• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 33
  • 27
  • 10
  • 8
  • 6
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 145
  • 31
  • 26
  • 22
  • 20
  • 20
  • 17
  • 12
  • 12
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Growth, fruiting body development and laccase production of selected coprini / Navarro González, Mónica

Navarro González, Mónica 30 April 2008 (has links)
No description available.
122

Die Rolle oxidativer Pilzenzyme für die Totholzzersetzung und die Zersetzungsdynamik von Fagus sylvatica, Picea abies und Pinus sylvestris / The importance of oxidative fungal enzymes for deadwood decomposition and dynamics of decomposition in logs of Fagus sylvatica, Picea abies and Pinus sylvestris

Arnstadt, Tobias 24 July 2017 (has links) (PDF)
In Waldökosystemen ist Totholz von zentraler Bedeutung, indem es zahlreichen Organismen einen Lebensraum bietet oder als Substrat dient, Bestandteil des Kohlenstoff- und Nährstoffkreislaufs ist sowie als ein wichtiges strukturelles Element fungiert. Für seine Zersetzung ist die Überwindung der Ligninbarriere von besonderer Bedeutung. Dazu sind lediglich saprobionte Pilze aus den Phyla der Basidiomycota und Ascomycota in der Lage, die verschiedene Strategien – die Fäuletypen – entwickelt haben, um Lignin abzubauen oder zu modifizieren und somit Zugang zu den vom Lignin inkrustierten Polysachariden (Zellulose und Hemizellulosen) zu erhalten. Eine besondere Rolle spielen dabei Weißfäulepilze, die mit ihren extrazellulären oxidativen Enzymen, wie Laccasen und verschiedenen Peroxidasen, Lignin komplett bis zum Kohlendioxid (CO2) mineralisieren. Trotz der Bedeutung des Ligninabbaus für die Totholzzersetzung sind extrazelluläre oxidative Enzyme im natürlichen Totholz kaum erforscht. Ziel dieser Arbeit war es, die Rolle der oxidativen Enzyme für die Totholzzersetzung unter Realbedingungen zu verifizieren, ihre räumlichen und zeitlichen Muster zu beschreiben und ihre Abhängigkeiten von verschiedenen Totholzvariablen sowie der pilzlichen Artengemeinschaft in und auf Totholz zu ermitteln. Weiter wurde die Veränderung der Totholzvariablen über den Zersetzungsprozess für unterschiedliche Baumarten vergleichend beschrieben und der Einfluss der Waldbewirtschaftung auf den Prozess untersucht. Dazu wurden 197 natürliche Totholzstämme (coarse woody debris, CWD) von Fagus sylvatica (Rotbuche), Picea abies (Gemeine Fichte) und Pinus sylvestris (Gemeine Kiefer) in unterschiedlich stark bewirtschafteten Wäldern in Deutschland untersucht. Insgesamt wurden 735 Proben genommen und darin die Aktivität von Laccase (Lacc), Genereller Peroxidase (GenP) und Mangan-Peroxidase (MnP) gemessen. Weiterhin wurden Variablen wie Dichte, Wassergehalt, pH-Wert, wasserlösliche Ligninfragmente, die Gehalte an Lignin und Extraktiven sowie an Nährstoffen und Metallen (N, Al, Ca, Cu, K, Mg, Mn und Zn) ermittelt. Die pilzliche Artengemeinschaft wurde anhand genetischer Fingerprints (F-ARISA) und mittels Fruchtkörperkartierung erfasst. In 79 % der untersuchten Totholzproben wurden oxidative Enzymaktivitäten festgestellt. Sie waren hoch variabel über den Zersetzungsverlauf sowie in Bezug auf die Probenahmepositionen innerhalb der einzelnen Stämme. Generell waren die Aktivitäten im F.-sylvatica-Totholz höher als im Koniferentotholz. Lineare und logistische Modelle zeigten, dass die pilzliche Artengemeinschaft, gefollgt von den wasserlöslichen Ligninfragmenten, die wichtigste Einflussgröße hinsichtlich der oxidativen Enzyme war. Ein saurer pH-Wert unterstützte die Funktion von Lacc und MnP; Mangan, Eisen und Kupfer waren in ausreichenden Konzentrationen vorhanden, um die Funktion und Bildung der Enzyme zu gewährleisten. Die holzabbauenden Pilze erwiesen sich als optimal an das niedrige Stickstoffangebot im Totholz angepasst, sodass ein erhöhter Stickstoffeintrag über zwei Jahre die oxidativen Enzymaktivitäten nicht weiter beeinflusste. Der pH-Wert sowie die Gehalte an Lignin, Extraktiven und Nährstoffen waren im Vergleich der drei Baumarten signifikant verschieden, obwohl die zeitlichen Veränderungen der Variablen über den Zersetzungsprozess vergleichbar waren. Die Anzahl operativer taxonomischer Einheiten (OTUs ~ molekulare Artenzahl) nahm im Verlauf der Holzzersetzung zu, während die Zahl fruktifizierender Arten für mittlere Zersetzungsgrade am höchsten war. Beide Artenzahlen nahmen zusammen mit dem Stammvolumen zu. Die Weißfäulepilze dominierten über den gesamten Zersetzungsprozess die fruchtkörperbasierte Artenzahl aller drei Baumarten, was mit dem Vorhandensein oxidativer Enzymaktivitäten einhergeht. Generell nahmen der massebezogene Gehalt des Lignins, der Extraktive und der Nährstoffe über die Zersetzung zu, während der volumenbezogene Gehalt abnahm. Der pH-Wert im Holz aller drei Baumarten sank kontinuierlich im Verlauf der Zersetzung. Eine Erhöhung der Waldbewirtschaftungsintensität hatte einen negativen Effekt auf das Stammvolumen und darüber vermittelt auf die Zahl fruktifizierender Pilzarten, jedoch kaum auf andere untersuchte Totholzvariablen. Aufgrund des häufigen Vorkommens von Weißfäulepilzen, der gleichzeitigen Präsenz oxidativer Enzymaktivitäten und des substanziellen Ligninabbaus kann auf eine fundamentale Bedeutung von Laccasen und Peroxidasen für die Zersetzung des Totholzes geschlossen werden. Nicht zuletzt die charakteristische Molekularmassenverteilung der wasserlöslichen Ligninfragmente deutete darauf hin, dass die Mn-oxidierenden Peroxidasen (MnPs) die dominierenden oxidativen Enzyme des Ligninabbaus sind. Das hoch variable Muster der oxidativen Enzymaktivitäten ist jedoch das Resultat eines komplexen Zusammenspiels der Holzeigenschaften und der pilzlichen Artengemeinschaft. Die dabei bestehenden funktionellen Abhängigkeiten müssen weiter im Detail in zukünftigen Studien analysiert und aufgeklärt werden. / In forest ecosystems, deadwood is an important component that provides habitat and substrate for numerous organisms, contributes to the carbon and nutrient cycle as well as serves as a structural element. Overcoming the lignin barrier is a key process in deadwood degradation. Only specialized saprotrophic fungi of the phyla Basidiomycota and Ascomycota developed different strategies – the rot types – to degrade lignin or to modify it in way, which allows them to get access to the polysaccharides (cellulose and hemicelluloses) that are incrusted within the lignocellulosic complex. In this context, basidiomycetous white rot fungi secreting oxidative enzymes (especially laccases and peroxidases) are of particular importance, since they are the only organisms that are able to substantially mineralize lignin to carbon dioxide (CO2). Although lignin degradation is such an important process for deadwood degradation, oxidative enzyme activities have been only poorly studied under natural conditions in deadwood. The aim of this work was to verify the importance of oxidative enzymes for deadwood degradation in the field, to describe their temporal and spatial patterns of occurrence and to identify dependencies from deadwood variables as well as from the fungal community within and on deadwood. Furthermore, the changes of different deadwood variables were studied over the whole period of degradation and compared among three tree species. Last but not least, the influence of forest management intensity on the process of deadwood degradation was evaluated. Therefor, 197 logs of naturally occurring deadwood (coarse woody debris, CWD) of Fagus sylvatica (European beech), Picea abies (Norway spruce) and Pinus sylvestris (Scots pine) were monitored and sampled in forests with different management regimes across three regions in Germany. A total of 735 samples were taken from the logs and analyzed regarding activities of laccase (Lacc), general peroxidase (GenP) and manganese peroxidase (MnP). Wood density, water content, content of lignin and extractives as well as of nutrients and metals (N, Al, Ca, Cu, K, Mg, Mn und Zn) were determined in the samples, too. The fungal community was assessed based on sporocarps (fruiting bodies) and molecular fingerprints (F-ARISA). Oxidative enzyme activities were present in 79 % of all samples. The activities were found to be highly variable both regarding the time course of degradation and their distribution within the logs. Activities were generally higher in wood samples of F. sylvatica than in samples of conifers. Linear and logistic models revealed that the fungal community structure was the most important determinant for oxidative enzyme activities in the samples, followed by the amount of water-soluble lignin fragments. Moreover, the prevalent acidic pH determined in deadwood was suitable to facilitate the function of laccase and peroxidases. Concentrations of metals (manganese, copper, iron) were sufficient to ensure synthesis and functioning of the enzymes. Deadwood-dwelling fungi turned out to be well adapted to low nitrogen concentrations and thus, an elevated nitrogen deposition over a period of two years did not affect the oxidative enzyme activities. The pH as well as the content of lignin, extractives and nutrients significantly differed among the tree species; however, their trend over the course of degradation was rather similar. Molecular species richness (determined by F-ARISA as OTUs) increased over the whole course of degradation, while the number of fruiting species was highest in the intermediate stage of degradation. Both types of species richness increased with increasing volume of the CWD logs. Over the entire degradation period, white rot fungi – based on the identification of sporocarps – were the most abundant group of wood rot fungi in and on all three tree species. This corresponds well with the overall presence of oxidative enzyme activities. During degradation, the mass-related content of lignin, extractives and nutrients frequently increased, although the volume-related content decreased. The pH  of all three tree species decreased in deadwood over the whole period of degradation. Higher forest management intensity had a negative effect on the log volume of deadwood and in consequence on fungal species richness (fruiting bodies), but hardly to other analyzed variables. Based on the widespread occurrence of white rot fungi, the concomitant presence of oxidative enzyme activities as well as the substantial loss of lignin, it can be concluded that laccases and peroxidases are highly relevant for deadwood decomposition. Not least, the detected characteristic molecular size distribution of water-soluble lignin fragments points to a key role of Mn oxidizing peroxidases (MnPs) in enzymatic lignin degradation. The variable patterns of oxidative enzymes observed in wood samples is therefore the result of a complex array of wood variables and the fungal community structure, which will have to be resolved in more detail in future studies.
123

