• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 2
  • 1
  • Tagged with
  • 37
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Metabolism and Action of Polyunsaturated N-acylethanolamines in Arabidopsis thaliana Seedlings

Keereetaweep, Jantana 08 1900 (has links)
The lipoxygenase (LOX) pathway plays an important role in the oxidative metabolism of polyunsaturated N-acylethanolamines (PU-NAEs). The LOX pathway functions in conjugation with hydrolysis by fatty acid amide hydrolase (FAAH) and to produce oxidized NAEs during seed germination and early seedling development. When Arabidopsis seedlings were grown in low micromolar concentrations of lauroylethanolamide (NAE 12:0), growth retardation and elevated endogenous PU-NAE levels were observed due to the competitive inhibition of LOX by NAE 12:0. The elevated levels of endogenous PU-NAEs were more pronounced in genotypes with reduced NAE hydrolase capacity (faah knockouts), and less evident with overexpression of FAAH. Alterations in PU-NAE metabolism were studied in seedlings of various lox and FAAH mutants. The partitioning of PU-NAEs into oxylipin metabolites was exaggerated in the presence of exogenous linolenoylethanolamide (NAE18:3) and resulted in bleaching of cotyledons. The bleaching phenotype was restricted to a narrow developmental window (3-to-5 days after sowing), and was attributed to a reversible disruption of thylakoid membranes in chloroplasts. Biochemical and genetic evidence suggested that 9-hydro(pero)xy and 13-hydro(pero)xy octadecatrienoylethanolamides (9- and 13-NAE-H(P)OT), but not their corresponding hydro(pero)xy free fatty acids, induced cotyledon bleaching. The LOX-mediated metabolites of NAE18:3 shared some overlapping effects on seedling development with those of linoleoylethanolamide (NAE18:2) such as a reduction in seedling root growth. On the other hand, NAE18:3 oxylipin metabolites also exhibited distinct effects during seedling development such as the inhibition of photomorphogenesis. Biochemical and genetic evidence indicated that a LOX-mediated metabolite of NAE18:2, 9-hydro(pero)xy octadecadienoylethanolamide (9-NAE-H(P)OD), acted as a potent negative regulator of seedling root development, and this depended on an intact abscisic acid (ABA) signaling pathway. Synergistic inhibition of root elongation between 9-NAE-H(P)OD and ABA was restricted to a narrow developmental window (3-to-5 d after sowing) of seedling development. Genetic evidence with Arabidopsis mutants in ABA synthesis (aba1, aba2), perception (pyr1, pyl2, pyl4, pyl5, pyl8) and transcriptional regulation (abi3-1) suggested that negative regulation of growth by 9-NAE-H(P)OD likely was mediated through an increase in ABA synthesis, and this was confirmed biochemically. Induction of a secondary dormancy program in Arabidopsis seedlings by environmental stresses also requires an intact ABA signaling cascade, and our study has shown that this regulatory seedling program is dependent, in large part, on NAE oxylipin formation. Together, results presented here indicated that LOX-mediated metabolites of NAE18:3 and NAE18:2 in Arabidopsis represent a newly-discovered group of bioactive metabolites, and their accumulation during the embryo-to-seedling transition of plant development may act to synchronize seedling establishment with environmental cues.
32

Lipoxygenase activity in menhaden (Brevoortia tyrranus) and its contribution to oxidation of omega-3 polyunsaturated fatty acids in menhaden oil

