141 |
Position detection in Ultimate Frisbee using DronesGuedes Russomanno, Tiago, Blauberger, Patrick, Schmid, Marc, Lames, Martin 14 October 2022 (has links)
Drones are widely used in different applications, with different models, like quadcopters, or military drones. But so far little has been done in sports regarding performance analysis, based on this, the aim of this work is to present a position detection in Ultimate Frisbee using drones. / Drohnen sind in verschiedenen Anwendungen weit verbreitet, mit unterschiedlichen Modellen, wie Quadcoptern oder Militärdrohnen. Bisher wurde im Sport jedoch nur wenig in Bezug auf die Leistungsanalyse unternommen, weshalb das Ziel dieser Arbeit darin besteht, eine Positionserkennung im Ultimate Frisbee mit Hilfe von Drohnen zu präsentieren.
|
142 |
Ein Beitrag zur Modellierung versetzungs- und verformungsinduzierter plastischer Lokalisierungsphänomene metallischer WerkstoffeSilbermann, Christian B. 30 April 2020 (has links)
Die vorliegende Arbeit beschäftigt sich mit Festkörperkontinuumsmechanik und Metall- bzw. Kristallplastizität auf verschiedenen Längenskalen. Diesbezüglich besteht die Arbeit aus drei größeren Teilen. Im ersten Teil werden Verformungsvorgänge mit expliziter FEM (Finite-Elemente-Methode) und einem makroskopischen phänomenologischen Modell der Viskoplastizität simuliert. Hierbei wird sich auf das Gleichkanalwinkelpressen (ECAP) eines Metallbarrens und die Stauchung einer sogenannten Crashbox konzentriert. In beiden Fällen gelingt es, die im Experiment bereits beobachtete Lokalisierung der Verformung korrekt wiederzugeben. Da bei den Simulationen die konkrete Mikrostruktur des Materials vernachlässigt wird, werden diese Lokalisierungsphänomene als verformungsinduziert angesehen. Der zweite Teil beschäftigt sich mit der Erweiterung des viskoplastischen Modells, sodass mikroskopische Vorgänge der Gitterdefektstruktur des Materials berücksichtigt werden können. Dazu wird ein Modell des dynamischen Verhaltens von Versetzungspopulationen entwickelt und an das makroskopische viskoplastische Modell gekoppelt. Auf diese Weise können Aspekte der sogenannten Kornfeinung – einem komplexen Strukturbildungsprozess von Versetzungen und anderen Gitterdefekten – erfasst werden. Allerdings kann die für die makroskopischen Eigenschaften entscheidende Bildung von Subkorngrenzen auf diese Weise nicht abgebildet werden. Um dies zu erreichen, wird im dritten Teil der Arbeit eine mesoskopische Theorie der Kristallplastizität mit kontinuierlich verteilten Versetzungen verwendet und weiterentwickelt. Hierbei werden die für eine Subkornbildung wesentlichen Freiheitsgrade hinzugenommen, die Anzahl phänomenologischer Ansätze und zugehöriger Materialparameter aber so klein wie möglich gehalten. Mit dieser Kontinuumsversetzungstheorie (KVT) gelingt es, die Bildung von Subkorngrenzen bei großen plastischen Verformungen eines Kristallits zu verfolgen. Bei den impliziten FEM-Simulationen wird ebenfalls eine Lokalisierung beobachtet, allerdings in Bezug auf die Aktivität der Versetzungen in verschiedenen Gleitebenen. Dementsprechend wird dieses Lokalisierungsphänomen als versetzungsinduziert angesehen. Der Beitrag der vorliegenden Arbeit liegt zum einen in der Aufarbeitung und Gegenüberstellung unterschiedlicher methodischer Herangehensweisen zur Modellierung verformungs- und versetzungsinduzierter Lokalisierungsphänomene. Zum anderen wird eine Analyse und Vereinheitlichung der geometrisch linearen KVT nach Berdichevsky & Le vorgenommen. Wie sich dabei zeigt, verhindern inhärente kinematische Einschränkungen der Theorie die Simulation einer Subkornbildung. Aus diesem Grund wird die konsistente geometrisch nichtlineare KVT von Gurtin aufgegriffen und erweitert. Mit einem daraus abgeleiteten elastisch und plastisch anisotropen Modell der Einkristallviskoplastizität wird der Nachweis erbracht, dass die Subkornbildung damit simuliert werden kann. Darüber hinaus wird eine Aufbereitung und Synthese von Algorithmen zur numerischen Lösung der zugehörigen Feldgleichungen mittels der Methode der finiten Differenzen und der finiten Elemente geliefert. Zudem werden beide Näherungsverfahren in Bezug auf Vor- und