Die Rolle oxidativer Pilzenzyme für die Totholzzersetzung und die Zersetzungsdynamik von Fagus sylvatica, Picea abies und Pinus sylvestris

Arnstadt, Tobias 05 May 2017 (has links)
In Waldökosystemen ist Totholz von zentraler Bedeutung, indem es zahlreichen Organismen einen Lebensraum bietet oder als Substrat dient, Bestandteil des Kohlenstoff- und Nährstoffkreislaufs ist sowie als ein wichtiges strukturelles Element fungiert. Für seine Zersetzung ist die Überwindung der Ligninbarriere von besonderer Bedeutung. Dazu sind lediglich saprobionte Pilze aus den Phyla der Basidiomycota und Ascomycota in der Lage, die verschiedene Strategien – die Fäuletypen – entwickelt haben, um Lignin abzubauen oder zu modifizieren und somit Zugang zu den vom Lignin inkrustierten Polysachariden (Zellulose und Hemizellulosen) zu erhalten. Eine besondere Rolle spielen dabei Weißfäulepilze, die mit ihren extrazellulären oxidativen Enzymen, wie Laccasen und verschiedenen Peroxidasen, Lignin komplett bis zum Kohlendioxid (CO2) mineralisieren. Trotz der Bedeutung des Ligninabbaus für die Totholzzersetzung sind extrazelluläre oxidative Enzyme im natürlichen Totholz kaum erforscht. Ziel dieser Arbeit war es, die Rolle der oxidativen Enzyme für die Totholzzersetzung unter Realbedingungen zu verifizieren, ihre räumlichen und zeitlichen Muster zu beschreiben und ihre Abhängigkeiten von verschiedenen Totholzvariablen sowie der pilzlichen Artengemeinschaft in und auf Totholz zu ermitteln. Weiter wurde die Veränderung der Totholzvariablen über den Zersetzungsprozess für unterschiedliche Baumarten vergleichend beschrieben und der Einfluss der Waldbewirtschaftung auf den Prozess untersucht. Dazu wurden 197 natürliche Totholzstämme (coarse woody debris, CWD) von Fagus sylvatica (Rotbuche), Picea abies (Gemeine Fichte) und Pinus sylvestris (Gemeine Kiefer) in unterschiedlich stark bewirtschafteten Wäldern in Deutschland untersucht. Insgesamt wurden 735 Proben genommen und darin die Aktivität von Laccase (Lacc), Genereller Peroxidase (GenP) und Mangan-Peroxidase (MnP) gemessen. Weiterhin wurden Variablen wie Dichte, Wassergehalt, pH-Wert, wasserlösliche Ligninfragmente, die Gehalte an Lignin und Extraktiven sowie an Nährstoffen und Metallen (N, Al, Ca, Cu, K, Mg, Mn und Zn) ermittelt. Die pilzliche Artengemeinschaft wurde anhand genetischer Fingerprints (F-ARISA) und mittels Fruchtkörperkartierung erfasst. In 79 % der untersuchten Totholzproben wurden oxidative Enzymaktivitäten festgestellt. Sie waren hoch variabel über den Zersetzungsverlauf sowie in Bezug auf die Probenahmepositionen innerhalb der einzelnen Stämme. Generell waren die Aktivitäten im F.-sylvatica-Totholz höher als im Koniferentotholz. Lineare und logistische Modelle zeigten, dass die pilzliche Artengemeinschaft, gefollgt von den wasserlöslichen Ligninfragmenten, die wichtigste Einflussgröße hinsichtlich der oxidativen Enzyme war. Ein saurer pH-Wert unterstützte die Funktion von Lacc und MnP; Mangan, Eisen und Kupfer waren in ausreichenden Konzentrationen vorhanden, um die Funktion und Bildung der Enzyme zu gewährleisten. Die holzabbauenden Pilze erwiesen sich als optimal an das niedrige Stickstoffangebot im Totholz angepasst, sodass ein erhöhter Stickstoffeintrag über zwei Jahre die oxidativen Enzymaktivitäten nicht weiter beeinflusste. Der pH-Wert sowie die Gehalte an Lignin, Extraktiven und Nährstoffen waren im Vergleich der drei Baumarten signifikant verschieden, obwohl die zeitlichen Veränderungen der Variablen über den Zersetzungsprozess vergleichbar waren. Die Anzahl operativer taxonomischer Einheiten (OTUs ~ molekulare Artenzahl) nahm im Verlauf der Holzzersetzung zu, während die Zahl fruktifizierender Arten für mittlere Zersetzungsgrade am höchsten war. Beide Artenzahlen nahmen zusammen mit dem Stammvolumen zu. Die Weißfäulepilze dominierten über den gesamten Zersetzungsprozess die fruchtkörperbasierte Artenzahl aller drei Baumarten, was mit dem Vorhandensein oxidativer Enzymaktivitäten einhergeht. Generell nahmen der massebezogene Gehalt des Lignins, der Extraktive und der Nährstoffe über die Zersetzung zu, während der volumenbezogene Gehalt abnahm. Der pH-Wert im Holz aller drei Baumarten sank kontinuierlich im Verlauf der Zersetzung. Eine Erhöhung der Waldbewirtschaftungsintensität hatte einen negativen Effekt auf das Stammvolumen und darüber vermittelt auf die Zahl fruktifizierender Pilzarten, jedoch kaum auf andere untersuchte Totholzvariablen. Aufgrund des häufigen Vorkommens von Weißfäulepilzen, der gleichzeitigen Präsenz oxidativer Enzymaktivitäten und des substanziellen Ligninabbaus kann auf eine fundamentale Bedeutung von Laccasen und Peroxidasen für die Zersetzung des Totholzes geschlossen werden. Nicht zuletzt die charakteristische Molekularmassenverteilung der wasserlöslichen Ligninfragmente deutete darauf hin, dass die Mn-oxidierenden Peroxidasen (MnPs) die dominierenden oxidativen Enzyme des Ligninabbaus sind. Das hoch variable Muster der oxidativen Enzymaktivitäten ist jedoch das Resultat eines komplexen Zusammenspiels der Holzeigenschaften und der pilzlichen Artengemeinschaft. Die dabei bestehenden funktionellen Abhängigkeiten müssen weiter im Detail in zukünftigen Studien analysiert und aufgeklärt werden.:Zusammenfassung I Abstract III Inhaltsverzeichnis V Abkürzungsverzeichnis VIII 1 Einleitung 1 1.1 Totholz als Bestandteil von Waldökosystemen 1 1.1.1 Vorkommen von Totholz 1 1.1.2 Klassifizierung von Totholz 1 1.1.3 Entstehung von Totholz 2 1.1.4 Totholz und Biodiversität 3 1.1.5 Totholz in Stoffkreisläufen 8 1.1.6 Totholz als wichtiges Strukturelement 9 1.2 Holzaufbau 10 1.2.1 Grundsätzlicher Aufbau von Holz 10 1.2.2 Der Lignozellulose-Komplex 14 1.3 Saprobionte Pilze als Spezialisten zur Überwindung der Ligninbarriere 18 1.3.1 Weißfäulepilze 18 1.3.2 Braunfäulepilze 20 1.3.3 Moderfäulepilze 22 1.4 Enzymatischer Ligninabbau 23 1.4.1 Laccase 23 1.4.2 Peroxidasen 26 1.5 Totholz - Stand der Forschung 33 1.5.1 Totholzabbau in Europa 33 1.5.2 Totholz und Waldbewirtschaftung 34 1.5.3 Abbauprozesse 34 1.5.4 