• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 11
  • 11
  • 8
  • 1
  • 1
  • Tagged with
  • 57
  • 35
  • 18
  • 17
  • 17
  • 14
  • 13
  • 9
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Mutantes insercionais de Magnaporthe grisea com patogenicidade alterada em arroz / Insertional mutants of Magnaporthe grisea impaired in pathogenicity to rice

Marchi, Carlos Eduardo 12 December 2003 (has links)
Submitted by Marco Antônio de Ramos Chagas (mchagas@ufv.br) on 2017-04-20T18:33:23Z No. of bitstreams: 1 texto completo.pdf: 20005358 bytes, checksum: 1121af69167ca6262a2059e1892c3134 (MD5) / Made available in DSpace on 2017-04-20T18:33:23Z (GMT). No. of bitstreams: 1 texto completo.pdf: 20005358 bytes, checksum: 1121af69167ca6262a2059e1892c3134 (MD5) Previous issue date: 2003-12-12 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Em Magnaporthe grisea, agente causal da brusone, mutagênese insercional mediada por transformação tem constituído estratégia para a identificação de genes essenciais para a patogenicidade em arroz. A técnica REMI, integração mediada por enzima de restrição, merece destaque em virtude da eficiência de transformação e da predominância de integrações simples. Visando a implantação de programa de mutagênese insercional em M. grisea, os objetivos deste trabalho incluíram: (1) adequar as condições para a obtenção e regeneração de protoplastos do ascomiceto, (2) estabelecer sistema de transformação REMI em M. grisea, avaliando o potencial dos protoplastos e do vetor pAN7-1 e (3) selecionar e caracterizar mutantes com patogenicidade alterada em plantas de arroz. Produção eficiente de protoplastos foi alcançada com o uso simultâneo de 10 mg de Lysing Enzymes e 10 mg de Cellulase Onozuka R10 em 3 mL de MgSO 4 a 1,2 M / NaH 2 PO 4 a 0,01 M (pH = 5,8). Protoplastos de M. grisea I-22 liberados com 3 horas de hidrólise enzimática apresentaram maior capacidade de regeneração da parede celular. Quando expostos ao vetor pAN7-1, os protoplastos foram prontamente transformados para a resistência à higromicina. Quando pAN7-1- HindIII foi usado para transformar I-22 na presença de HindIII, a freqüência de transformantes foi 1,1 a 8,1 vezes superior ao tratamento sem a adição da endonuclease de restrição. No geral, a melhor concentração de HindIII foi 5 unidades/reação de transformação. A partir de testes de patogenicidade envolvendo 125 transformantes, principalmente gerados por REMI, foi possível selecionar cinco mutantes com alterações consistentes na patogênese. Dois desses mutantes, T108 e T93, causaram poucas lesões em folhas de arroz, enquanto o mutante T251 não foi patogênico. A alteração na patogenicidade de T108 foi acompanhada pela menor capacidade de desenvolvimento in vitro. Quando inoculado em plantas de arroz, o mutante T41 apresentou agressividade reduzida, caracterizada por lesões arredondadas de tamanho limitado. Por sua vez, o período de incubação para o mutante T72 foi mais longo do que o do isolado selvagem. Além disso, atrasos consideráveis na germinação de conídios e na formação de apressórios foram detectados em T72. Os mutantes T93 e T251 apresentaram fenótipos semelhantes quando em cultura, caracterizados pela pigmentação marrom. Análises Southern blots de quatro mutantes indicaram que em 50 % dos casos, T108 e T251, apenas uma cópia de pAN7-1 se integrou em um único sítio no genoma. No mutante T251 ocorreu evento REMI propriamente dito. Os mutantes T41 e T93 apresentaram padrões de integração mais complexos. / Transformation mediated-insertional mutagenesis of phytopathogenic fungi is an important tool to identify genes involved in pathogenicity. An improved version of this method is the restriction enzyme mediated integration, or REMI. We chose REMI to begin an insertional mutagenesis project in M. grisea. In this work, were reported the: (1) protoplasts production and regeneration of M. grisea, (2) transformation of protoplasts with pAN7-1 mediated by restriction enzyme and (3) identification and characterization of five transformants with pathogenicity defects in rice, at the phenotypic and molecular levels. The highest protoplasts production was obtained with Lysing Enzymes plus Cellulase Onozuka R-10 and the osmotic buffer MgSO 4 at 1.2 M / NaH 2 PO 4 at 0.01 M (pH = 5.8). The highest regeneration frequency was obtained with protoplasts produced after 3 hours of incubation. The I-22 protoplasts were readily transformed for hygromycin resistance. When pAN7-1-HindIII was used to transform fungal protoplasts in the presence of the HindIII, the transformation efficiency was increased 1.1 to 8.1-fold. The optimal HindIII concentration for enhanced transformation corresponded to 5 unit/transformation mix. Out of 125 transformants screened for the ability to infect rice plants, five showed changes in pathogenicity. The T108 and T93 mutants caused few lesions in rice leaves, while the T251 mutant was non-pathogenic. The alteration in pathogenicity of T108 was accompanied by reduced development in culture. The T41 mutant caused small and limited round lesions. The incubation period of the T72 mutant was longer than of wild type. Furthermore, late germination and appresorium formation was detected in the T72 mutant. The T93 and T251 mutants had similar phenotypes, characterized by a brown-pigmented colony. Four mutants (T41, T93, T108 and T251) were examined by Southern blots. The T108 and T251 mutants contained one copy of the vector integrated at a single site in the genome. REMI event occurred in the T251 mutant. More complex integration events were observed in the T41 and T93 mutants. / Tese importada do Alexandria
12

