• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 10
  • 9
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 91
  • 91
  • 46
  • 27
  • 18
  • 17
  • 17
  • 16
  • 14
  • 13
  • 13
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

A computational framework for multidimensional parameter space screening of reaction-diffusion models in biology

Solomatina, Anastasia 16 March 2022 (has links)
Reaction-diffusion models have been widely successful in explaining a large variety of patterning phenomena in biology ranging from embryonic development to cancer growth and angiogenesis. Firstly proposed by Alan Turing in 1952 and applied to a simple two-component system, reaction-diffusion models describe spontaneous spatial pattern formation, driven purely by interactions of the system components and their diffusion in space. Today, access to unprecedented amounts of quantitative biological data allows us to build and test biochemically accurate reaction-diffusion models of intracellular processes. However, any increase in model complexity increases the number of unknown parameters and thus the computational cost of model analysis. To efficiently characterize the behavior and robustness of models with many unknown parameters is, therefore, a key challenge in systems biology. Here, we propose a novel computational framework for efficient high-dimensional parameter space characterization of reaction-diffusion models. The method leverages the $L_p$-Adaptation algorithm, an adaptive-proposal statistical method for approximate high-dimensional design centering and robustness estimation. Our approach is based on an oracle function, which describes for each point in parameter space whether the corresponding model fulfills given specifications. We propose specific oracles to estimate four parameter-space characteristics: bistability, instability, capability of spontaneous pattern formation, and capability of pattern maintenance. We benchmark the method and demonstrate that it allows exploring the ability of a model to undergo pattern-forming instabilities and to quantify model robustness for model selection in polynomial time with dimensionality. We present an application of the framework to reconstituted membrane domains bearing the small GTPase Rab5 and propose molecular mechanisms that potentially drive pattern formation.
62

Capitalizing on Convective Instabilities in a Streamwise Vortex-Wall Interaction

Benton, Stuart Ira 15 October 2015 (has links)
No description available.
63

Surface Nonuniformities in Waterborne Coatings due to Evaporative Mechanisms

Sutton, Kaylee B. 29 November 2016 (has links)
No description available.
64

Analysis of the stability of a flat-plate high-speed boundary layer with discrete roughness

Padilla Montero, Ivan 31 May 2021 (has links) (PDF)
Boundary-layer transition from a laminar to a turbulent regime is a critical driver in the design of high-speed vehicles. The aerothermodynamic loads associated with transitional or fully turbulent hypersonic boundary layers are several times higher than those associated with laminar flow. The presence of isolated roughness elements on the surface of a body can accelerate the growth of incoming disturbances and introduce additional instability mechanisms in the flow field, eventually leading to a premature occurrence of transition. This dissertation studies the instabilities induced by three-dimensional discrete roughness elements located inside a high-speed boundary layer developing on a flat plate. Two-dimensional local linear stability theory (2D-LST) is employed to identify the instabilities evolving in the three-dimensional flow field that characterizes the wake induced by the roughness elements and to investigate their evolution downstream. A formulation of the disturbance energy evolution equation available for base flows depending on a single spatial direction is generalized for the first time to base flows featuring two inhomogeneous directions and perturbations depending on three spatial directions. This generalization allows to obtain a decomposition of the temporal growth rate of 2D-LST instabilities into the different contributions that lead to the production and dissipation of the total disturbance energy. This novel extension of the formulation provides an additional layer of information for understanding the energy exchange mechanisms between a three-dimensional base flow and the perturbations resulting from 2D-LST. Stability computations for a calorically perfect gas illustrate that the wake induced by the roughness elements supports the growth of different sinuous and varicose instabilities which coexist together with the Mack-mode perturbations that evolve in the flat-plate boundary layer, and which become modulated by the roughness-element wake. A single pair of sinuous and varicose disturbances is found to dominate the wake instability in the vicinity of the obstacles. The application of the newly developed decomposition of the temporal growth rate reveals that the roughness-induced wake modes extract most of their potential energy from the transport of entropy fluctuations across the base-flow temperature gradients and most of their kinetic energy from the work of the disturbance Reynolds stresses against the base-flow velocity gradients. Further downstream, the growth rate of the wake instabilities is found to be influenced by the presence of Mack-mode disturbances developing on the flat plate. Strong evidence is observed of a continuous synchronization mechanism between the wake instabilities and the Mack-mode perturbations. This phenomenon leads to an enhancement of the amplification rate of the wake modes far downstream of the roughness element, ultimately increasing the associated integrated amplification factors for some of the investigated conditions. The effects of vibrational molecular excitation and chemical non-equilibrium on the instabilities induced by a roughness element are studied for the case of a high-temperature boundary layer developing on a sharp wedge configuration. For this purpose, a 2D-LST solver for chemical non-equilibrium flows is developed for the first time, featuring a fully consistent implementation of the thermal and transport models employed for the base flow and the perturbation fields. This is achieved thanks to the automatic derivation and implementation tool (ADIT) available within the von Karman Institute extensible stability and transition analysis (VESTA) tool-kit, which enables an automatic derivation and implementation of the 2D-LST governing equations for different thermodynamic flow assumptions and models. The stability computations for this configuration show that sinuous and varicose disturbances also dominate the wake instability in the presence of vibrational molecular energy mode excitation and chemical reactions. The resulting base-flow cooling associated with the modeling of such high-temperature phenomena is found to have opposite stabilizing and destabilizing effects on the streamwise evolution of the sinuous and varicose instabilities. The modeling of vibrational excitation and chemical non-equilibrium acting exclusively on the perturbations is found to have a stabilizing influence in all cases. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
65