Grun, Ingolf U. 02 October 2007 (has links)
Menhaden is the major source of fish oil in the United States. Due to a high amount of polyunsaturated fatty acids which are highly susceptible to autoxidation, menhaden oil deteriorates rapidly, leading to objectionable off-odors and off-flavors. The purpose of this study was to investigate if the enzyme lipoxygenase is present in menhaden gill tissue and if it is a contributing factor in menhaden oil oxidation. Peroxide, TBA and anisidine values of undeodorized and deodorized menhaden oils exhibited two maxima during 20 weeks of storage at 30°C. Peroxide values of the undeodorized oil peaked at week 1 with 6.71 meq/kg and at week 12 with 21.50 meq/kg, while in the deodorized oil it peaked at week 8 (9.28 meq/kg) and week 20 (18.71 meq/kg). TBA maxima were observed at week 2 (1416 μMol/kg) and week 12 (4951 μMol/kg) and at week 8 (1397 μMol/kg) and week 20 (4284 μMo/kg) for undeodorized and deodorized menhaden oil respectively. Anisidine values showed maxima at the same weeks. These results indicate that lipid peroxidation of the deodorized oil lagged a few weeks behind the undeodorized oiL In this study, the conjugated diene and fluorescence analyses were found to be poor indicators for monitoring lipid oxidation in menhaden oil. Enzyme assays indicated that lipoxygenase activity is present in menhaden gill tissue with maximum activity at pH 9-10, resembling that of soybean lipoxygenase-l. A sensory panel judged omega-3 fatty acid ester concentrates treated with the enzyme extract as having a significantly (p < 0.03) stronger smell than the control ester for the first four weeks of an eight week study. However, no significant difference was found between the TBA values of the esters. Of the 60 volatile compounds identified by GC-MS in the undeodorized menhaden oil, 19 were aldehydes, 9 were alcohols and 8 were ketones. Volatiles that are potentially Ii poxygenase derived, namely 2-octenal, 1-octen-3-01, 2-nonenal, 2,6-nonadienal (E,Z), and 2,5-octadien-l-ol were among those identified in the undeodorized menhaden oil. The deooorized oil contained fewer total volatiles, and fewer aldehydes (6), ketones (1) and alcohols (8), but more long chain aliphatic compounds such as hydrocarbons, many of which were not possible to positively identify. No lipoxygenase derived volatiles were identified in the deooorized oil. Most of the volatiles in the omega-3 fatty acid ester concentrates were identified as esterified short chain fatty acids. No difference in the amount of total volatiles was found between four esters that were treated with and without the enzyme extract, a boiled enzyme extract and an enzyme extract that was inocculated with esculetin. However, in a repetition of just the control and the enzyme treated ester, a significantly (p < 0.02) higher amount of total volatiles was found in the enzyme treated ester, supporting the results of the sensory analysis. It was not possible to identify specific volatiles in the enzyme treated ester that were present in larger concentrations than in the other ester treatments. Volatiles identified in EPA and DHA ethyl esters were similar to those volatiles found in the undeodorized and deodorized menhaden oil as well as the omega-3 fatty acid ester concentrates, but no lipoxygenase derived volatiles were found. While lipoxygenase activity was found in the gill extract of menhaden, and sensory analysis was able to distinguish between a control and an enzyme incubated oil, the enzymatic activity was low (apparent Km = 16.7 μMol) and volatile analysis of various oils did not support the hypothesis that lipoxygenase is a major contributor to menhaden oil oxidation. Future research should include isolation and purification of menhaden gill lipoxygenase and the study of model systems to develop a better understanding of the contribution of lipoxygenase activity to oxidation of menhaden oil. / Ph. D.
33

In vitro Studies of Genodermatoses Affecting Cytoskeletal Integrity and Lipid Processing in Human Epidermis : Pathogenic Mechanisms and Effects of Retinoid Therapy