Rôle de la voie de signalisation MAP kinase Mps1 dans la pathogénie fongique et dans le contrôle de l'intégrité de la paroi / Role of mps1 map kinase signalling patwahy in fungal pathogenicity and cell wall integrity

Ant, Cemile 21 March 2011 (has links)
L'intégrité de paroi cellulaire est cruciale pour la survie du champignon pendant son cycle de développement ou en réaction à des conditions de stress. Chez la levure, les voies de signalisation de MAP kinase, Slt2, et calcineurin, régulent la réparation de paroi cellulaire. MPS1, l'orthologue de SLT2, chez Magnaporthe grisea est essentiel pour la réparation de la paroi cellulaire et pour la pénétration de l'appressorium (Xu, et al., 1998). Chez la levure, Slt2 active les facteurs de transcription Rlm1, Swi4 et Swi6, alors que le calcineurin active Crz1. Par ailleurs, PaIdc1 a un rôle dans la localisation nucléaire de PaMpk1 (orthologue de Slt2 et Mps1). (Corinne Jamet-Vierny, et al., 2007). MgIDC1, Le gène orthologue de PaIDC1 a été, de même, identifié chez M. grisea. ScAGS1 (α-glucan synthase), est un composant principal de la paroi principal des champignons. CaCAS5, est un régulateur transcriptionel, régule plusieurs gènes de la paroi cellulaire et ScKnr4 est impliqué dans la régulation de l'activité de 1,3--glucan synthase et la formation de la paroi cellulaire Ces gènes ont été identifiés chez M. grisea et des mutants de délétion ont été construits par le remplacement de gène chez M. grisea. Les mutants Guy11ΔKU80Δmps1 et Guy11ΔKU80Δidc1 montrent une forte réduction de mycélium aérien. Guy11ΔKU80Δmps1, Guy11ΔKU80Δrlm1 et Guy11ΔKU80Δswi4 ont une très forte réduction de sporulation. Guy11ΔKU80Δmps1, Guy11ΔKU80Δrlm1 et Guy11ΔKU80Δcrz1 ont une forte réduction de pouvoir pathogène. De plus, les mutants Guy11ΔKU80Δmps1 et Guy11ΔKU80Δswi4 sont inhibé, de 100% en présence d'un mélange de l'Aculéacine et Nikkomycine à faible dose (DI20). Les résultats montrent que chez M. grisea, il existe deux voies impliquées dans l'intégrité de la paroi cellulaire. La voie MAPK MPS1, qui régule les facteurs de transcription Rlm1, Swi4, Swi6 et la voie de Calcineurine, qui régule Crz1. D'après les analyses, SWI4 est impliquée dans la régulation des gènes de glucan synthases et chitine synthase, quand RLM1 n'est impliqué que dans la régulation des gènes de chitine synthase. Dans la voie de Calcineurine, CRZ1 contrôle les gènes de chitine synthase aussi. Ces études suggèrent que les facteurs de transcription qui sont régulés par Mps1 et Calcineurine sont spécialisés dans la régulation des gènes de cible spécifiques à l'intégrité et la réparation de la paroi cellulaire. / The cell wall integrity is crucial for the survival of fungi during its development or in reaction in stress conditions. In yeast, the MAP kinase pathway Slt2, and the calcineurin pathway are responsible of the cell wall repair. MPS1, the orthologous of SLT2, in Magnaporthe grisea is essential for the repair of the cell wall and the penetration of the appressorium (Xu, and Al, 1998). In yeast, Slt2 activates the transcription factors Rlm1, Swi4 and Swi6, whereas the calcineurin activates Crz1. In addition, PaIdc1 has a role in the nuclear localization of PaMpk1 (orthologous of Slt2 and Mps1). (Corinne Jamet-Vierny, and Al, 2007), in Podospora anserina. MgIDC1, the gene