[pt] CARACTERIZAÇÃO EXPERIMENTAL DE ONDAS INTERFACIAIS EM ESCOAMENTO ESTRATIFICADO TURBULENTO GÁS-LIQUIDO UTILIZANDO VELOCIMETRIA POR IMAGEM DE PARTÍCULA / [en] EXPERIMENTAL CHARACTERIZATION OF LINEAR INTERFACIAL WAVES IN A STRATIFIED TURBULENT GAS-LIQUID PIPE FLOW USING PARTICLE IMAGE VELOCIMETRY

PAULA STOFER CORDEIRO DE FARIAS 19 May 2020 (has links)
[pt] A ocorrência do escoamento slug em tubulações horizontais é de especial interesse para a indústria de petróleo devido aos riscos operacionais indesejados associados a esse padrão de escoamento. Portanto, nas últimas décadas um intenso esforço foi dedicado ao estudo e modelagem do escoamento slug. Ferramentas preditivas baseadas na estabilidade linear de Kelvin-Helmhotz foram amplamente desenvolvidas na literatura para prever a transição para esse regime de escoamento. Esses modelos são derivados da análise de estabilidade modal de perturbações bem definidas. No entanto, para escoamento em tubulação, um número bastante limitado de estudos experimentais dedicados para investigação da evolução de perturbações que originem o regime slug está disponível. Além disso, estudos a partir da introdução de perturbações bem definidas, que podem fornecer informações precisas para validação de modelos e simulações numéricas, foram encontrados. O presente trabalho abordou o problema da transição para o regime slug a partir da caracterização da evolução de ondas interfaciais. Essas perturbações controladas foram excitadas com um modo de geração na interface do escoamento estratificado utilizando uma placa oscilatória. O trabalho se concentra na caracterização de ondas interfaciais no regime linear, que corresponde ao regime de estudo da maioria dos modelos disponíveis na literatura. Portanto, um limiar de amplitude para ondas lineares foi estimado experimentalmente. O acionamento da placa oscilatória foi sincronizado com as aquisições de imagens, permitindo medições sincronizadas em fase. As medições do campo de velocidade foram realizadas usando a técnica de Velocimetria de Imagem de Partículas (PIV) e Iluminação de Fundo (Shadowgraphy). O perfil de velocidade e turbulência do escoamento foram medidos simultaneamente nas fases do liquido e do gás. A sincronização em fase permitiu a extração do perfil de flutuação de velocidade coerentes as ondas interfaciais. Os resultados obtidos são originais e mostraram, pela primeira vez na literatura, que os modos interfaciais em ambas as fases são quase independentes dos modos cisalhantes, dentro da faixa de parâmetros abordados neste trabalho. A caracterização de ondas não lineares foi brevemente investigada, indicando mudanças no perfil do escoamento médio. Além disso, foi obtida uma correlação para o fator de atrito das ondas interfaciais, levando a uma melhoria na estimativa da altura do líquido e da perda de carga do tubo quando combinadas nas relações de fechamento dos modelos 1-D. A metodologia experimental proposta neste trabalho é uma ferramenta valiosa para produzir informações precisas que podem ser usadas para validar e aprimorar modelos teóricos e simulações numéricas. O estudo pode contribuir para a compreensão dos mecanismos físicos envolvidos na transição do escoamento estratificado para slug. / [en] The occurrence of slug regime in horizontal pipelines is of special interest for the oil and gas industry due to the unwanted operational risks associated with this flow. Hence, an intense effort has been devoted to the study and to model this flow regime. Predictive tools based on linear Kelvin-Helmhotz stability have been widely applied in the literature for prediction of slug onset. These models are derived from stability analysis of well-defined disturbances. However, for pipe flows, a limited number of experimental studies devoted to investigate the evolution of disturbances that lead to the initiation of slugs is available. In addition, no studies are found using of well define disturbances, which could provide accurate information for validation of models and numerical simulations. The present work addresses the problem by the studying of the evolution of controlled waves excited at the liquid interface. To this end, an oscillating paddle was employed. The work focuses the characterization of interfacial waves within the linear regime, which correspond to the regime of most models available in the literature. The amplitude threshold for linear waves was experimentally estimated. The driving signal of the oscillating paddle was synchronized with image acquisitions, enabling phase locked measurements of the waves and hence the use of ensemble averaging techniques. Phase-locked measurements of the velocity field in the liquid and gas layers were performed using off-axis Particle Image Velocimetry (PIV) technique and Shadowgraph. Mean flow, streamwise and wall normal fluctuations were measured simultaneously in the liquid and gas phases. For a range of flow rates and exciting wave frequencies the combined techniques employed allowed the extraction from the measured velocity fields, the coherent part of flow fluctuations related with the exciting waves. The results obtained have shown, seemingly, for the first time, that interfacial modes in both phases are nearly independent of near wall disturbances within the range of parameters covered in this work. Characterization of nonlinear waves was briefly investigated indicating changes in the mean velocity. Moreover, a correlation for wave friction factor based on wave and flow parameters was obtained, leading to an improvement on the liquid heightand pipe head loss estimation when are combined into the closure relations used for the 1-D models. The experimental methodology proposed in this work is a valuable tool to produce accurate information that can be used to validate and improve theoretical models and numerical simulations. It can contribute to the understanding of the physical mechanisms involved in the transition from stratified to slug flows.
66

Instabilité thermoconvective d'un écoulement Poiseuille-Rayleigh-Bénard-Marangoni en canal ouvert à surface libre / Thermoconvective instabilities of Poiseuille-Rayleigh-Bénard-Marangoni flow in an open channel with free surface.

