Für die Beweistechnik sind insbesondere Talagrand-Konzentrationsungleichungen für empirische Prozesse relevant. / This thesis deals with nonparametric estimation methods for discretely observed Lévy processes. A Lévy process X having finite variation on compact sets and finite second moments is observed at low frequency. The jump dynamics is fully described by the finite signed measure my(dx)=x ny(dx). The goal is to estimate, nonparametrically, some linear functional of my. In the first part, kernel estimators are constructed and upper bounds on the corresponding risk are provided. From this, rates of convergence are derived, under regularity assumptions on the Lévy measure. For particular cases, minimax lower bounds are proved. The rates of convergence are thus shown to be minimax optimal. The focus lies on the data driven choice of the smoothing parameter, which is being considered in the second part. Since nonparametric estimation methods for Lévy processes have strong structural similarities with with nonparametric density deconvolution with unknown error density, both fields are discussed in parallel and the concepts are developed in generality, for Lévy processes as well as for density deconvolution. The choice of the bandwidth is realized, using techniques of model selection via penalization. The principle of model selection via penalization usually relies on the fact that the fluctuation of certain stochastic quantities can be controlled by penalizing with a deterministic term. Contrarily to this, the variance is unknown in the setting investigated here and the penalty term is hence itself a stochastic quantity. It is the main concern of this thesis to develop strategies to dealing with the stochastic penalty term. The most important step in this direction will be a modified estimator of the unknown characteristic function in the denominator, which allows to make the pointwise control of this object uniform on the real line. The main technical tools involved in the arguments are concentration inequalities of Talagrand type for empirical processes.

Page generated in 0.0827 seconds