orthologous of PaIDC1 , likewise, was identified in M. grisea. ScAGS1 (α- glucan synthase), is the principal component of the wall of fungi. CaCAS5, is a transcriptional regulator, controls several genes of the cell wall and ScKnr4 is implied in the regulation of the activity of 1,3-- glucan synthase and the formation of the cell wall These genes was identified at M. grisea and deletion mutants were obtained by the gene replacement in M. grisea. Mutants Guy11ΔKU80Δmps1 and Guy11ΔKU80Δidc1 show a strong reduction of mycelium. Guy11ΔKU80Δmps1, Guy11ΔKU80Δrlm1 and Guy11ΔKU80Δswi4 have a very strong reduction of sporulation. Guy11ΔKU80Δmps1, Guy11ΔKU80Δrlm1 and Guy11ΔKU80Δcrz1 have a strong reduction of pathogenicity. Moreover, mutants Guy11ΔKU80Δmps1 and Guy11ΔKU80Δswi4 are 100% inhibited, in presence of a mixture of Aculéacine and Nikkomycine with low dose (DI20). The results show that in M. grisea, there are two pathways implied in the cell wall integrity. The MAPK pathway Mps1, which controls the tr anscription factors Rlm1, Swi4, Swi6 and the calcineurin pathway, which controls the transcription factor, Crz1. According to this study, SWI4 is implied in the regulation of glucan synthases and chitin synthase genes, when RLM1 is implied only in the regulation of chitin synthase genes. In the calcineurin pathway, CRZ1 controls chitin synthase genes. These studies suggest that the factors of transcription which are controlled by Mps1 and Calcineurin are specialized in the regulation of target genes, specific to the cell wall integrity and cell wall repair.
13

Investigating the role of the exocyst complex in infection-related development of the rice blast fungus Magnaporthe oryzae

Gupta, Yogesh Kumar January 2014 (has links)
Host colonization is mediated through the secretion of effector proteins in order to neutralize host immune responses. However, the mechanism of the effector delivery during biotrophic invasion is not well defined in M. oryzae. In this thesis, I define the role of the exocyst complex, an evolutionarily conserved octameric protein complex involved in vesicle docking to the plasma membrane (composed of Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70 and Exo84), during infection-related development in M. oryzae. Like other filamentous fungi, M. oryzae, exocyst components localize to the vegetative hyphal tip distinct from the Spitzenkörper. However, at the initial stage of infection-related development all the exocyst components localise as a ring at the cortex of the appressorium and re-assembles around the appressorium pore in an actin-dependent manner in mature appressoria. I report that the septin network is required for the transition of exocyst ring from periphery to the appressorium pore. Deletion of Exo70 and Sec5 showed significant reduction in protein secretion and plant infection. I show that Sec6 is required for the exocyst assembly around the appressorium pore and effector secretion from the appressorium. I report that, during biotrophic invasion, effectors are secreted through a distinct pathway. Apoplastic effectors, Bas4 and Slp1 are secreted via a Golgi-dependent pathway while secretion of cytoplasmic effectors, Pwl2 and Bas1 meditates through a Golgi-independent pathway in which exocyst components Exo70 and Sec5 are involved.
14