Bammou, Lahcen 13 December 2012 (has links)
Plusieurs études tant numériques qu’expérimentales font état de la présence d’instabilités thermiques dans des films liquides chauffés uniformément par le bas pour des conditions aux limites et d’écoulements particuliers. La présence de ces instabilités modifiera les transferts thermiques associés. Le sujet de ce travail de thèse consiste à étudier numériquement les instabilités thermoconvectives d’un écoulement laminaire tridimensionnel de convection mixte dans un canal horizontal à surface libre. Les variations de la tension de surface avec la température (effet Marangoni ou effet thermocapillaire) sont prises en compte. Bien que d’un intérêt certain pour de nombreuses applications industrielles, cette situation a été très peu étudiée d’un point de vue académique dans la configuration considérée ici. Dans cette de configuration plusieurs types de structures thermoconvectives sont susceptibles d’apparaître. Lorsque les forces induites par les courants de convection naturelle, forcée et thermocapillaire sont du même ordre de grandeur, les premiers résultats montrent un développement des instabilités sous forme de rouleaux convectifs longitudinaux stationnaires semblables à ceux rencontrés pour des écoulements de type Poiseuille-Rayleigh-Bénard. A notre connaissance, c’est la première fois que l’écoulement de convection de type Poiseuille-Rayleigh-Bénard associé aux effets Marangoni est étudié. Le nombre et la distribution spatiale des rouleaux convectifs le long du canal dépendent des conditions de l’écoulement. Nous proposons une étude numérique pour ces conditions particulières d’écoulement pouvant conduire à des instabilités avec une évaluation de leur effet sur les transferts de chaleur. Les équations de Navier-Stokes et de l’énergie sont résolues numériquement par la méthode de volumes finis en prenant en compte les effets thermocapillaires. Les résultats présentés concernent l’influence des paramètres contrôlant l’écoulement (nombres de Reynolds, de Rayleigh, de Biot, de Marangoni et le rapport de forme) sur les motifs de l’écoulement et les échanges thermiques. Dans une seconde partie du travail, complémentaire à la première, une analyse de stabilité linéaire de l’écoulement dans un canal ouvert à surface libre d’extension latérale infinie est réalisée en utilisant la méthode spectrale de type collocation Chebyshev pour résoudre un système aux valeurs propres. Les diagrammes de stabilité déterminant les seuils des paramètres conduisant à l’instabilité thermoconvective ont été obtenus et analysés, ainsi que les structures spatiales associées. / Several studies both numerical and experimental have reported the presence of thermal instabilities in liquid films uniformly heated from below for specific boundary conditions and flows. The presence of these instabilities modifies the associated heat transfer. The subject of this PhD thesis is to study numerically the instability of three-dimensional laminar mixed convection within a liquid flowing on a horizontal channel heated uniformly from below. The upper surface is free and assumed to be flat. The variations of the surface tension with the temperature (Marangoni effect or thermocapillary effect) are taken into account. Although of great interest for many industrial applications, this problem has received little attention from an academic point of view. In this configuration, several types of thermoconvective structures may appear. When the strength of the buoyancy, thermocapillary effects and forced convective currents are comparable, the results show the development of instabilities in the form of steady longitudinal convective rolls similar to those encountered in the Poiseuille-Rayleigh-Bénard flow. To our knowledge, this is the first time that the Poiseuille-Rayleigh-Bénard flow associated to the Marangoni effects has been investigated. The number and spatial distribution of the convective rolls along the channel depend on the flow conditions. We propose a numerical study on the flow conditions that could lead to thermal instabilities with an evaluation of their effect on the heat transfer. The coupled Navier-Stokes and energy equations are solved numerically by the finite volume method taking into account the thermocapillary effects. The results presented concern the influence of several control parameters (the Reynolds, Rayleigh, Biot and Marangoni numbers and the aspect ratio of the channel) on the flow patterns and heat transfer characteristics. In the second part of this work, complimentary to the first, a linear stability analysis of a horizontal liquid film flowing in an open channel, with infinite lateral extension and uniform heating from below, is carried out. An eigenvalue problem is obtained in the course of this analysis which is solved numerically using the Chebyshev collocation spectral method. The stability diagrams determining the threshold parameters leading to thermoconvective instabilities were obtained and analyzed as well as the associated spatial patterns.
67

Avaliação de métodos numéricos de análise linear de estabilidade para perfis de aço formados a frio. / Evaluation of numerical methods for linear stability analysis.