Li, Hao January 2012 (has links)
Autosomal dominant epidermolytic ichthyosis (EI) is a rare disease characterized by intra-epidermal blistering due to mutations in either of two keratin genes, KRT1 and KRT10, expressed by suprabasal keratinocytes. Autosomal recessive congenital ichthyosis (ARCI) is a non-blistering, hyperkeratotic disease caused by mutations in one of the following genes: ABCA12, ALOX12B, ALOXE3, TGM1, CYP4F22, NIPAL4 and SLC27A4, which are all essential for skin barrier homeostasis. ARCI and EI often respond well to treatment with retinoids, but the mechanism of action is unclear. The aim of this thesis was to increase the knowledge of pathogenic pathways in ichthyosis and to find new explanations to the effect of retinoids. In vitro studies of immortalized keratinocytes from EI patients showed an abnormal keratin aggregation after heat stress, that could be partially inhibited by pre-treatment with all-trans retinoic acid (ATRA) or retinoic acid receptor α-agonists. ATRA treatment also reduced the relative expression of mutated vs wildtype KRT10. The clearance of ATRA in human keratinocytes was found to be mediated by CYP26B1. In skin biopsies from ARCI patients, immunofluorescence analysis of 12R-LOX, eLOX-3, TGM1, ichthyin and FATP4 showed altered expression, not only of the mutated protein, but also of the other proteins. These observations are consistent with a feedback regulatory mechanism by which the loss of one protein results in an up-regulation of other proteins. Furthermore, 12R-LOX, eLOX-3 and TGM1 were intimately co-localized in stratum corneum, as were ichthyin and FATP4, suggesting that the proteins are linked to the same metabolic pathway. When treated with a CYP26 inhibitor known to raise the endogenous ATRA level of the skin, two patients with NIPAL4 mutations, initially exhibiting increased co-localization signals for 12R-LOX and eLOX-3, displayed normalized lipoxygenase expressions and showed clinical improvement. In conclusion, mechanisms are proposed by which pathogenic keratin aggregations in EI and epidermal protein deficiencies in ARCI patients may be mitigated by retinoids. Furthermore, the vivid crosstalk between proteins incriminated in ARCI suggests that these enzymes operate along a common metabolic pathway essential for producing barrier lipids in stratum corneum. Any abrogation of this production may cause barrier failure, hence resulting in a compensatory hyperkeratosis characteristic of congenital ichthyosis.
34

Eicosanoides como novos alvos terapêuticos no tratamento de glioblastoma humano. / Eicosanoids as new therapeutic targets in the treatment of human glioblastoma.

Souza, Felipe da Costa 06 November 2017 (has links)
O Glioblastoma (GBM) é um astrocitoma grau IV, representando o glioma de maior malignidade e o tumor cerebral primário mais frequente em humanos. A terapia indicada para o GBM é a ressecção cirúrgica, quimioterapia e radioterapia, todas com baixíssima eficiência devido a agressividade e as características do GBM. Consequentemente, a sobrevida dos pacientes indicados aos tratamentos convencionais é pouco mais de um ano. A inflamação é, sabidamente, uma das características que participa de modo decisivo do desenvolvimento tumoral, incluindo do GBM, e as relações entre mediadores inflamatórios e câncer são alvos de pesquisa nos últimos anos. Diversos estudos apontam um papel da via dos eicosanoides na modulação de processos patológicos envolvidos na inflamação e no câncer. Os eicosanoides são mediadores lipídicos bioativos, envolvidos em diversos processos fisiológicos e