Signalling circuitry controlling fungal virulence in the rice blast fungus Magnaporthe oryzae

Oses-Ruiz, Miriam January 2014 (has links)
Rice blast disease is caused by the filamentous ascomycete fungus Magnaporthe oryzae and is the most destructive disease of cultivated rice. The pathogen elaborates a specialized infection structure called the appressorium. The morphological and physiological transitions that lead to appressorium formation of M. oryzae are stimulated through perception of environmental signals and are tightly regulated by cell cycle checkpoints. External stimuli are internalized by a variety of intracellular MAP kinase signaling pathways, and the major pathway regulating appressorium morphogenesis and plant infection is the Pmk1 MAP kinase signaling pathway. The central kinase, Pmk1, is required for appressorium morphogenesis and the homeobox and C2/H2 Zn-finger domain transcription factor, called Mst12, is required for appressorium formation and tissue invasion. The Mst12 null mutant is able to form melanised appressoria, but it is non-pathogenic. To understand the mechanism of appressorium morphogenesis and penetration peg formation, genome-wide comparative transcriptional profiling analysis was performed for the Δpmk1 and Δmst12 mutant using RNA-seq and HiSeq 2000 sequencing. This thesis reports the identification of gene sets regulated by the Pmk1 signalling pathway and defines the sub-set of these genes regulated by Mst12. I show that a hierarchy of transcription factors is likely to operate downstream of Pmk1 to regulate the main processes required for appressorium morphogenesis and plant infection. I also report the role of Mst12 in cytoskeletal re-organisation and show that it is necessary for septin-dependent F-actin polymerisation at the base on the appressorium prior to plant infection. This is consistent with the major transcriptional changes observed by RNA-seq. The thesis also reports experiments that strongly suggest that appressorium mediated plant penetration is regulated by an S-phase checkpoint which operates independently of the conventional DNA damage and repair response, and the Cds1 and Chk1 checkpoint kinases. Transcriptional profiling results are consistent with the S-phase checkpoint operating downstream of the Pmk1 MAP kinase signalling pathway. An integrated model for the operation of the Pmk1/Mst12 signalling pathways and the hierarchical control of appressorium morphogenesis in the rice blast fungus is presented.
15

Rôle de la voie de signalisation MAP kinase Mps1 dans la pathogénie fongique et dans le contrôle de l'intégrité de la paroi