Braga, Débora Coting 13 May 2015 (has links)
Para o projeto de estruturas com perfis de aço formados a frio, é fundamental a compreensão dos fenômenos da instabilidade local e global, uma vez que estes apresentam alta esbeltez e baixa rigidez à torção. A determinação do carregamento crítico e a identificação do modo de instabilidade contribuem para o entendimento do comportamento dessas estruturas. Este trabalho avalia três metodologias para a análise linear de estabilidade de perfis de aço formados a frio isolados, com o objetivo de determinar os carregamentos críticos elásticos de bifurcação e os modos de instabilidade associados. Estritamente, analisa-se perfis de seção U enrijecido e Z enrijecido isolados, de diversos comprimentos e diferentes condições de vinculação e carregamento. Determinam-se os carregamentos críticos elásticos de bifurcação e os modos de instabilidade globais e locais por meio de: (i) análise com o Método das Faixas Finitas (MFF), através do uso do programa computacional CUFSM; (ii) análise com elementos finitos de barra baseados na Teoria Generalizada de Vigas (MEF-GBT), via uso do programa GBTUL; e (iii) análise com elementos finitos de casca (MEF-cascas) por meio do uso do programa ABAQUS. Algumas restrições e ressalvas com relação ao uso do MFF são apresentadas, assim como limitações da Teoria Generalizada de Viga e precauções a serem tomadas nos modelos de cascas. Analisa-se também a influência do grau de discretização da seção transversal. No entanto, não é feita avaliação em relação aos procedimentos normativos e tampouco análises não lineares, considerando as imperfeições geométricas iniciais, tensões residuais e o comportamento elastoplástico do material. / For the design of cold formed steel members, it is essential to understand the effects of local and global instability, since these members typically have a high slenderness and low torsion stiffness. The determination of critical loads and the associated buckling modes contribute to understand the behavior of these members. This work performs a evaluation of three methods for linear stability analysis of isolated cold-formed steel members in order to determine the elastic critical loads and the corresponding buckling modes. Specifically, Ue and Ze shape members were studied with various length, different boundary conditions and loads. The elastic critical loads and buckling modes are determined by means of: (i) analysis with the Finite Strip Method (FSM), by the computer program CUFSM, (ii) beam finite element analysis based on the Generalized Beam Theory (FEM-GBT), by GBTUL program, and (iii) Finite Element Method with shell analysis using ABAQUS program. Some restrictions and warnings regarding the use of the FSM are presented, as well as limitations of the Generalized Beam Theory and precautions to be taken in the shell models. It is also analyzed the influence of the degree of discretization of the cross section. In the present study, no evaluation was made with respect to normative procedures neither nonlinear analyses considering the initial geometric imperfections, residual stresses and elastoplastic behavior of the material.
68