patológicos, em especial os associados à resposta inflamatória. As principais vias de produção de eicosanoides (ciclooxigenases, lipoxigenases, e citocromo P450), assim como seus produtos, são frequentemente alterados em diversos tipos de tumor, associados ao crescimento e a progressão tumoral. Contudo, o perfil dessas vias é consideravelmente pouco compreendido em GBM. O objetivo deste estudo foi analisar in vitro o perfil e o papel das três vias de eicosanoides e seus produtos (eicosanoides ou não) nas linhagens de GBM (U251-MG, U87-MG, A172, T98G e U138-MG), modulando a atividade de enzimas chaves com drogas especificas para, então, analisar parâmetros de proliferação, migração e morte celular. Nossos resultados mostram, em todas as linhagens analisadas, um perfil heterogêneo das enzimas e receptores chaves das três vias. O perfil lipídico evidencia a produção de 13-HODE, produto de 15-lipoxigenase-1 em todas as linhagens, bem como ausência de leucotrienos e 5-HETE do eixo de 5-lipoxigenase. Os inibidores farmacológicos para 15-LOX e 12-LOX/15-LOX foram capazes de reduzir o crescimento, modular o ciclo celular e a migração celular das linhagens U251-MG, U87-MG e A172. O mesmo é visto com a inibição de mPGES-1. A inibição de 5-LOX por outro lado não afetou nenhum parâmetro nas mesmas linhagens. Todos os resultados apontam, portanto, para um papel do eixo de 15-LOX e COX no crescimento e na migração das células de GBM humano. / Glioblastoma (GBM) is a grade IV astrocytoma, the most malignant and the most frequent primary brain tumour in humans. Standard therapies for treating GBM are surgical resection, chemotherapy and radiotherapy, all with low efficiency due to GBM aggressiveness and characteristics. Therefore, patient survival after conventional treatments is about one year. Inflammation is one of the main characteristics that plays a decisive role in tumour development, including in GBM. The relationships between inflammatory mediators and cancer have been the subject of research in recent years. Several studies point to the eicosanoid pathways as modulators of pathological processes between inflammation and cancer. Eicosanoids are bioactive lipid mediators, involved in various physiological and pathological processes, especially those associated with the inflammatory response. The major eicosanoid pathways (cyclooxygenases, lipoxygenases, and cytochrome P450) as well as their products, are frequently altered in several tumours, associated with tumour growth and progression. However, the profile of these pathways is poorly understood in GBM. The objective of this study was to analyse, in vitro, the profile and role of eicosanoid pathways and their products (eicosanoids or not) in GBM cell lines (U251-MG, U87-MG, A172, T98G and U138-MG), modulating the key enzymes with inhibitors, analysing proliferation, migration and cell death. Our results show, in all analysed cell lines, a heterogeneous profile for the key enzymes and receptors of the three pathways. The lipid profile shows the production of 13-HODE, a product of 15-lipoxygenase-1, as well the absence of leukotrienes and 5-HETE of the 5-lipoxygenase axis. The pharmacological inhibitors for 15-LOX and 12-LOX / 15-LOX led to changes in cell cycle, reduced growth, reduced migration of U251-MG, U87-MG and A172 cell lines. The same was seen with the inhibition of mPGES-1. Inhibition of 5-LOX, on the other hand, did not affect any of these parameters in the same cell lines. All results, therefore, point to an important role of 15-LOX and COX pathways in the growth and migration of human GBM cells.
35