Ant, Cemile 21 March 2011 (has links) (PDF)
L'intégrité de paroi cellulaire est cruciale pour la survie du champignon pendant son cycle de développement ou en réaction à des conditions de stress. Chez la levure, les voies de signalisation de MAP kinase, Slt2, et calcineurin, régulent la réparation de paroi cellulaire. MPS1, l'orthologue de SLT2, chez Magnaporthe grisea est essentiel pour la réparation de la paroi cellulaire et pour la pénétration de l'appressorium (Xu, et al., 1998). Chez la levure, Slt2 active les facteurs de transcription Rlm1, Swi4 et Swi6, alors que le calcineurin active Crz1. Par ailleurs, PaIdc1 a un rôle dans la localisation nucléaire de PaMpk1 (orthologue de Slt2 et Mps1). (Corinne Jamet-Vierny, et al., 2007). MgIDC1, Le gène orthologue de PaIDC1 a été, de même, identifié chez M. grisea. ScAGS1 (α-glucan synthase), est un composant principal de la paroi principal des champignons. CaCAS5, est un régulateur transcriptionel, régule plusieurs gènes de la paroi cellulaire et ScKnr4 est impliqué dans la régulation de l'activité de 1,3--glucan synthase et la formation de la paroi cellulaire Ces gènes ont été identifiés chez M. grisea et des mutants de délétion ont été construits par le remplacement de gène chez M. grisea. Les mutants Guy11ΔKU80Δmps1 et Guy11ΔKU80Δidc1 montrent une forte réduction de mycélium aérien. Guy11ΔKU80Δmps1, Guy11ΔKU80Δrlm1 et Guy11ΔKU80Δswi4 ont une très forte réduction de sporulation. Guy11ΔKU80Δmps1, Guy11ΔKU80Δrlm1 et Guy11ΔKU80Δcrz1 ont une forte réduction de pouvoir pathogène. De plus, les mutants Guy11ΔKU80Δmps1 et Guy11ΔKU80Δswi4 sont inhibé, de 100% en présence d'un mélange de l'Aculéacine et Nikkomycine à faible dose (DI20). Les résultats montrent que chez M. grisea, il existe deux voies impliquées dans l'intégrité de la paroi cellulaire. La voie MAPK MPS1, qui régule les facteurs de transcription Rlm1, Swi4, Swi6 et la voie de Calcineurine, qui régule Crz1. D'après les analyses, SWI4 est impliquée dans la régulation des gènes de glucan synthases et chitine synthase, quand RLM1 n'est impliqué que dans la régulation des gènes de chitine synthase. Dans la voie de Calcineurine, CRZ1 contrôle les gènes de chitine synthase aussi. Ces études suggèrent que les facteurs de transcription qui sont régulés par Mps1 et Calcineurine sont spécialisés dans la régulation des gènes de cible spécifiques à l'intégrité et la réparation de la paroi cellulaire.
16

Analysis of the interaction transcriptome during biotrophic invasion of rice by the blast fungus, Magnaporthe oryzae

Mosquera Cifuentes, Gloria Maria January 1900 (has links)
Doctor of Philosophy / Department of Plant Pathology / Barbara S. Valent / The hemibiotrophic rice blast fungus Magnaporthe oryzae undergoes complex morphological development throughout its infection cycle. From 8-20 hours after a fungal spore lands on a leaf surface, the fungus differentiates a complex appressorium that punctures the host cuticle. By ~24 hours post inoculation (hpi), the fungus grows inside an epidermal cell as a primary hypha, and by 36 hpi the fungus has differentiated specialized biotrophic invasive hyphae (IH) that are filling the first-invaded cell and moving into neighbor cells. Throughout its life cycle, IH invade living rice cells although invaded cells appear dead when the fungus moves into the next cell. Biotrophic invasion must be mediated by fungal effectors, proteins that pathogens secrete inside live host cells to control them. However, little is known about blast effectors, and the low fungal biomass in early infection stages complicates identification of effector genes, as well as identification of rice genes controlled by effectors. The characterized AVR-Pita effector gene is specifically expressed in planta, but it was not clear how its gene expression pattern changed in different infection stages. We found that AVR-Pita is first expressed around the time of penetration. AVR-Pita is highly expressed in IH developing in asymptomatic tissue from 36 hpi to as late as 7 days post inoculation when lesions are maturing. Using inoculated rice sheaths, we successfully enriched for infected tissue RNA that contained ~20% IH RNA at 36 hpi. We compared IH gene expression to expression in mycelium from pure culture using a whole-genome M. oryzae oligoarray, and we compared infected rice gene expression to expression in mock-inoculated tissue using a rice oligoarray. Rice genes that were induced >50-fold during infection were enriched for genes involved in transferring information from sensors to cellular responses. Fungal genes that were induced >50-fold in IH included known effectors and many IH-specific genes encoding hypothetical secreted proteins that are candidate effectors. Gene knock-out analyses of three putative effector genes failed to show major effects on pathogenicity. Details of the blast interaction transcriptome will provide insights on the mechanisms of biotrophic plant disease.
17

Diterpene Synthases of the Rice Blast Fungus: Phylogenetic Analysis and Biochemical Characterization