Nachteile sowie thermodynamische Konsistenz bei der Anwendung auf Mehrfeldprobleme miteinander verglichen. / The present thesis deals with solid continuum mechanics applied to metal and crystal plasticity on different length scales. In this respect, the work consists of three larger parts. In the first part, deformation processes are simulated with explicit FEM (Finite Element Method) and a macroscopic phenomenological model of viscoplasticity. Here the focus is on the Equal-Channel Angular Pressing (ECAP) of a metal billet and the compression of a so-called crash box. In both cases it is possible to correctly reproduce the localization of the deformation as already observed in the experiment. Since the concrete microstructure of the material is neglected in the simulations, these localization phenomena are regarded as deformation-induced. The second part deals with the extension of the viscoplastic model so that microscopic processes of the lattice defect structure of the material can be considered. A model of the dynamic behavior of dislocation populations is developed and coupled to the macroscopic viscoplastic model. In this way, aspects of the so-called grain refinement – a complex structure formation process of dislocations and other lattice defects – can be captured. However, the formation of subgrain boundaries, which is decisive for the macroscopic properties, cannot be predicted in this way. To achieve this, a mesoscopic theory of crystal plasticity with continuously distributed dislocations is used and further developed in the third part of the thesis. Here, the degrees of freedom essential for subgrain formation are added, while the number of phenomenological approaches and associated material parameters are kept as small as possible. With this continuum dislocation theory it is possible to follow the formation of subgrain boundaries during large plastic deformations of a crystallite. In the implicit FEM simulations, localization is also observed, but with respect to the dislocation activity in different slip planes. Accordingly, this localization phenomenon is considered dislocation-induced. The contribution of the present work lies on the one hand in the review and comparison of different methodical approaches to the modeling of deformation- and dislocation-induced localization phenomena. On the other hand, an analysis and unification of the geometrically linear continuum dislocation theory according to Berdichevsky & Le is carried out. As it turns out, inherent kinematic limitations of the theory prevent the simulation of subgrain formation. For this reason the consistent geometrically non-linear continuum dislocation theory from Gurtin is adopted and extended. With the derived model of elastically and plastically anisotropic single crystal viscoplasticity it is proven that subgrain formation can be simulated. Moreover, a preparation and synthesis of algorithms for the numerical solution of the associated field equations using the method of finite differences and finite elements is provided. In addition, both approximation methods are compared in terms of advantages and disadvantages as well as thermodynamic consistency when applied to multi-field problems.
|
143 |
Quantum transport in defective carbon nanotubes at mesoscopic length scalesTeichert, Fabian 17 July 2019 (has links)
This thesis theoretically investigates the electronic transport properties of defective carbon nanotubes (CNTs). For the defects the focus is set to vacancy types. The calculations are performed using quantum transport theory and an underlying density-functional-based tight-binding method. Two algorithmic improvements are derived, which accelerate the common methods for quasi one-dimensional systems for the specific case of (i) randomly distributed defects and (ii) long unit cells. With this, the transmission spectrum and the conductance is calculated as a function of the CNT length, diameter, chiral angle, defect type, defect density, defect fraction, and temperature. The diffusive and the localized transport regime are described by extracting elastic mean free paths and localization lengths for metallic and semiconducting CNTs. Simple analytic models for estimating or even predicting the conductance dependence on the mentioned parameters are derived. Finally, the formation of defect-induced long-range deformations and its influence on the conductance are studied.:1 Introduction