Instabilities In Supersonic Couette Flow

Malik, M 06 1900 (has links)
Compressible plane Couette flow is studied with superposed small perturbations. The steady mean flow is characterized by a non-uniform shear-rate and a varying temperature across the wall-normal direction for an appropriate perfect gas model. The studies are broadly into four main categories as said briefly below. Nonmodal transient growth studies and estimation of optimal perturbations have been made. The maximum amplification of perturbation energy over time, G max, is found to increase with Reynolds number Re, but decreases with Mach number M. More specifically, the optimal energy amplification Gopt (the supremum of G max over both the streamwise and spanwise wavenumbers) is maximum in the incompressible limit and decreases monotonically as M increases. The corresponding optimal streamwise wavenumber, αopt, is non-zero at M = 0, increases with increasing M, reaching a maximum for some value of M and then decreases, eventually becoming zero at high Mach numbers. While the pure streamwise vortices are the optimal patterns at high Mach numbers (in contrast to incompressible Couette flow), the modulated streamwise vortices are the optimal patterns for low-to-moderate values of the Mach number. Unlike in incompressible shear flows, the streamwise-independent modes in the present flow do not follow the scaling law G(t/Re) ~ Re2, the reasons for which are shown to be tied to the dominance of some terms (related to density and temperature fluctuations) in the linear stability operator. Based on a detailed nonmodal energy anlaysis, we show that the transient energy growth occurs due to the transfer of energy from the mean flow to perturbations via an inviscid algebraic instability. The decrease of transient growth with increasing Mach number is also shown to be tied to the decrease in the energy transferred from the mean flow (E1) in the same limit. The sharp decay of the viscous eigenfunctions with increasing Mach number is responsible for the decrease of E1 for the present mean flow. Linear stability and the non-modal transient energy growth in compressible plane Couette flow are investigated for the uniform shear flow with constant viscosity. For a given M, the critical Reynolds number (Re), the dominant instability (over all stream-wise wavenumbers, α) of each mean flow belongs different modes for a range of supersonic M. An analysis of perturbation energy reveals that the instability is primarily caused by an excess transfer of energy from mean-flow to perturbations. It is shown that the energy-transfer from mean-flow occurs close to the moving top-wall for “mode I” instability, whereas it occurs in the bulk of the flow domain for “mode II”.For the Non-modal transient growth anlaysis, it is shown that the maximum temporal amplification of perturbation energy, G max,, and the corresponding time-scale are significantly larger for the uniform shear case compared to those for its non-uniform counterpart. For α = 0, the linear stability operator can be partitioned into L ~ L ¯ L +Re2Lp is shown to have a negligibly small contribution to perturbation energy which is responsible for the validity of the well-known quadratic-scaling law in uniform shear flow: G(t/Re) ~ Re2 . In contrast , the dominance of Lp is responsible for the invalidity of this scaling-law in non-uniform shear flow. An inviscid reduced model, based on Ellignsen-Palm-type solution, has been shown to capture all salient features of transient energy growth of full viscous problem. For both modal and non-modal instability, the viscosity-stratification of the underlying mean flow would lead to a delayed transition in compressible Couette flow. Modal and nonmodal spatial growths of perturbations in compressible plane Couette flow are studied. The modal instability at a chosen