Shahi, Ayousha 13 May 2022 (has links) (PDF)
Plant-pathogenic fungi harbor various specialized metabolites including diterpenoids that function as hormones and virulence factors. The fungus Magnaporthe oryzae is the causal agent of rice blast disease and can infect over 50 grass species. We demonstrate that the rice blast fungus encodes two diterpene synthases that produce normal pimara-8,15-diene and manoyl oxide scaffolds. Phylogenetic analysis of diterpene synthases among rice blast pathotypes showed functional conservation of the two core diterpene synthases amongst all pathotypes and suggests further expansion in select grass species. These insights into the blast fungal terpenome may inform efforts to counteract deleterious phytopathogens in crucial food crops.
18

Etude fonctionnelle de facteurs de transcription OsMADS25 et OsMADS26 dans le développement et dans la réponse aux différents stress biotique et abiotique chez le riz / Functional characterization of the rice transcription factors OsMADS25 and OsMADS26 in regard to development and biotic and abiotic stresses resistance

Khong, Ngan Giang 13 December 2010 (has links)
Le riz (Oryza sativa L) est la source principale d'alimentation pour plus de la moitié de la population mondiale (Khush, 2005). La production de riz devrait augmenter de plus de 40% en 2030 pour satisfaire la demande de croissance de la population. Chaque année, environ 25% de la production est perdue à cause des insectes ravageurs, des maladies et des mauvaises herbes (Khus, 2005). Des pertes semblables sont dues aux stress abiotiques comme la sécheresse. L'objectif de mon travail de thèse a consisté à étudier la fonction de deux facteurs de transcription (FT) à boîte MADS OsMADS25 et OsMADS26 dans la réponse aux stress ou dans le développement. Pour cela, j'ai généré des lignées de riz surexprimant les ADNc codant ces FT et aussi des lignées interférées pour le gène OsMADS26 en utilisant deux GST différentes pour induire de l'ARN interférence destiné à détruire les ARNm OsMADS26. Dans le cas du gène OsMADS25 qui appartient à un groupe de cinq gènes phylogénétiquement proches, j'ai généré des plantes exprimant la protéine OsMADS25 fusionnée avec le motif répresseur dominant de la transcription EAR. Les lignées T2 exprimant le FT OsMADS25 fusionné au motif EAR présentent un phénotype semblable à celui d'une lignée d'insertion de TDNA dans ce gène. Ces plantes sont caractérisées par une forte réduction du nombre de leur talle et par une hauteur plus importante de la talle principale. Les plantes qui surexpriment OsMADS25 natif ne présentent pas de phénotype particulier. Ceci suggère que le gène OsMADS25 pourrait être impliqué dans la régulation du nombre de talles chez le riz bien qu'il soit exprimé au niveau de la racine. Le mode d'action du gène OsMADS25 sur le contrôle du développement des méristèmes axillaire du riz reste à préciser. Les lignées interférées OsMADS26 présentent une meilleure résistance à Magnaporthe oryzae (Mo) et à Xanthomonas oryzae pv. Oryzae (Xoo), deux principaux pathogènes du riz, et aussi une meilleure capacité de restauration après l'application d'un stress hydrique par rapport aux lignées témoin tandis que les lignées surexprimant OsMADS26 sont plus sensibles à ces stress. Les analyses de QPCR et du transcriptome que nous avons effectuées ont mis en évidence l'expression constitutive plus élevée dans les lignées interférées de plusieurs gènes de réponse aux stress biotique et abiotique. Ces résultats suggèrent que OsMADS26 pourrait être un inhibiteur général des mécanismes de défense de la plante et que les plantes interférée OsMADS26 sont dans un statut physiologique de type primed-like qui leur permettent d'être plus résistantes aux stress. Les lignées interférées pour OsMADS26 sont très peu affectées dans leur développement. Le gène OsMADS26 est donc un gène très intéressant pour les programmes d'amélioration du riz / MADS-box transcription factors (TF) have been mostly characterized for their involvement of plant development such as floral organogenesis and flowering time. Some of them are involved in stress related developmental processes such as abscission, fruit ripening and senescence. Overexpression of the rice OsMADS26 TF suggested a function in stress response. Here we report that OsMADS26 interfered lines presented a better resistance against two major pathogens of rice, Xanthomonas oryzae (Xoo) and Magnaportae oryzae (Mo) and a better recovery capacity after a water stress period. Transcriptome analysis revealed that several biotic and abiotic stresses related genes were up regulated in OsMADS26 interfered lines. In addition QPCR analysis showed that the expression of a set of biotic and abiotic genes was induced when OsMADS26 interfered lines were infected by Xoo or submitted to a water stress. This indicated that OsMADS26 is a negative regulator of biotic and abiotic stress response in rice. Taking in account the data previously published that showed that inducible overexpression of OsMADS26 resulted in the activation of expression of genes involved in jasmonic acid or reactive oxygen species biosynthesis, we postulate that OsMADS26 may be a hub regulator of stress response in rice and that it may be posttranscriptional regulated to modulate negatively or positively rice response to various stresses.In addition we have shown in this thesis that an insertion mutant line disrupting the OsMADS25 gene is characterized by a reduced number of tiller. This phenotype was also obtained in transgenic lines expressing the OsMADS25 transcription factor fused with a dominant motif inhibitor of transcription. Thissuggested that OsMADS25 is involved in the control of tiller development in rice.Key words: Rice, stress, blast, tillering, MADS-box, transcription factor, OsMADS26, OsMADS25, transcriptome
19