2 Fundamentals
2.1 Carbon nanotubes
2.1.1 Structure
2.1.2 Properties
2.1.3 Defects
2.1.4 Synthesis
2.1.5 Characterization
2.1.6 Applications
2.2 Electron structure theory
2.2.1 Introduction
2.2.2 Density functional theory
2.2.3 Density-functional-based tight binding
2.2.3.1 First-order expansion
2.2.3.2 Creation of the parameter set
2.2.3.3 Second-order expansion
2.2.3.4 Usage
2.3 Electron transport
2.3.1 Equilibrium Green’s-function-based quantum transport theory
2.3.2 Transport regimes
2.3.3 Classical derivation: drift-diffusion equation with a sink
2.3.4 Quantum derivation: Dorokhov-Mello-Pereyra-Kumar theory
A Improved recursive Green’s function formalism for quasi one-dimensional systems with realistic defects (J. Comput. Phys. 334 (2017), 607–619)
A.1 Introduction
A.2 Quantum transport theory
A.3 Recursive Green’s function formalisms
A.3.1 Forward iteration scheme
A.3.2 Recursive decimation scheme
A.3.3 Renormalization decimation algorithm
A.4 Improved RGF+RDA
A.5 Performance test
A.5.1 Random test matrix
A.5.2 Transport through carbon nanotubes
A.6 Summary and conclusions
B Strong localization in defective carbon nanotubes: a recursive Green’s function study (New J. Phys. 16 (2014), 123026)
B.1 Introduction
B.2 Theoretical framework
B.2.1 Transport formalism
B.2.2 Recursive Green’s function formalism
B.2.3 Electronic structure
B.2.4 Strong localization
B.3 Modeling details of the defective system
B.4 Results and discussion
B.4.1 Single defects
B.4.2 Randomly distributed defects
B.4.3 Localization exponent
B.4.4 Diameter dependence and temperature dependence of the localization exponent
B.5 Summary and conclusions
Supplementary material
C Electronic transport in metallic carbon nanotubes with mixed defects within the strong localization regime (Comput. Mater. Sci. 138 (2017), 49–57)
C.1 Introduction
C.2 Theoretical framework
C.3 Modeling details
C.4 Results and discussion
C.4.1 Conductance
C.4.2 Localization exponent
C.4.3 Influence of temperature
C.4.4 Conductance estimation
C.5 Summary and conclusions
D An improved Green’s function algorithm applied to quantum transport in carbon nanotubes (arXiv: 1806.02039)
D.1 Introduction
D.2 Electronic transport
D.3 Decimation technique and renormalization-decimation algorithm
D.4 Renormalization-decimation algorithm for electrodes with long unit cells
D.4.1 Surface Green’s functions
D.4.2 Bulk Green’s functions and electrode density of states
D.5 Complexity measure and performance test
D.6 Exemplary results
D.7 Summary and conclusions
E Electronic transport through defective semiconducting carbon nanotubes (J. Phys. Commun. 2 (2018), 105012)
E.1 Introduction
E.2 Theoretical framework
E.3 Modeling details
E.4 Results and discussion
E.4.1 Transmission and transport regimes
E.4.2 Energy dependent localization exponent and elastic mean free path
E.4.3 Conductance, effective localization exponent and effective elastic mean free path
E.5 Summary and conclusions
Supplementary material
F Influence of defect-induced deformations on electron transport in carbon nanotubes (J. Phys. Commun. 2 (2018), 115023)
F.1 Introduction
F.2 Theory
F.3 Results
F.4 Summary and conclusions
3 Ongoing work
4 Summary and outlook
4.1 Summary
4.2 Outlook
5 Appendix
5.1 Bandstructure of graphene
5.2 Quantum transport theory and Landauer-Büttiker formula
References
List of figures
List of tables
Acknowledgement
Selbstständigkeitserklärung
Curriculum vitae