Oxidative Enzyme im Totholz 36 2 Zielstellung der Arbeit 39 3 Methoden 43 3.1 Untersuchung von natürlichem Totholz auf den VIP-Flächen 43 3.1.1 Untersuchungsgebiet 43 3.1.2 Probenahme 47 3.1.3 Aufbereitung der Proben für die enzymatischen Messungen 49 3.1.4 Aktivitäten oxidativer Enzyme 50 3.1.5 Physikochemische Variablen der Totholzproben 52 3.1.6 Artenzusammensetzung der Pilze auf und im Totholz 54 3.1.7 Statistik 56 3.2 Erfassung der kleinräumigen Verteilung von Oxidoreduktasen in einem Totholzfragment 63 3.2.1 Probenahme 63 3.2.2 Untersuchung der Proben 65 3.2.3 Statistische Auswertung 66 3.3 Stickstoffexperiment 66 3.3.1 Experimentaufbau 66 3.3.2 Probenahme 68 3.3.3 Aufbereitung der Proben für die enzymatischen Messungen 69 3.3.4 Enzymatische Untersuchungen 69 3.3.5 Untersuchung mit markiertem Stickstoff 74 3.3.6 Statistische Analyse 74 3.4 Optimierung der organischen Extraktion in Vorbereitung der Ligninbestimmung 75 3.4.1 Methodisches Vorgehen 76 3.4.2 Ergebnisse zur Methodenentwicklung 78 3.4.3 Bewertung der Methodenentwicklung 80 4 Ergebnisse 83 4.1 Natürliches Totholz auf den VIP-Flächen 83 4.1.1 Totholzvariablen und Ihre Unterschiede zwischen den Baumarten 83 4.1.2 Einfluss der Waldbewirtschaftung auf die Variablen des Totholzabbaus 91 4.1.3 Veränderungen des Totholzes während der Zersetzung 92 4.1.4 Abhängigkeit der oxidativen Enzymaktivitäten von den physikochemischen Eigenschaften und den Pilzarten (OTUs) 99 4.1.5 Kleinräumige Verteilungsmuster der oxidativen Enzymaktivitäten in den Totholzstämmen 105 4.2 Kleinräumige Muster der oxidativen Enzymaktivitäten in einem einzelnen Totholzfragment 106 4.3 Stickstoffexperiment 111 5 Diskussion 115 5.1 Unterschiede im Zersetzungsprozess zwischen den Baumarten 115 5.2 Oxidative Enzymaktivitäten im Totholz 119 5.2.1 Bedeutung von Lacc, GenP und MnP für die Ligninmodifikation 119 5.2.2 Variabilität der Lacc-, GenP- und MnP-Aktivitäten 121 5.2.3 Kleinräumige Muster der Lacc-, GenP und MnP-Aktivitäten 122 5.2.4 Dynamik der oxidativen Enzymaktivitäten im Verlauf des Zersetzungsprozesses 123 5.2.5 Zusammenhänge zwischen den oxidativen Enzymaktivitäten und den Totholzvariablen 125 5.3 Veränderung des Totholzes über den Zersetzungsprozess 135 5.3.1 Die Artengemeinschaft 136 5.3.2 Die Holzbestandteile und der pH-Wert 138 5.3.3 Die Nährstoffe 139 5.4 Einfluss der Waldbewirtschaftung auf Variablen des Totholzabbaus 141 6 Ausblick 145 7 Thesen 151 8 Literaturverzeichnis 153 Anhang 169 A Charakteristik der Untersuchungsflächen 169 B NMDS-Ordination der pilzlichen Artengemeinschaft 172 C Daten der Totholzstämme 175 D Daten zu den Proben 177 E Daten zur Modellierung der Enzymaktivitäten und der Wahrscheinlichkeit, diese zu detektieren 178 F Daten zur Untersuchung des einzelnen F.-sylvatica-Totholzfragments 189 G Detailabbildungen zur Zersetzungsdynamik 192 H Semivariogrammdaten oxidativer Enzyme im Totholz der VIP-Flächen 195 I Km-Werte von Mangan-Peroxidasen (MnP) für Mangan(II)-Ionen (Mn2+) aus der Literatur 196 J Zuordnung der Fäuletypen zu den Pilzarten 198 K Publikationen 208 L Danksagung 251 M Rechtliche Erklärung 253 / In forest ecosystems, deadwood is an important component that provides habitat and substrate for numerous organisms, contributes to the carbon and nutrient cycle as well as serves as a structural element. Overcoming the lignin barrier is a key process in deadwood degradation. Only specialized saprotrophic fungi of the phyla Basidiomycota and Ascomycota developed different strategies – the rot types – to degrade lignin or to modify it in way, which allows them to get access to the polysaccharides (cellulose and hemicelluloses) that are incrusted within the lignocellulosic complex. In this context, basidiomycetous white rot fungi secreting oxidative enzymes (especially laccases and peroxidases) are of particular importance, since they are the only organisms that are able to substantially mineralize lignin to carbon dioxide (CO2). Although lignin degradation is such an important process for deadwood degradation, oxidative enzyme activities have been only poorly studied under natural conditions in deadwood. The aim of this work was to verify the importance of oxidative enzymes for deadwood degradation in the field, to describe their temporal and spatial patterns of occurrence and to identify dependencies from deadwood variables as well as from the fungal community within and on deadwood. Furthermore, the changes of different deadwood variables were studied over the whole period of degradation and compared among three tree species. Last but not least, the influence of forest management intensity on the process of deadwood degradation was evaluated. Therefor, 197 logs of naturally occurring deadwood (coarse woody debris, CWD) of Fagus sylvatica (European beech), Picea abies (Norway spruce) and Pinus sylvestris (Scots pine) were monitored and sampled in forests with different management regimes across three regions in Germany. A total of 735 samples were taken from the logs and analyzed regarding activities of laccase (Lacc), general peroxidase (GenP) and manganese peroxidase (MnP). Wood density, water content, content of lignin and extractives as well as of nutrients and metals (N, Al, Ca, Cu, K, Mg, Mn und Zn) were determined in the samples, too. The fungal community was assessed based on sporocarps (fruiting bodies) and molecular fingerprints (F-ARISA). Oxidative enzyme activities were present in 79 % of all samples. The activities were found to be highly variable both regarding the time course of degradation and their distribution within the logs. Activities were generally higher in wood samples of F. sylvatica than in samples of conifers. Linear and logistic models revealed that the fungal community structure was the most important determinant for oxidative enzyme activities in the samples, followed by the amount of water-soluble lignin fragments. Moreover, the prevalent acidic pH determined in deadwood was suitable to facilitate the function of laccase and peroxidases. Concentrations of metals (manganese, copper, iron) were sufficient to ensure synthesis and functioning of the enzymes. Deadwood-dwelling fungi turned out to be well adapted to low nitrogen concentrations and thus, an elevated nitrogen deposition over a period of two years did not affect the oxidative enzyme activities. The pH as well as the content of lignin, extractives and nutrients significantly differed among the tree species; however, their trend over the course of degradation was rather similar. Molecular species richness (determined by F-ARISA as OTUs) increased over the whole course of degradation, while the number of fruiting species was highest in the intermediate stage of degradation. Both types of species richness increased with increasing volume of the CWD logs. Over the entire degradation period, white rot fungi – based on the identification of sporocarps – were the most abundant group of wood rot fungi in and on all three tree species. This corresponds well with the overall presence of oxidative enzyme activities. During degradation, the mass-related content of lignin, extractives and nutrients frequently increased, although the volume-related content decreased. The pH  of all three tree species decreased in deadwood over the whole period of degradation. Higher forest management intensity had a negative effect on the log volume of deadwood and in consequence on fungal species richness (fruiting bodies), but hardly to other analyzed variables. Based on the widespread occurrence of white rot fungi, the concomitant presence of oxidative enzyme activities as well as the substantial loss of lignin, it can be concluded that laccases and peroxidases are highly relevant for deadwood decomposition. Not least, the detected characteristic molecular size distribution of water-soluble lignin fragments points to a key role of Mn oxidizing peroxidases (MnPs) in enzymatic lignin degradation. The variable patterns of oxidative enzymes observed in wood samples is therefore the result of a complex array of wood variables and the fungal community structure, which will have to be resolved in more detail in future studies.:Zusammenfassung I Abstract III Inhaltsverzeichnis V Abkürzungsverzeichnis VIII 1 Einleitung 1 1.1 Totholz als Bestandteil von Waldökosystemen 1 1.1.1 Vorkommen von Totholz 1 1.1.2 Klassifizierung von Totholz 1 1.1.3 Entstehung von Totholz 2 1.1.4 Totholz und Biodiversität 3 1.1.5 Totholz in Stoffkreisläufen 8 1.1.6 Totholz als wichtiges Strukturelement 9 1.2 Holzaufbau 10 1.2.1 Grundsätzlicher Aufbau von Holz 10 1.2.2 Der Lignozellulose-Komplex 14 1.3 Saprobionte Pilze als Spezialisten zur Überwindung der Ligninbarriere 18 1.3.1 Weißfäulepilze 18 1.3.2 Braunfäulepilze 20 1.3.3 Moderfäulepilze 22 1.4 Enzymatischer Ligninabbau 23 1.4.1 Laccase 23 1.4.2 Peroxidasen 26 1.5 Totholz - Stand der Forschung 33 1.5.1 Totholzabbau in Europa 33 1.5.2 Totholz und Waldbewirtschaftung 34 1.5.3 Abbauprozesse 34 1.5.4 Oxidative Enzyme im Totholz 36 2 Zielstellung der Arbeit 39 3 Methoden 43 3.1 Untersuchung von natürlichem Totholz auf den VIP-Flächen 43 3.1.1 Untersuchungsgebiet 43 3.1.2 Probenahme 47 3.1.3 Aufbereitung der Proben für die enzymatischen Messungen 49 3.1.4 Aktivitäten oxidativer Enzyme 50 3.1.5 Physikochemische Variablen der Totholzproben 52 3.1.6 Artenzusammensetzung der Pilze auf und im Totholz 54 3.1.7 Statistik 56 3.2 Erfassung der kleinräumigen Verteilung von Oxidoreduktasen in einem Totholzfragment 63 3.2.1 Probenahme 63 3.2.2 Untersuchung der Proben 65 3.2.3 Statistische Auswertung 66 3.3 Stickstoffexperiment 66 3.3.1 Experimentaufbau 66 3.3.2 Probenahme 68 3.3.3 Aufbereitung der Proben für die enzymatischen Messungen 69 3.3.4 Enzymatische Untersuchungen 69 3.3.5 Untersuchung mit markiertem Stickstoff 74 3.3.6 Statistische Analyse 74 3.4 Optimierung der organischen Extraktion in Vorbereitung der Ligninbestimmung 75 3.4.1 Methodisches Vorgehen 76 3.4.2 Ergebnisse zur Methodenentwicklung 78 3.4.3 Bewertung der Methodenentwicklung 80 4 Ergebnisse 83 4.1 Natürliches Totholz auf den VIP-Flächen 83 4.1.1 Totholzvariablen und Ihre Unterschiede zwischen den Baumarten 83 4.1.2 Einfluss der Waldbewirtschaftung auf die Variablen des Totholzabbaus 91 4.1.3 Veränderungen des Totholzes während der Zersetzung 92 4.1.4 Abhängigkeit der oxidativen Enzymaktivitäten von den physikochemischen Eigenschaften und den Pilzarten (OTUs) 99 4.1.5 Kleinräumige Verteilungsmuster der oxidativen Enzymaktivitäten in den Totholzstämmen 105 4.2 Kleinräumige Muster der oxidativen Enzymaktivitäten in einem einzelnen Totholzfragment 106 4.3 Stickstoffexperiment 111 5 Diskussion 115 5.1 Unterschiede im Zersetzungsprozess zwischen den Baumarten 115 5.2 Oxidative Enzymaktivitäten im Totholz 119 5.2.1 Bedeutung von Lacc, GenP und MnP für die Ligninmodifikation 119 5.2.2 Variabilität der Lacc-, GenP- und MnP-Aktivitäten 121 5.2.3 Kleinräumige Muster der Lacc-, GenP und MnP-Aktivitäten 122 5.2.4 Dynamik der oxidativen Enzymaktivitäten im Verlauf des Zersetzungsprozesses 123 5.2.5 Zusammenhänge zwischen den oxidativen Enzymaktivitäten und den Totholzvariablen 125 5.3 Veränderung des Totholzes über den Zersetzungsprozess 135 5.3.1 Die Artengemeinschaft 136 5.3.2 Die Holzbestandteile und der pH-Wert 138 5.3.3 Die Nährstoffe 139 5.4 Einfluss der Waldbewirtschaftung auf Variablen des Totholzabbaus 141 6 Ausblick 145 7 Thesen 151 8 Literaturverzeichnis 153 Anhang 169 A Charakteristik der Untersuchungsflächen 169 B NMDS-Ordination der pilzlichen Artengemeinschaft 172 C Daten der Totholzstämme 175 D Daten zu den Proben 177 E Daten zur Modellierung der Enzymaktivitäten und der Wahrscheinlichkeit, diese zu detektieren 178 F Daten zur Untersuchung des einzelnen F.-sylvatica-Totholzfragments 189 G Detailabbildungen zur Zersetzungsdynamik 192 H Semivariogrammdaten oxidativer Enzyme im Totholz der VIP-Flächen 195 I Km-Werte von Mangan-Peroxidasen (MnP) für Mangan(II)-Ionen (Mn2+) aus der Literatur 196 J Zuordnung der Fäuletypen zu den Pilzarten 198 K Publikationen 208 L Danksagung 251 M Rechtliche Erklärung 253
124

