• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 167
  • 32
  • 24
  • 21
  • 19
  • 12
  • 8
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 341
  • 103
  • 76
  • 55
  • 50
  • 49
  • 46
  • 45
  • 44
  • 37
  • 36
  • 36
  • 33
  • 33
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Very low field magnetic resonance imaging / IRM à très bas champ magnétique

Herreros, Quentin 21 November 2013 (has links)
L’enjeu principal de cette thèse a été de démontrer la faisabilité de l’Imagerie par Résonance Magnétique à très bas champ (entre 1 mT et 10 mT). Pour ce faire, un nouveau type de capteur, appelé “capteur mixte”, a été utilisé. Ce détecteur est le résultat de l’association d’une magnétorésistance géante avec une boucle supraconductrice. Il génère un bruit en champ comparable aux détecteurs les plus utilisés dans cette gamme de fréquence (Bobine accordées, SQUIDs, Magnétomètres atomique optique). Le couplage entre l’échantillon observé et le capteur mixte a été grandement amélioré à travers l’utilisation d’un transformateur de flux. Cet intermédiaire a été conçu et optimisé pour maximiser la sensibilité en champ du “capteur mixte”. Cet ensemble a ensuite été introduit dans un IRM à très bas champ magnétique pour tester son efficacité in-situ. Parallèlement, différentes séquences d’IRM (GE, SE, FLASH, EPI,...) ont été développées spécifiquement pour le très bas champ. Elles ont été utilisées pour réaliser de l’imagerie tridimensionnelle in-vivo ainsi que des études relaxométriques sur divers produits. Enfin, un système d’IRM “tête entière” a été construit pour permettre l’acquisition d’images à très bas champ magnétique sur un large volume. / The aim of this thesis is to perform Magnetic Resonance Imaging at very low field (from 1 mT to 10 mT). A new kind of sensor called “mixed sensor” has been used to achieve a good detectivity at low frequencies. Combining a superconducting loop and a giant magnetoresistance, those detectors have a competitive equivalent field noise compared to existing devices (Tuned coils, SQUIDs and Atomic Magnetometers). They have been combined with flux transformers to increase the coupling between the sample and the sensor. A complete study has been performed to adapt it to mixed sensors and then maximize the gain. This set has been incorporated in an existing small MRI device to test its robustness in real conditions. In parallel, several MRI sequences (GE, SE, FLASH, EPI, ...) have been integrated and adapted to very low field requirements. They have been used to perform in-vivo three dimensional imaging and relaxometry studies on well known products to test their reliability. Finally, a larger setup adapted for full-head imaging has been designed and built to perform images on a larger working volume.
232

Magnetotransportní vlastnosti FeRh nanodrátů / Magnetotransport properties of FeRh nanowires

Fabianová, Kateřina January 2018 (has links)
Železo-rhodium (FeRh) je látka procházející magnetickou fázovou přeměnou prvního druhu z antiferomagnetické (AF) do feromagnetické (FM) fáze, ke které dochází při zahřátí materiálu nad teplotu fázové přeměny nebo působením dostatečně velkého magnetického pole. Tato fázová přeměna je mimo jiné provázena výraznou změnou entropie, magnetizace a elektrického odporu, přičemž její tvar a poloha teploty přeměny je silně závislá na stechiometrii krystalu, na příměsích, tlaku a v případě tenkých vrstev na napjatosti vrstvy způsobené substrátem. Tato práce se zaměřuje na studium magnetotransportních vlastností drátů připravených z tenkých FeRh vrstev rostlých na substrátech indukujících různou napjatost vrstvy. Jedním z hlavních jevů studovaných v této práci je anizotropní magnetorezistance (AMR) projevující se změnou odporu pro různé natočení magnetických momentů v látce vůči směru elektrického proudu. AMR byla studována jak ve FM fázi, tak i v AF fázi FeRh. Byla změřena hodnota AMR ve vysokoteplotní FM fázi a objeveno neočekávané chování AMR ve zbytkové FM fázi v nízkoteplotním stavu. Dále byla pozorována výrazná závislost AMR na orientaci měřených segmentů vůči krystalografickým směrům FeRh.
233

Magnetic tunnel junctions for ultrasensitive all-oxide hybrid sensors for medical applications / Jonctions tunnel magnétiques pour capteurs hybrides tout-oxydes ultrasensibles pour des applications médicales