List of publications / Diese Dissertation untersucht mittels theoretischer Methoden die elektronischen Transporteigenschaften von defektbehafteten Kohlenstoffnanoröhren (englisch: carbon nanotubes, CNTs). Dabei werden Vakanzen als Defekte fokussiert behandelt. Die Berechnungen werden mittels Quantentransporttheorie und einer zugrunde liegenden dichtefunktionalbasierten Tight-Binding-Methode durchgeführt. Zwei algorithmische Verbesserungen werden hergeleitet, welche die üblichen Methoden für quasi-eindimensionale Systeme für zwei spezifische Fälle beschleunigen: (i) zufällig verteilte Defekte und (ii) lange Einheitszellen. Damit werden das Transmissionsspektrum und der Leitwert als Funktion von CNT-Länge, Durchmesser, chiralem Winkel, Defekttyp, Defektdichte, Defektanteil und Temperatur berechnet. Das Diffusions- und das Lokalisierungstransportregime werden beschrieben, indem die elastische freie Weglänge und die Lokalisierungslänge für metallische und halbleitende CNTs extrahiert werden. Einfache analytische Modelle zur Abschätzung bis hin zur Vorhersage des Leitwertes in Abhängigkeit besagter Parameter werden abgeleitet. Schlussendlich werden die Bildung einer defektinduzierten, langreichweitigen Deformation und deren Einfluss auf den Leitwert studiert.:1 Introduction
2 Fundamentals
2.1 Carbon nanotubes
2.1.1 Structure
2.1.2 Properties
2.1.3 Defects
2.1.4 Synthesis
2.1.5 Characterization
2.1.6 Applications
2.2 Electron structure theory
2.2.1 Introduction
2.2.2 Density functional theory
2.2.3 Density-functional-based tight binding
2.2.3.1 First-order expansion
2.2.3.2 Creation of the parameter set
2.2.3.3 Second-order expansion
2.2.3.4 Usage
2.3 Electron transport
2.3.1 Equilibrium Green’s-function-based quantum transport theory
2.3.2 Transport regimes
2.3.3 Classical derivation: drift-diffusion equation with a sink
2.3.4 Quantum derivation: Dorokhov-Mello-Pereyra-Kumar theory
A Improved recursive Green’s function formalism for quasi one-dimensional systems with realistic defects (J. Comput. Phys. 334 (2017), 607–619)
A.1 Introduction
A.2 Quantum transport theory
A.3 Recursive Green’s function formalisms
A.3.1 Forward iteration scheme
A.3.2 Recursive decimation scheme
A.3.3 Renormalization decimation algorithm
A.4 Improved RGF+RDA
A.5 Performance test
A.5.1 Random test matrix
A.5.2 Transport through carbon nanotubes
A.6 Summary and conclusions
B Strong localization in defective carbon nanotubes: a recursive Green’s function study (New J. Phys. 16 (2014), 123026)
B.1 Introduction
B.2 Theoretical framework
B.2.1 Transport formalism
B.2.2 Recursive Green’s function formalism
B.2.3 Electronic structure
B.2.4 Strong localization
B.3 Modeling details of the defective system
B.4 Results and discussion
B.4.1 Single defects
B.4.2 Randomly distributed defects
B.4.3 Localization exponent
B.4.4 Diameter dependence and temperature dependence of the localization exponent
B.5 Summary and conclusions
Supplementary material
C Electronic transport in metallic carbon nanotubes with mixed defects within the strong localization regime (Comput. Mater. Sci. 138 (2017), 49–57)
C.1 Introduction
C.2 Theoretical framework
C.3 Modeling details
C.4 Results and discussion
C.4.1 Conductance
C.4.2 Localization exponent
C.4.3 Influence of temperature
C.4.4 Conductance estimation
C.5 Summary and conclusions
D An improved Green’s function algorithm applied to quantum transport in carbon nanotubes (arXiv: 1806.02039)
D.1 Introduction
D.2 Electronic transport
D.3 Decimation technique and renormalization-decimation algorithm
D.4 Renormalization-decimation algorithm for electrodes with long unit cells
D.4.1 Surface Green’s functions
D.4.2 Bulk Green’s functions and electrode density of states
D.5 Complexity measure and performance test
D.6 Exemplary results
D.7 Summary and conclusions
E Electronic transport through defective semiconducting carbon nanotubes (J. Phys. Commun. 2 (2018), 105012)
E.1 Introduction
E.2 Theoretical framework
E.3 Modeling details
E.4 Results and discussion
E.4.1 Transmission and transport regimes
E.4.2 Energy dependent localization exponent and elastic mean free path
E.4.3 Conductance, effective localization exponent and effective elastic mean free path
E.5 Summary and conclusions
Supplementary material
F Influence of defect-induced deformations on electron transport in carbon nanotubes (J. Phys. Commun. 2 (2018), 115023)
F.1 Introduction
F.2 Theory
F.3 Results
F.4 Summary and conclusions
3 Ongoing work
4 Summary and outlook
4.1 Summary
4.2 Outlook
5 Appendix
5.1 Bandstructure of graphene
5.2 Quantum transport theory and Landauer-Büttiker formula
References
List of figures
List of tables
Acknowledgement
Selbstständigkeitserklärung
Curriculum vitae
List of publications