set of parameters is caused by the scond least-decaying mode in the otherwise stable parameter setting. The eigenfunction is accurately computed using a three-domain spectral collocation method, and an anlysis of the energy contained in the least-decaying mode reveals that the instability is due to the work by the pressure fluctuations and an increased transfer of energy from mean flow. In the case of oblique modes the stability at higher spanwise wave number is due to higher thermal diffusion rate. At high frequency range there are disjoint regions of instability at chosen Reynolds number and Mach number. The stability characteristics in the inviscid limit is also presented. The increase in Mach number and frequency is found to further destabilize the unstable modes for the case of two-dimensional(2D) perturbations. The behaviors of the non-inflexional neutral modes are found to be similar to that of compressible boundary layer. A leading order viscous correction to the inviscid solution reveals that the neutral and unstable modes are destabilized by the no-slip enforced by viscosity. The viscosity has a dual role on the stable inviscid mode. A spatial transient growth studies have been performed and it is found that the transient amplification is of the order of Reynolds number for a superposition of stationary modes. The optimal perturbations are similar to the streamwise invariant perturbations in the temporal setting. Ellignsen & Palm solution for the spatial algebraic growth of stationary inviscid perturbation has been derived and found to agree well with the transient growth of viscous counterpart. This inviscid solution captures the features of streamwise vortices and streaks, which are observed as optimal viscous perturbations. The temporal secondary instability of most-unstable primary wave is also studied. The secondary growth-rate is many fold higher when compared with that of primary wave and found to be phase-locked. The fundamental mode is more unstable than subharmonic or detuned modes. The secondary growth is studied by varying the parameters such as β, Re, M and the detuning parameter.
69

Linear stability analysis of viscoelastic fluid extrusion through a planar die

Πέττας, Διονύσιος 02 June 2015 (has links)
It is well-known that, increasing the flow rate in polymer extrusion, the flow becomes unstable and the smooth extrudate surface becomes wavy and disordered to an increasing degree. In order to investigate the mechanisms responsible for these instabilities we perform a linear stability analysis of the steady extrusion of a viscoelastic fluid flowing through a planar die under creeping flow conditions. We consider the Phan-Thien-Tanner (PTT) model to account for the viscoelasticity of the material. We employ the mixed finite element method combined with an elliptic grid generator to account for the deformable shape of the interface. The generalized eigenvalue problem is solved using Arnoldi’s algorithm. We perform a thorough parametric study in order to determine the effects of all material properties and rheological parameters. We investigate in detail the effect of interfacial tension and the presence of a deformable interface. It is found that the presence of a finite surface tension destabilizes the flow as compared to the case of the stick-slip flow. We recognize two modes which are found to become unstable beyond a critical value of the Weissenberg number and perform an energy analysis to examine the mechanisms responsible for the destabilization of the flow and compare against the mechanisms that have been suggested in the literature. / --
70

Κίνηση, παραμόρφωση και αλληλεπίδραση φυσαλίδων λόγω βαρύτητας ή/και μεταβολής της πίεσης του περιβάλλοντος ρευστού / Motion, deformation and interaction of bubbles due to gravity or/and variation of the pressure of the ambient fluid