Biodegradace 17alfa-ethinylestradiolu enzymy ligninolytických hub / Biodegradation of 17alfa-ethinylestradiol by enzymes of ligninolytic fungi

Přenosilová, Lenka January 2012 (has links)
This work is aimed at the study of the effect of 17α-ethinylestradiol (EE2) on the production and characteristics of ligninolytic enzymes (laccase, Mn-dependent peroxidase and lignin peroxidase) in I. lacteus, T. versicolor, P. chrysosporium and P. ostreatus cultures grown on two types of liquid media. Enzyme activity production in fungal cultures was affected by the composition of culture medium. In the case of P. chrysosporium, the addition of EE2 to the complex- medium cultures led to a MnP activity stimulation and simultaneously LiP production was partially repressed in these cultures. In the mineral MM medium, no effect of EE2 on enzyme production by P. chrysosporium was observed. In EE2 treated MM cultures of P. ostreatus lower MnP activities were found when compared to biotic controls. In the case of T. versicolor cultures, the addition of EE2 to the complex medium caused laccase and LiP stimulation in the cultures. In the MM medium, however, only laccase production was affected by EE2. I. lacteus MnP production was partially repressed by EE2 in MM medium. In contrast to that, significantly higher MnP activities were detected in complex- medium I. lacteus cultures after the treatment with EE2. Further EE2 degradation by the fungal cultures was studied. The highest degradation effeciency was...
125

Etude de nouvelles oxydo-réductases impliquées dans la dégradation de la biomasse végétale chez les champignons du genre Pycnoporus : de l'expression des gènes aux applications biothechnologiques