|
144 |
Elektronischer Transport in defektbehafteten quasi-eindimensionalen Systemen am Beispiel von KohlenstoffnanoröhrchenTeichert, Fabian 27 January 2014 (has links)
Die vorliegende Arbeit beschäftigt sich mit den Transporteigenschaften defektbehafteter Kohlenstoffnanoröhrchen (CNTs). Als Beispiel werden dabei einfache und doppelte Fehlstellen betrachtet. Der Fokus liegt auf der Berechnung des Transmissionsspektrums und der Leitfähigkeit mit einem schnellen, linear skalierenden rekursiven Greenfunktions-Formalismus, mit dem große Systeme quantenmechanisch behandelt werden können. Als Grundlage wird ein dichtefunktionalbasiertes Tight-Binding-Modell verwendet. Der Einfluss der Defektdichte und des CNT-Durchmessers wird im Rahmen einer statistischen Analyse untersucht. Es wird gezeigt, dass im Grenzfall kleiner Transmission die Leitfähigkeit exponentiell mit der Defektanzahl skaliert. Das System befindet sich im Regime starker Lokalisierung, wobei die Lokalisierungslänge von der Defektdichte und dem CNT-Durchmesser abhängt.:1 Einleitung
2 Physikalische Grundlagen
2.1 Vom Graphen zum Kohlenstoffnanoröhrchen
2.1.1 Geometrische Struktur
2.1.2 Elektronische Eigenschaften
2.2 Schrödingergleichung
2.3 Dichtefunktionaltheorie
2.4 Tight-Binding-Verfahren
2.5 Dichtefunktionalbasiertes Tight-Binding-Verfahren
2.6 Fermienergie, Zustandsdichte und Bandstruktur
2.7 Landauer-Formalismus
2.8 Transportmechanismen und Lokalisierungseffekte
3 Greenfunktions-Formalismus
3.1 Definition der Greenfunktion
3.2 Greenfunktion für die Schrödingergleichung
3.3 Dezimierungstechnik
3.4 Einfacher Algorithmus für periodische Matrizen
3.5 Renormierungs-Dezimierungs-Algorithmus
3.6 Erste Nebendiagonalgreenfunktionsblöcke für periodische Matrizen
3.7 Rekursiver Greenfunktions-Formalismus für endliche Matrizen
4 Elektronische Struktur und quantenmechanischer Transport
4.1 Quantenmechanische Systeme mit Elektrodenkopplung
4.1.1 Reduktion und Lösung der Schrödingergleichung
4.1.2 Elektronische Struktur: Spektralfunktion und Zustandsdichte
4.1.3 Elektronischer Transport: Transmissionsspektrum und Strom
4.2 Quasi-eindimensionale Systeme
4.2.1 Zustandsdichte
4.2.2 Transmissionsspektrum
4.3 Numerischer Aufwand
5 Simulation: Software und Algorithmen
5.1 Atomistix ToolKit
5.2 DFTB-Parametersätze
5.3 LAPACK, BLAS
5.4 Überblick über selbst implementierte Programme
6 Ergebnisse
6.1 Testrechnungen
6.1.1 Genauigkeitstest
6.1.2 Geschwindigkeitstest
6.1.3 Parametersatz
6.1.4 Konsistenztest
6.2 Darstellung der Strukturen
6.3 Transmissionsspektren für einen Defekt
6.4 Transmissionsspektren für zwei Defekte
6.5 Transmissionsspektren für zufällig verteilte Defekte
6.6 Abhängigkeit der Leitfähigkeit von der Defektanzahl
6.7 Abhängigkeit der Leitfähigkeit vom CNT-Durchmesser
6.8 Abschließende Bemerkungen und Vergleich zu anderen Arbeiten
7 Zusammenfassung und Ausblick
A Anhänge
A.1 Orthogonale Transformation der p-Orbitale
A.2 Operatordarstellung der Greenfunktion
A.3 Berechnung der Greenfunktionsblöcke
A.4 Transmission durch die doppelte Potentialbarriere
Tabellenverzeichnis
Abbildungsverzeichnis
Literaturverzeichnis
Danksagung
Selbstständigkeitserklärung
|
145 |
Steigerung selbstregulierten Lernens durch computerbasiertes Feedback beim Erwerb von Experimentierkompetenz im Fach Biologie / Individually adapted computerbased feedback for supporting self-regulated learning processes in school-age children / A computer-based learning program developed to help pupils practice strategies of controlling experimental variables.Lange, Silke Dorothee 31 October 2012 (has links)
Feedback ist ein wichtiger Faktor für erfolgreiches Lernen – vorausgesetzt, dass es rich-tig eingesetzt wird (Hattie & Timperley, 2007). Dies gilt insbesondere, wenn es um den Erwerb neuer Kompetenzen geht. Die vorliegende Studie soll dazu beitragen, eine empirisch begründete kompetenzorientierte Brücke zwischen dem Konzept des negativen Wissens (Oser & Spychiger, 2005) und psychologischen Theorien zum Thema Feedback als Instruktionsmethode im Rahmen des selbstregulierten Lernens bei Schülern zu bilden und dazu anregen, den selbstregulierten Lernprozess von Schülern durch individuell angepasstes Feedback zu fördern.