Caractérisation de métabolites oxygénés dérivés des acides arachidonique et docosahexaénoïque dans le cerveau de rat / Characterization of oxygenated metabolites derived from arachidonic and docosahexaenoic acids in rat brain

Jouvène, Charlotte 15 September 2016 (has links)
Les acides docosahexaénoïque (DHA) et arachidonique (ArA), qui appartiennent respectivement aux familles n-3 et n-6, sont présents en grande quantité dans les tissus cérébraux, en particulier dans les phospholipides membranaires. Ces deux acides gras polyinsaturés (AGPI) jouent des rôles essentiels dans le fonctionnement cérébral, notamment dans le neurodéveloppement et la neuroinflammation. De plus, ces AGPI sont des précurseurs de plusieurs médiateurs lipidiques oxygénés impliqués dans divers processus physiologiques et pathologiques.Dans ce contexte, l'objectif de cette thèse était de caractériser les métabolites oxygénés dérivés du DHA et de l'ArA dans le cerveau, étape cruciale pour une meilleure compréhension de leurs rôles biologiques dans cet organe. Ainsi, une technique d'analyse à haute performance a été utilisée, la chromatographie liquide couplée à de la spectrométrie de masse en tandem (UHPLC-MS/MS), pour identifier les différents métabolites oxygénés dérivés du DHA et de l'ArA présents dans les cerveaux de rats exsanguinés et non exsanguinés, que ce soit en conditions basales ou inflammatoires. Ainsi, plusieurs produits oxygénés dérivés du DHA et de l'ArA ont été identifiés et quantifiés dans les cerveaux exsanguinés et non-exsanguinés, à la fois à l'état libre dans le cerveau mais également estérifiés dans les phospholipides. Les métabolites mono-hydroxylés sont les principaux dérivés oxygénés du DHA et de l'ArA, cependant, des quantités mesurables de produits di-hydroxylés, tels que le 8,15-diHETE et la protectine DX, ont également été détectées. L'exsanguination permet de différencier les métabolites oxygénés du tissu cérébral de ceux présents dans le sang. De plus, le métabolisme oxygéné du DHA et de l'ArA est impacté lors d'une inflammation cérébrale. En effet, dans ces conditions, la synthèse de certains métabolites est augmentée, notamment celle de la protectine D1, molécule connue pour ces fortes propriétés anti-inflammatoires. Ces résultats méritent de plus amples recherches dans des conditions pathophysiologiques, notamment lors de maladies neurodégénératives, afin d'observer leur impact sur le métabolisme oxygéné de ces AGPI / Docosahexaenoic (DHA) and arachidonic (ArA) acids, two PUFA which belong to n-3 and n-6 families respectively, are both present at high amount in brain tissues, and especially in membrane phospholipids. These two polyunsaturated fatty acids (PUFA) play important roles in brain functioning, notably in neurodevelopment and neuroinflammation. Moreover, these PUFA are precursors of various oxygenated lipid mediators involved in diverse physiological and pathological processes. In this context, the aim of this work was to characterize oxygenated metabolites derived from DHA and ArA in brain, crucial step for better understanding their biological roles in this organ. For this purpose, a high performance analytical approach was usd, the liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS), in order to identify the different oxygenated metabolites derived from DHA and ArA in exsanguinated and non-exsanguinated brains, both in basal and inflammatory conditions. Several oxygenated products from DHA and ArA were identified and measured in exsanguinated and non-exsanguinated brain, both in the free form and esterified in phospholipids. Mono-hydroxylated metabolites were the main oxygenated derivatives from DHA and ArA, however, measurable amounts of di-hydroxylated products such as 8,15-diHETE and protectin DX, were also detected. Exsanguination allowed discriminating oxygenated metabolites from brain tissue against those in blood brain. Moreover, DHA and ArA oxygenated metabolism was impacted during brain inflammation. Indeed, in these conditions, the synthesis of some metabolites was increased, including that of protectin D1, molecule known for its strong anti-inflammatory properties. These results deserve further research in pathophysiological conditions, especially in neurodegenerative diseases, in order to observe their impact on the oxygenated metabolism of these PUFA
36

Caractérisation de la polarisation des macrophages pulmonaires humains et voies de régulation / Phenotypic characterization of polarized in vitro human lung macrophages and regulatory pathways