Uzan-Boukhris, Eva 30 November 2011 (has links)
Cette étude a pour objectif la mise en évidence, chez les basidiomycetes du genre Pycnoporus, de nouvelles oxydo-réductases impliquées dasn la dégradation de la biomasse végétale: de l'expression des gènes aux applications biotechnologiques. Les champs d'application visés concernent essentiellement le domaine de la chimie verte, dans le cadre du projet européen BIORENEW. Le travail s'est articulé autour de trois axes principaux. Le premier a concerné l'exploration de la biodiversité naturelle en particulier tropicale, pour la sélection de souches productrices de nouvelles laccases de haut potentiel d'oxydo-réduction. Le gène codant pour la laccase Lac1 chez Pycnoporus a été utilisé comme marqueur moléculaire d'identification et de relation phylogénie-fonction, mettant en évidence une distribution des souches fortement corrélée avec leur écozone. Le deuxième axe a porté sur l'isolement de trois nouvelles laccases issues de P.sanguineus et P. coccineus qui exhibent des caractéristiques biochimiques complémentaires: haute thermostabilité, résistance aux solvants, au pH, constantes catalytiques et potentiels rédox élevés. Ces enzymes constituent de bons modèles pour des applications en biotechnologies blanches:décoloration de colorants polyphénoliques, oxydation de composés modèles de type lignine non-phénolique, oligomérisation de flavonoides naturels adaptés aux applications cosmétiques et pharmaceutiques. Enfin, dans le cadre de l'annotation du génome des souches monocaryotiques P. cinnabarinus BRFM 137 et P; sanguineus BRFM 1264, dont le séquençage a été réalisé par notre Unité, un regard tout à fait nouveau est porté sur le système lignolytique du genre Pycnoporus, longtemps décrit comme produisant que de la laccase comme enzyme du système lignolytique. Pour la première fois, nous avons montré la présence de gènes codant pour tout l'arsenal enzymatique de dégradation des lignines, c'est à dire plusieurs laccases mais surtout de nombreuses peroxydases et des enzymes auxilliaires génératrices d'H2O2 comme les glyoxal oxydases. Ces nouvelles enzymes ont été caractérisées in silico. Pour la première fois également, la sécrétion effective de peroxydases, de glyoxal oxydases et d'autres FOLymes dans nos conditions de culture a également pu être démontrée par analyse protéomique. / The purpose of this work was to prospect, in the genus Pycnoporus, for new oxido-reductases involved in the degradation of lignocellulosic biomass: from gene expression to biotechnological applications. This research was conducted in the framework of green chemistry applications according to BIORENEW European Project. The study was divided in three main research axes. Firstly, the exploration of natural biodiversity, especially tropical biodiversity, for the selection of new high redox potential-laccase producing strains. These strains were repositionned in a context of phylogenomic/function through the lac1 gene. Molecular clustering based on lac1 sequences enabled the distribution of P. sanguineus and P. coccineus through four distinct, well supported clades and subclades. This distribution was highly correlated with ecozones. The second part of the work deals with the biochemical and molecular characterization of three novel laccases from P. coccineus and P. sanguineus, and their applicability on natural or model phenolic substrates. The three laccases showed complementary biochemical features: high thermo- and pH stability, high catalytic efficiency and resistance to organic solvents. The three novel laccases proved to be suitable models for white biotechnology processes: polyphenolic dye decolourization, non-phenolic lignin model compound oxidation, and synthesis of new oligomers from natural flavonoids suitable for cosmetic or pharmaceutical applications. Finally, annotation of genomic data from the monocaryotic strains P. cinnabarinus BRFM 137 and P. sanguineus BRFM 1264 (genomes sequenced by the UMR1163 BCF ) was performed for lignolytic enzymes. For the first time, new oxidases (peroxidases, glyoxal oxidases and other FOLymes) were evidenced in Pycnoporus and in silico characterized. Moreover, the active secretion of several of these enzymes has been demonstrated in our culture conditions by 1D-proteomic analysis
126

Synthesis and bioevaluation of laccase substrates and substituted quinolines

Prasain, Keshar January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Duy H. Hua / Our research work is divided into three chapters. In the first chapter, synthesis of substituted phenolic compounds including halogenated di- and trihydroxybenzenes, aminophenols, and substituted di-tert-butylphenols, their redox potential, laccase oxidation, and mosquito anti-larval activities are discussed. The synthesized substituted phenols were found to be the substrates but not the inhibitors of laccase. An inverse correlation between the oxidation potential and the laccase oxidation efficiency of halogenated hydroxybenzenes and aminophenols was established. However, substituted di-tert-butylphenols were found to have anti-larval activities in mosquitoes resulting in the death of the larvae just before reaching pupation. Among the di-tert-butyl phenols studied, water insoluble, 2,4-di-tert-butyl-6-(3-methyl-2-butenyl)phenol (16), 2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-methylpropanal oxime (14), and 6,8-di-tert-butyl-2,2-dimethyl-3,4-dihydro-2H-chromene (17) caused the mortility of 98%, 93%, and 92% of Anopheles gambiae larvae in the concentration of 182 nM, 3.4 µM, and 3.7 µM, respectively. In particular, compound 16 had similar anti-larval activities as compared to MON-0585, an anti-larval agent reported by Monsanto in the 70’s. In the second chapter, inhibition of protein kinase C (PKC) phosphorylation by substituted quinolines (PQs) is inverstigated. PQ compounds such as N-(3-aminopropyl)-6-methoxy-4-methyl-5-(3-(trifluormethyl)phenoxy)quinolin-8-amine (PQ1), N-(furan-2-ylmethyl)-6-methoxy-4-methyl)-5-(3-(trifluoromethyl)phenoxy)quinolin-8-amine (PQ11), and 6-methoxy-4-methyl-N-(quinolin-4-ylmethyl)-5-(3-(trifluoromethyl)phenoxy)quinolin-8-amine (PQ15) were found to inhibit PKC phosphorylation with IC50 values of 35 nM, 42.3 nM, and 216.3 nM respectively, among which PQ1 and PQ11 were found to be potent PKC inhibitors as comparable to that of staurosporine (IC50 = 33 nM). In chapter three, the tissue distribution of PQ1 and PQ11 in normal C57BL/6J mice and the effect of PQ1 on the normal tissues of mice were investigated. Substituted quinolines, PQ1 and PQ11 were distributed in the tissues in concentrations that were more than 40 folds of their effective dose. PQ1 and PQ11 were also found to penetrate the blood brain barrier and collect in the tissue in significant amounts. The administration of PQ1 and PQ11 had no effect in the normal behavior of the animals indicating no short term adverse effects. PQ1 was found to increase the expression of survivin, an anti-apoptotic factor and decrease the expression of cleaved caspase-3 and caspase-8, pro-apoptotic proteins. These studies suggests that PQ1 might have anti-apoptotic activities in normal cells, in contrast to the role of PQ1 in cancer cells where it has demonstrated to induce apoptosis. The study also indicated that PQ11 was better metabolized from the tissues over time as compared to PQ1.
127

Biology of odoriferous defensive stink glands of the red flour beetle Tribolium castaneum

Lehmann, Sabrina 21 August 2015 (has links)
No description available.
128

Développement de papier bioactif par couchage à grande échelle d’enzymes immobilisées par microencapsulation