Dazu wurden zwei Hypothesen expliziert: Zum einen, dass Lernende, die Feedback über die konkrete Lokalisation des Fehlers erhalten, die dargebotenen Biologieaufgaben besser lösen können (prozessbezogene methodische Kompetenzen), als Lernende, die auf einer Metaebene eine Begründung für die Ursache des Fehlers in Kombination mit einer Frage zur kognitiven Aktivierung erhalten haben. Zum anderen, dass auf der im Rahmen der Intervention nicht trainierten strategischer Ebene das Feedback mit kognitiver Aktivierung effektiver ist.
Um diese Hypothesen zu prüfen, wurde der Einfluss zweier Feedbackvarianten untersucht. In einem 2x2 Prä-Post-Test Design wurden dazu die Feedbackvarianten „Lokalisation des Fehlers“ und „Begründung des Fehlers mit kognitiver Aktivierung“ einzeln oder in Kombination einer Kontrollbedingung ohne Feedback gegenüber gestellt. Lernende der 7. Klasse bearbeiteten im Rahmen von zwei Doppelstunden ein webbasiertes interaktives Lernprogramm zum Thema „Experimentieren“. Die darin enthaltenen Multiple-Choice-Aufgaben (Hammann, 2007) umfassten die für das Experimentieren einschlägigen Kompetenzbereiche „Suche im Hypothesenraum“, „Testen von Hypothesen“ und „Analyse von Evidenzen“ (Klahr, 2000). Als abhängige Variablen haben wir jeweils in einer Prä-Post-Test-Messung den Zuwachs an prozessbezogenen methodischen Kompetenzen (operationalisiert über die korrekte Lösung der verwendeten Biologie-Aufgaben) und den strategischen Lernzuwachs (operationalisiert über die Bearbeitung des EEST-2, Marschner, 2010) untersucht.
Um den möglichen Einfluss individueller Unterschiede in Bezug auf die Transferwirksamkeit des erworbenen Wissens zu erheben, wurden auch Daten zu Intelligenz, Persönlichkeitsfaktoren, zum Umgang mit Fehlern, zur Selbstwirksamkeitserwartung und zum selbstregulierten Lernen erhoben.
Durch die Bearbeitung des Lernprogramms konnten die getesteten Schüler (N=355) über alle Versuchsgruppen hinweg signifikante Lernzuwächse auf der im Rahmen der Intervention trainierten Aufgabeneben (prozessbezogene methodische Kompetenzen) erzielen, nicht aber auf der nicht trainierten strategischen Ebene. Die verschiedenen Feedbackarten hatten jedoch keinen Einfluss auf den Lernzuwachs der untersuchten Stichprobe. Auf strategischer Ebene konnte sogar eine Verschlechterung des Ergebnisses vom Prä- zum Posttest beobachtet werden. Dieses könnte darauf zurückzuführen sein, dass die metakognitive Entwicklung der getesteten Schüler noch nicht ausgereift genug war, um das Feedback auf der intendierten Ebene verarbeiten zu können. In der Diskussion dieser Arbeit wird das Konzept des negativen Wissens (Oser & Spychiger, 2005) theoretisch mit den Ergebnissen aus der kognitionspsychologischen Forschung verknüpft und aufgezeigt, welche Parallelen zwischen diesen beiden Ansätzen bestehen.
Die für diese Studie konzipierte computerbasierte Lerneinheit hat sich in der Praxis zur Einübung der Variablenkontrollstrategie bei Lehramtsstudierenden bewährt.
|
Page generated in 0.096 seconds