Etude de l’activité et de la reconnaissance d’AVR-CO39, un effecteur du champignon pathogène Magnaporthe oryzae, agent causal de la pyriculariose du riz / Activity and recognition of AVR-CO39, an effector of the rice blast fungus Magnaporthe oryzae.

Cesari, Stella 18 December 2012 (has links)
Le pouvoir pathogène des microorganismes repose sur leur capacité à manipuler des processus cellulaires de l'hôte à l'aide de protéines sécrétées dans le tissu végétal : les effecteurs. En plus de leur rôle primordial dans le pouvoir pathogène, les effecteurs sont centraux pour la résistance des plantes. La reconnaissance de certains d'entre eux par des récepteurs du système immunitaire végétal, nommées protéines de résistance (R), déclenche la résistance de la plante. Cette thèse a permis la caractérisation moléculaire d'AVR-CO39, un effecteur du champignon pathogène du riz Magnaporthe oryzae. Nous montrons qu'AVR-CO39 est transloqué dans le cytoplasme des cellules infectées par un mécanisme indépendant de facteurs fongiques et est reconnu dans ce même compartiment par le produit du locus R nommé Pi-CO39. La surexpression d'AVR-CO39 dans des plantes transgéniques révèle que cet effecteur influence des processus développementaux et physiologiques du riz. Un crible double hybride dans la levure a permis d'identifier 9 protéines du riz potentiellement ciblées par AVR-CO39. Une d'elles, nommée RGA5, confère la résistance Pi-CO39 avec une seconde protéine R du riz appelée RGA4. Nos résultats indiquent que RGA4 induit l'activation de la défense tandis que RGA5 agit comme récepteur de protéines Avr. En effet, RGA5 interagit physiquement avec AVR-CO39 et AVR-Pia, un autre effecteur de M. oryzae, via un domaine C-terminal homologue à des protéines de liaison au cuivre. Cette thèse a donc permis l'identification d'un nouveau domaine de reconnaissance de protéines Avr et le développement d'un modèle mécanistique pour le fonctionnement de paires de protéines R chez les plantes. / Pathogenic microorganisms secrete numerous proteins during infection into the plant tissue to manipulate host cellular processes. These proteins are called effectors and are central to pathogenicity. Certain effectors are recognized by receptors of the plant immune system called resistance (R) proteins and this recognition triggers plant resistance. The objective of the thesis was the molecular characterization of AVR-CO39, an effector of the rice blast fungus Magnaporthe oryzae. Localization studies indicate that AVR-CO39 is translocated into the cytoplasm of infected rice-cells by a mechanism independent of fungal factors and that it is recognized within this compartment by the product of the corresponding R locus Pi-CO39. Overexpression of AVR-CO39 in transgenic rice plants suggests that the effector influences plant physiology and development. Yeast two-hybrid screening identified 9 rice proteins potentially targeted by AVR-CO39. One of them, called RGA5, interacts with a second R protein, RGA4, to confer Pi-CO39 resistance. Our results suggest that RGA4 activates plant defense while RGA5 represses RGA4 function in the absence of effectors proteins and acts as an Avr receptor protein. Indeed, RGA5 physically interacts with AVR-CO39 and another M. oryzae effector named AVR-Pia through a previously undescribed C-terminal domain displaying homology to copper-binding proteins. Therefore, this work identified a new Avr recognition domain in R proteins and generated a new mechanistic model for the action of R protein pairs in plant resistance.
20