Guerrero Palacios, Marco Polo 08 1900 (has links)
L’objectif principal de cette recherche est de contribuer au développement de biocapteurs commerciaux utilisant des surfaces de papier comme matrices d’immobilisation, capables de produire un signal colorimétrique perceptible dans les limites sensorielles humaines. Ce type de biocapteur, appelé papier bioactif, pourrait servir par exemple à la détection de substances toxiques ou d’organismes pathogènes. Pour atteindre l’objectif énoncé, ce travail propose l’utilisation de systèmes enzymatiques microencapsulés couchés sur papier. Les enzymes sont des catalyseurs biologiques dotés d’une haute sélectivité, et capables d'accélérer la vitesse de certaines réactions chimiques spécifiques jusqu’à des millions des fois. Les enzymes sont toutefois des substances très sensibles qui perdent facilement leur fonctionnalité, raison pour laquelle il faut les protéger des conditions qui peuvent les endommager. La microencapsulation est une technique qui permet de protéger les enzymes sans les isoler totalement de leur environnement. Elle consiste à emprisonner les enzymes dans une sphère poreuse de taille micrométrique, faite de polymère, qui empêche l’enzyme de s’echapper, mais qui permet la diffusion de substrats à l'intérieur. La microencapsulation utilisée est réalisée à partir d’une émulsion contenant un polymère dissous dans une phase aqueuse avec l’enzyme désirée. Un agent réticulant est ensuite ajouté pour provoquer la formation d'un réseau polymérique à la paroi des gouttelettes d'eau dans l'émulsion. Le polymère ainsi réticulé se solidifie en enfermant l’enzyme à l'intérieur de la capsule. Par la suite, les capsules enzymatiques sont utilisées pour donner au papier les propriétés de biocapteur. Afin d'immobiliser les capsules et l'enzyme sur le papier, une méthode courante dans l’industrie du papier connu sous le nom de couchage à lame est utilisée. Pour ce faire, les microcapsules sont mélangées avec une sauce de couchage qui sera appliquée sur des feuilles de papier. Les paramètres de viscosité i de la sauce et ceux du couchage ont été optimisés afin d'obtenir un couchage uniforme répondant aux normes de l'industrie. Les papiers bioactifs obtenus seront d'abord étudiés pour évaluer si les enzymes sont toujours actives après les traitements appliqués; en effet, tel que mentionné ci-dessus, les enzymes sont des substances très sensibles. Une enzyme très étudiée et qui permet une évaluation facile de son activité, connue sous le nom de laccase, a été utilisée. L'activité enzymatique de la laccase a été évaluée à l’aide des techniques analytiques existantes ou en proposant de nouvelles techniques d’analyse développées dans le laboratoire du groupe Rochefort. Les résultats obtenus démontrent la possibilité d’inclure des systèmes enzymatiques microencapsulés sur papier par couchage à lame, et ce, en utilisant des paramètres à grande échelle, c’est à dire des surfaces de papier de 0.75 x 3 m2 modifiées à des vitesses qui vont jusqu’à 800 m/min. Les biocapteurs ont retenu leur activité malgré un séchage par évaporation de l’eau à l’aide d’une lampe IR de 36 kW. La microencapsulation s’avère une technique efficace pour accroître la stabilité d’entreposage du biocapteur et sa résistance à l’exposition au NaN3, qui est un inhibiteur connu de ce biocapteur. Ce projet de recherche fait partie d'un effort national visant à développer et à mettre sur le marché des papiers bioactifs; il est soutenu par Sentinel, un réseau de recherche du CRSNG. / The main objective of this research is the development of a commercial biosensor immobilized on paper surfaces, able to produce a colorimetric signal detected by human sensorial limits. This kind of biosensor could be used, for example, in the detection of toxic substances or pathogens. To achieve this objective, microencapsulated enzymes fixed on paper are proposed. Enzymes are biological catalysts with a high selectivity that can accelerate the speed of some chemical reactions up to a million times. However, the enzymes are very sensitive substances that lose their functionality easily; it is therefore necessary to protect them from conditions that could damage them. Microencapsulation is a technique that protects the enzymes without totally isolating them from their environment. In fact, microencapsulation entraps the enzymes into a micron size sphere, made of a porous polymer which prevents the enzyme to be released but allows the diffusion of its substrate inside. The microencapsulation process consists in making an emulsion containing a polymer dissolved in an aqueous phase with the desired enzyme, and the wall of the microcapsule is formed by adding a crosslinking agent that forms a polymer network at the interface of the emulsion. The crosslinked polymer solidifies and it encloses the enzyme in the interior of the capsule. Thereafter, this kind of microcapsules are used to give biosensor properties to the paper. Blade coating technique is used in order to immobilize the enzyme capsules on paper because it is the most widely used method in the paper industry. The microcapsules are mixed with a coating suspension and applied on sheets of paper. The viscosity parameters of the suspension and those of the coating are optimized to obtain a uniform coating in order to meet the industry standards. Bioactive paper obtained is first studied to assess whether the enzymes are still active or not after all the treatments because, as described above, enzymes are iii very sensitive substances. An enzyme known as laccase is used, which allows an easy evaluation of its activity. Enzymatic activity was evaluated through existing analytical techniques or new analysis techniques developed in the Rochefort lab. The results demonstrate the possibility to transfer microencapsulated enzyme systems onto paper by blade coating, by using large scale settings, with paper surfaces of 0.75 x 3 m2 modified at speeds ranging up to 800 m/min. Biosensors retained their activity, despite a drying process by evaporation of water using an IR lamp of 36 kW. The microencapsulation technique proposed here is an effective technique to increase the storage stability of the biosensor and its resistance to exposure to NaN3, which is a known inhibitor of this biosensor. This research is part of a national effort in order to develop a commercial device called bioactive paper; it is supported by the NSERC research network Sentinel.
129

Desenvolvimento de membranas com lacases por imobilização do extrato enzimático de Pleurotus sajor-caju