Χατζηνταή, Νικολέτα 28 April 2009 (has links)
Αντικείμενο της παρούσας εργασίας είναι η πρόβλεψη τόσο της κίνησης, αλληλεπίδρασης και παραμόρφωσης δύο φυσαλίδων λόγω μεταβολής της πίεσης στο περιβάλλον ιξώδες υγρό, όσο και της ανοδικής κίνησης μιας φυσαλίδας λόγω άνωσης σε ένα Νευτωνικό ή ιξωδοπλαστικό ρευστό. Για τη μοντελοποίηση των αλληλεπιδρώντων φυσαλίδων, αναπτύχθηκε μιας νέα ελλειπτική μεθόδος κατασκευής του υπολογιστικού πλέγματος προκειμένου να αντιμετωπιστούν επιτυχώς τα ιδιάζοντα σημεία (πόλοι) των φυσαλίδων και οι μεγάλες παραμορφώσεις των διεπιφανειών τους. Με τη μέθοδο αυτή η πύκνωση του πλέγματος περιορίζεται μόνο στις περιοχές που είναι αναγκαίο, μειώνοντας έτσι το υπολογιστικό κόστος και αυξάνοντας την ακρίβεια των υπολογισμών. Για την επίλυση των παρακάτω προβλημάτων χρησιμοποιήθηκε η μέθοδος των μικτών πεπερασμένων στοιχείων κατά Galerkin. Στην περίπτωση των αλληλεπιδρώντων φυσαλίδων έχει εξετασθεί η επίδραση του σχετικού μεγέθους τους, της συχνότητας και του εύρους μεταβολής της επιβαλλόμενης πίεσης και πότε οδηγούν σε έλξη ή άπωση των φυσαλίδων. Στην περίπτωση ελκτικής δύναμης, ακολουθείται η κίνηση και η παραμόρφωσή τους μέχρι του σημείου που έρχονται σε επαφή, όπου αυτό είναι εφικτό. Για τη μελέτη του προβλήματος της φυσαλίδας που ανέρχεται λόγω άνωσης, υποθέτουμε αξονική συμμετρία και μόνιμη κατάσταση. Σύγκριση των προβλέψεών μας για το σχήμα των φυσαλίδων και το πεδίο ροής γύρω τους με προηγούμενα θεωρητικά και πειραματικά αποτελέσματα για Νευτωνικά ρευστά έδειξε άριστη συμφωνία. Στην περίπτωση του ιξωδοπλαστικού ρευστού εξετάστηκαν λεπτομερώς οι παραμορφώσεις των φυσαλίδων σαν συνάρτηση των αριθμών Bingham, Bond και Αρχιμήδη και υπολογίσθηκαν οι συνθήκες υπό τις οποίες είναι δυνατή η παγίδευση της φυσαλίδας μέσα σε αυτό. / The present study deals with the numerical simulation of the motion, interaction and deformation of two bubbles due to variation of the pressure of the ambient Newtonian fluid, and the buoyancy-driven rise of a bubble in a Newtonian or a viscoplastic fluid. A new elliptic mesh generation method is developed in order to deal with the singular points (poles) of the bubbles and the large deformations of their surface. This method permits us to increase the mesh resolution only in the regions that is necessary, decreasing thus the computational cost and increasing the precision of our calculations. The following problems are solved using the mixed finite element/Galerkin method. In the case of the interacting bubbles the effect of their relative size, the frequency and the width of the imposed pressure is examined as well as the conditions that lead in attraction or repulsion of the bubbles. In the case that attractive forces exist, the motion and the deformation of the bubbles followed up to the point that they come in contact, whenever this is possible. In order to study the problem of the bubble that rises due to buoyancy, axial symmetry and steady flow is assumed. Our results for the shape of the bubbles and the flow around them are in very good agreement with previous theoretical and experimental results for Newtonian fluids. The deformations of the bubbles rising in a viscoplastic material are also examined for various values of the Bingham, Bond and Archimedes numbers and the conditions under which entrapment of a bubble is possible are determined.

Page generated in 0.085 seconds