Analyse structurale d’effecteurs de Magnaporthe Oryzae impliqués dans la reconnaissance de l’agent pathogène par le récepteur immunitaire du riz RGA5 / Structure analysis of Magnaporthe oryzae effectors' involved in the pathogen recognition by the immune receptor of rice RGA5.

De Guillen, Karine 04 July 2016 (has links)
La pyriculariose provoquée par le champignon Magnaporthe oryzae constitue l’une des principales maladies du riz, avec des épidémies récurrentes et très destructrices qui touchent toutes les régions rizicoles. Outre les enjeux économiques et humanitaires liés à cette maladie, le statut de céréale modèle du riz et de champignon parasite modèle de M. oryzae font de l’interaction entre ces deux partenaires un modèle privilégié pour l’étude du contrôle génétique et moléculaire des relations hôte-pathogène. Les protéines effectrices, Avr, de M. oryzae sont sécrétées au cours de l’infection de la plante par ce champignon. Chez certaines variétés de riz ces effecteurs agissent comme des protéines d’avirulence. Elles sont reconnues par les protéines de résistance, R, et induisent une forte réponse de défense dont une mort cellulaire programmée appelée HR (hypersensitive response) à l’origine de la résistance de la plante. L’objectif de cette thèse est de déterminer les structures des protéines Avr, et R et celles des complexes Avr-R. L'analyse structure-fonction permettra d’identifier les domaines et les acides aminés importants pour l'activité des effecteurs et des protéines de résistance. Pour la réalisation de cette thèse, une large gamme de techniques de biologie moléculaire (PCR, clonage moléculaire), de biophysique (Fluorescence) et de biologie structurale (RMN, cristallographie aux RX) disponibles au laboratoire seront utilisées. Du point de vue fonctionnel, ces études devraient apporter de nouveaux éléments sur les fonctions végétales qui sont modulées au cours de l’infection et permettent ainsi à la maladie de s'établir en créant des conditions favorables à la mise en place du processus infectieux. / MAGNAPORTHE oryzae causes a devastating disease of rice known as rice blast, affecting all regions cultivating rice. In addition to the economic and humanitarian issues associated with the disease, rice and M. oryzae are widely accepted as models of cereal and fungus for studying genetic control and host-pathogen molecular interactions. The effector proteins, Avr of M. oryzae, are secreted during plant infection by the fungus. In some of the rice cultivation these effectors act as avirulence proteins. They are recognized by resistance proteins R, and induce a strong host response, including programmed cell death known as HR (hypersensitive response) leading to plant resistance. The purpose of the thesis is to elucidate the atomic structures of the proteins Avr, R and Avr-R complexes. Subsequent structure-function analysis will identify domains and important amino acids needed for the activity of the effector and resistance proteins. To carry out this thesis, a wide range of molecular biology techniques (pcr, molecular cloning), biophysics (fluorescence) and structural biology (NMR, X-ray crystallography) will be used. From the functional point of view, these studies will provide insight into mechanisms affecting host functions that are modulated during infection, thus creating favorable conditions for the infection process.

Page generated in 0.1094 seconds