Rasera, Kátia 26 October 2006 (has links)
As lacases (EC 1.10.3.2) são fenol-oxidases associadas à habilidade de degradar a lignina e outros compostos recalcitrantes, como xenobióticos e vários tipos de corantes sintéticos. Lacases catalisam a oxidação de vários compostos aromáticos com concomitante redução do oxigênio a água. Neste trabalho são apresentados os resultados de imobilização do extrato de lacases de Pleurotus sajor-caju PS2001 em filmes poliméricos de poliamida 6,6 (PA) e polissulfona (PSU), utilizando glutaraldeído como agente de ligação. A solução enzimática de lacases foi obtida em meio sólido contendo serragem de Pinus spp cultivado com P. sajor-caju. As proteínas da solução enzimática foram imobilizadas em filmes de PA e PSU. O processo de imobilização foi estudado quanto ao pH ótimo, sendo os filmes caracterizados quanto à quantidade de proteínas imobilizadas e atividade de lacases. As membranas de PA apresentaram maior atividade de lacases quando comparadas com as de PSU. Observou-se uma redução do pH ótimo para atividade de lacases imobilizadas, utilizando-se o tampão acetato e um aumento em tampão Mcllvaine. A maior atividade de lacases foi obtida após 6 h de imobilização, em reação a 30°C, com agitação constante, tanto para os filmes de PA quanto para os de PSU. Verificou-se descoloração de aproximadamente 90% da solução 25 mg/L do corante Reactive Blue 220, após 24 horas de reação, utilizando membranas de PA com a enzima imobilizada. Aproximadamente 50% da descoloração obtida deve-se a adsorção do corante pela membrana. Resultados semelhantes foram obtidos com a utilização do corante Remazol Brilliant Blue R (RBBR), com adição de Reactive Blue 220. Não foi observada descoloração sem adição do Reactive Blue, sugerindo uma ação semelhante a um mediador, proporcionando a descoloração do RBBR. Apesar de serem observadas atividades de lacases imobilizadas nas membranas de PSU, utilizando-se ABTS como substrato, não foi observada descoloração dos corantes analisados. / Submitted by Marcelo Teixeira (mvteixeira@ucs.br) on 2014-05-14T18:02:47Z No. of bitstreams: 1 Dissertacao Katia Rasera.pdf: 933755 bytes, checksum: fadf6b200d674217ac06cf5b50743776 (MD5) / Made available in DSpace on 2014-05-14T18:02:47Z (GMT). No. of bitstreams: 1 Dissertacao Katia Rasera.pdf: 933755 bytes, checksum: fadf6b200d674217ac06cf5b50743776 (MD5) / Laccases (EC 1.10.3.2) are phenol-oxidase enzymes associated to the degradation of lignin and a wide variety of recalcitrant compounds, such as xenobiotics and different types of dyes. Laccases catalyze the oxidation of various aromatic compounds with the concomitant reduction of oxygen to water. In this work, the results of immobilization of Pleurotus sajor-caju PS 2001 laccases in polyamide 6,6 (PA) and polysulfone (PSU) films, using glutaraldehyde as linking agent, are presented. The enzymatic solution containing laccases was obtained from solid medium with Pinus spp sawdust cultivated with P. sajor-caju. The proteins present in this solution were immobilized in PA and PSU films The immobilization process was studied with respect to the optimum pH, and the films were evaluated to determine the protein content and laccase activity. PA membranes showed higher laccase activity than PSU ones. With immobilized enzymes, a reduction of the optimum pH for laccase activity was observed, using acetate buffer and a increase using Mcllvaine buffer. The higher laccase activity was achieved after 6 h of immobilization, at a reaction temperature of 30°C, under agitation, for both PA and PSU films. Discolouration of approximately 90% of solution 25 mg.L-1 of the dye Reactive Blue 220 was verified, after 24 hours of reaction, using membranes of PA with the immobilized enzyme. Approximately 50% of the discolouration would be attributed from the adsortion process of the dye for the PA membrane. Similar results had been gotten with the use of the dye Remazol Brilliant Blue R (RBBR), with addition of Reactive Blue 220. Discolouration without addition of the Reactive Blue was not observed, suggesting a similar action to a mediator, providing the discolouration of the RBBR. Although to be observed immobilized activities of lacases in the membranes of PSU, using ABTS as substratum, discolouration of the analyzed corantes was not observed.
130

Desenvolvimento de membranas com lacases por imobilização do extrato enzimático de Pleurotus sajor-caju

Rasera, Kátia 26 October 2006 (has links)
As lacases (EC 1.10.3.2) são fenol-oxidases associadas à habilidade de degradar a lignina e outros compostos recalcitrantes, como xenobióticos e vários tipos de corantes sintéticos. Lacases catalisam a oxidação de vários compostos aromáticos com concomitante redução do oxigênio a água. Neste trabalho são apresentados os resultados de imobilização do extrato de lacases de Pleurotus sajor-caju PS2001 em filmes poliméricos de poliamida 6,6 (PA) e polissulfona (PSU), utilizando glutaraldeído como agente de ligação. A solução enzimática de lacases foi obtida em meio sólido contendo serragem de Pinus spp cultivado com P. sajor-caju. As proteínas da solução enzimática foram imobilizadas em filmes de PA e PSU. O processo de imobilização foi estudado quanto ao pH ótimo, sendo os filmes caracterizados quanto à quantidade de proteínas imobilizadas e atividade de lacases. As membranas de PA apresentaram maior atividade de lacases quando comparadas com as de PSU. Observou-se uma redução do pH ótimo para atividade de lacases imobilizadas, utilizando-se o tampão acetato e um aumento em tampão Mcllvaine. A maior atividade de lacases foi obtida após 6 h de imobilização, em reação a 30°C, com agitação constante, tanto para os filmes de PA quanto para os de PSU. Verificou-se descoloração de aproximadamente 90% da solução 25 mg/L do corante Reactive Blue 220, após 24 horas de reação, utilizando membranas de PA com a enzima imobilizada. Aproximadamente 50% da descoloração obtida deve-se a adsorção do corante pela membrana. Resultados semelhantes foram obtidos com a utilização do corante Remazol Brilliant Blue R (RBBR), com adição de Reactive Blue 220. Não foi observada descoloração sem adição do Reactive Blue, sugerindo uma ação semelhante a um mediador, proporcionando a descoloração do RBBR. Apesar de serem observadas atividades de lacases imobilizadas nas membranas de PSU, utilizando-se ABTS como substrato, não foi observada descoloração dos corantes analisados. / Laccases (EC 1.10.3.2) are phenol-oxidase enzymes associated to the degradation of lignin and a wide variety of recalcitrant compounds, such as xenobiotics and different types of dyes. Laccases catalyze the oxidation of various aromatic compounds with the concomitant reduction of oxygen to water. In this work, the results of immobilization of Pleurotus sajor-caju PS 2001 laccases in polyamide 6,6 (PA) and polysulfone (PSU) films, using glutaraldehyde as linking agent, are presented. The enzymatic solution containing laccases was obtained from solid medium with Pinus spp sawdust cultivated with P. sajor-caju. The proteins present in this solution were immobilized in PA and PSU films The immobilization process was studied with respect to the optimum pH, and the films were evaluated to determine the protein content and laccase activity. PA membranes showed higher laccase activity than PSU ones. With immobilized enzymes, a reduction of the optimum pH for laccase activity was observed, using acetate buffer and a increase using Mcllvaine buffer. The higher laccase activity was achieved after 6 h of immobilization, at a reaction temperature of 30°C, under agitation, for both PA and PSU films. Discolouration of approximately 90% of solution 25 mg.L-1 of the dye Reactive Blue 220 was verified, after 24 hours of reaction, using membranes of PA with the immobilized enzyme. Approximately 50% of the discolouration would be attributed from the adsortion process of the dye for the PA membrane. Similar results had been gotten with the use of the dye Remazol Brilliant Blue R (RBBR), with addition of Reactive Blue 220. Discolouration without addition of the Reactive Blue was not observed, suggesting a similar action to a mediator, providing the discolouration of the RBBR. Although to be observed immobilized activities of lacases in the membranes of PSU, using ABTS as substratum, discolouration of the analyzed corantes was not observed.

Page generated in 0.059 seconds