Abrial, Charlotte 03 November 2014 (has links)
Les macrophages jouent un rôle dans l'inflammation de certaines pathologies pulmonaires comme l'asthme et la broncho pneumopathie chronique obstructive. Selon la dichotomie Th1 et Th2, les macrophages s'activent en phénotype M1/M2 en fonction du microenvironnement. Sous l'influence du lipopolysaccharide (LPS) les macrophages s'activent en phénotype M1. A l'inverse, l'exposition aux cytokines Th2 (interleukine (IL)-4/IL-13) induit un phénotype M2 des macrophages. Nous avons réalisé une étude transcriptomique des marqueurs de la polarisation M1/M2 des macrophages pulmonaires humains. La polarisation M1 induite par le LPS augmente la production des cytokines (TNF-α, IL-1β, CCL2, 3, 4, 5, CXCL1, 8, 10), de la PGE2 et l'expression du CD38 et CD197. La polarisation M2 induite par l'IL-4/IL-13 augmente l'expression des cytokines (CCL13, 17, 22, 26), de la 15-lipoxygénase (15-LOX) et du CD206. Nous avons évalué l'expression des 15-LOX-1 et 15-LOX-2 et leur rôle dans la régulation de la polarisation des macrophages pulmonaires. Le LPS augmente l'expression de la 15-LOX-2 alors que l'IL-4/IL-13 augmente l'expression de la 15-LOX-1. L'inhibition des 15-lipoxygénases diminue la production des cytokines M1/M2. Enfin, nous avons étudié l'expression et le rôle du récepteur nicotinique α7 dans la polarisation des macrophages pulmonaires humains. Ces derniers expriment les récepteurs nicotiniques α7 dont la stimulation par des agonistes nicotiniques α7 diminue la production des cytokines M1/M2. Ce travail apporte de nouvelles connaissances sur la polarisation des macrophages, dont certaines voies de régulation peuvent être impliquées dans les pathologies inflammatoire pulmonaires / In pulmonary diseases such as asthma and chronic obstructive pulmonary disease, macrophages orchestrate inflammatory reactions. In response to environmental signals, macrophages exhibit a phenotypic polarization that mirrors the Th1/Th2 polarization. Upon exposure to bacterial lipopolysaccharide (LPS), macrophages undergo M1 polarization. In contrast, interleukin (IL)-4/IL-13 induce M2 polarization.In our first study, we characterized the phenotypic differentiation of human lung macrophages (LM) using a whole-transcriptome approach. Cytokines, lipid metabolism and membrane markers were among the most affected genes. LPS-induced M1 polarization was associated with an increase in the production of cytokines (TNF-α, IL-1β, CCL2, 3, 4, 5, CXCL1, 8, 10), in PGE2 signalling and in the expression of CD38 and CD197. IL-4/IL-13-induced M2 macrophages increased expression of cytokines (CCL13, 17, 22, 26), 15-lipoxygenase (15-LOX) and CD206. In the second study, we investigated the expression of 15-LOX-1 and 15-LOX-2 and their roles in regulating the polarization of human LM. LPS increased the expression of 15-LOX-2 whereas IL-4/IL-13 induced the expression of 15-LOX-1. Inhibition of the 15-LOX pathways decreased the production of both M1 and M2 cytokines. The third study investigated the expression of α7 nicotinic receptors (α7nAChR) and their regulating roles in the polarization of LM. Expression of α7nAChR was found in unstimulated LM. Specific α7nAChR agonists decreased the in vitro production of both M1 and M2 cytokines. Our work adds new insights in the macrophage polarization and some of the regulatory pathways that may be involved in pulmonary diseases
37

Embryogenesis is dependent upon 12-lipoxygenase, 5-lipoxygenase, and α-tocopherol to modulate polyunsaturated fatty acid status and the production of oxidized fatty acids in zebrafish / Embryogenesis is dependent upon 12-lipoxygenase, 5-lipoxygenase, and alpha-tocopherol to modulate polyunsaturated fatty acid status and the production of oxidized fatty acids in zebrafish

Lebold, Katherine M. 25 May 2012 (has links)
Arachidonic acid (ARA) and docosahexaenoic acid (DHA) are polyunsaturated fatty acids required for proper embryonic development, specifically neurodevelopment. However, little is known regarding their conversion to other metabolites during embryogenesis. The oxidation of ARA gives rise to the biologically active eicosanoids and the oxidation of DHA gives rise to the biologically active docosanoids. The oxidation of ARA and DHA occurs through enzymatic processes, via lipoxygenase (LOX), or non-enzymatic processes, via radical-mediated lipid peroxidation. We hypothesize that oxidation of ARA and DHA via LOX is required for proper embryonic development. Additionally, we hypothesize that α-tocopherol, a potent lipid soluble antioxidant, mediates the conversion of ARA and DHA to their respective oxidized metabolites. Using zebrafish as a model of vertebrate embryogenesis, we found that the selective knockdown of either 12-LOX or 5-LOX decreased the production of docosanoids, altered fatty acid homeostasis, and increased the incidence of malformations and mortality in embryos by 24 hours post fertilization. α-Tocopherol deficiency also increased the incidence of malformations and mortality during embryogenesis, and in its absence, increased oxidized metabolites of ARA and DHA and decreased fatty acids concentrations. Therefore, oxidized metabolites of ARA and DHA perform crucial functions during embryonic development, but the production of oxidized fatty acids must be balanced with antioxidant bioavailability for proper embryogenesis. / Graduation date: 2012

Page generated in 0.0367 seconds