Kurij, Georg 24 March 2016 (has links)
La détection des très faibles valeurs de champ magnétique est un enjeu important pour l’émergence à plus grande échelle de techniques pour le domaine du médical telles que la magnéto cardiographie, ou la magnétoencéphalographie. Les solutions existantes industrialisées reposent sur l’utilisation de jonctions tunnels supraconductrices qui permettent de fabriques des SQUIDS (Superconducting Quantum Intereference Device) qui sont les briques de base des magnétomètres avec des sensibilités de l’ordre de la dizaine de femtotesla. Cependant cette approche impose de travailler à des températures très basses qui ne sont accessibles qu’avec de l’hélium liquide. Un approche récente, développée par le Spec-CEA permet de travailler à l’azote liquide (77K) ce qui lève un certain nombre de contraintes. Le dispositif est un capteur mixte composé d’une boucle supraconductrice de grande taille qui contient une constriction de taille micrométrique sur laquelle est rapportée une magnétorésistance tunnel qui sert de sonde locale du champ magnétique. L’objectif du travail dans ce travail de thèse est de poursuivre le développement de ce type de capteur en utilisant visant des structures tout oxyde. En effet l’intégration complète de ce type de capteur permettrait de gagner encore en termes de performances et d’atteindre une résolution de l’ordre du femtotesla. Pour ce faire le travail vise à intégrer une jonction tunnel tout oxyde directement par épitaxie sur la constriction. La jonction tunnel sera réalisée à partie d’oxydes magnétiques tels que les composés LaSrMnO3 ou SrRuO3 qui sont deux matériaux ferromagnétiques à la température de l’azote liquide. / Sensing of extremely weak magnetic signals, such as produced by electrical activity of the human heart and brain, still remains a challenge. A very promising alternative to established field-sensing techniques is a novel, spin electronic based, ultrasensitive device called an all-oxide mixed sensor. It is formed by a superconducting loop, acting as a flux-to-field transformer and field amplifier, combined with a magnetic tunnel junction sensing the field.Our research activities have the goal to improve the performance of the mixed sensor, focusing on its core component – the magnetic tunnel junction (MTJ). The capability of an MTJ is predominantly determined by the quality of the tunnel barrier and by the stability of magnetization states. In this context, oxide materials, known for their remarkable physical properties, have already shown their advantages. Thus, studies on La0.7Sr0.3MnO3/SrTi0.8Nb0.2O3 functional oxide interfaces, exploration of SrRuO3/ La0.7Sr0.3MnO3 exchange bias system, and the final integration of these two components into a magnetic tunnel junction form the main part of our work.In the presented thesis, oxide thin films and heterostructures used for studies were grown by pulsed laser deposition (PLD). We fabricated electronic devices for investigations using clean room microfabrication techniques , e.g. optical lithography, chemically assisted ion beam etching (CAIBE) and sputtering. Temperature dependent magnetic and (magneto-) transport measurements were performed.Metal-semiconductor interfaces formed by the half-metallic ferromagnet La0.7Sr0.3MnO3 (LSMO) and heavily doped semiconductor SrTi0.8Nb0.2O3 (Nb:STO) were studied. Antiferromagnetic coupling at the interface of the LaSrMnO3 and itinerant ferromagnet SrRuO3 was explored. Magnetic tunnel junctions with Schottky barrier were investigated (MTJs with Nb:STO and LSMRO).
234

Towards Picotesla Sensitivity Magnetic Sensor for Transformational Brain Research

Angel Rafael Monroy Pelaez (8803235) 07 May 2020 (has links)
During neural activity, action potentials travel down axons, generating effective charge current pulses, which are central in neuron-to-neuron communication. Consequently, said current pulses generate associated magnetic fields with amplitudes on the order of picotesla (pT) and femtotesla (fT) and durations of 10’s of ms. Magnetoencephalography (MEG) is a technique used to measure the cortical magnetic fields associated with neural activity. MEG limitations include the inability to detect signals from deeper regions of the brain, the need to house the equipment in special magnetically shielded rooms to cancel out environmental noise, and the use of superconducting magnets, requiring cryogenic temperatures, bringing opportunities for new magnetic sensors to overcome these limitations and to further advance neuroscience. An extraordinary magnetoresistance (EMR) tunable graphene magnetometer could potentially achieve this goal. Its advantages are linear response at room temperature (RT), sensitivity enhancement owing to combination of geometric and Hall effects, microscale size to place the sensor closer to the source or macroscale size for large source area, and noise and sensitivity tailoring. The magnetic sensitivity of EMR sensors is, among others, strongly dependent on the charge mobility of the sensing graphene layer. Mechanisms affecting the carrier mobility in graphene monolayers include interactions between the substrate and graphene, such as electron-phonon scattering, charge impurities, and surface roughness. The present work reviews and proposes a material set for increasing graphene mobility, thus providing a pathway towards pT and fT detection. The successful fabrication of large-size magnetic sensors employing CVD graphene is described, as well as the fabrication of trilayer magnetic sensors employing mechanical exfoliation of h-BN and graphene. The magneto-transport response of CVD graphene Hall bar and EMR magnetic sensors is compared to that obtained in equivalent trilayer devices. The sensor response characteristics are reported, and a determination is provided for key performance parameters such as current and voltage sensitivity and magnetic resolution. These parameters crucially depend on the material's intrinsic properties. The Hall cross magnetic sensor here reported has a magnetic sensitivity of ~ 600 nanotesla (nT). We find that the attained sensitivity of the devices here reported is limited by contaminants on the graphene surface, which negatively impact carrier mobility and carrier density, and by high contact resistance of ~2.7 kΩ µm at the metallic contacts. Reducing the contact resistance to < 150 Ω µm and eliminating surface contamination, as discussed in this work, paves the way towards pT and ultimately fT sensitivity using these novel magnetic sensors. Finite element modeling (FEM) is used to simulate the sensor response, which agrees with experimental data with an error of less than 3%. This enables the prediction and optimization of the magnetic sensor performance as a function of material parameters and fabrication changes. Predictive studies indicate that an EMR magnetic sensor could attain a sensitivity of 1.9 nT/√Hz employing graphene with carrier mobilities of 180,000 cm<sup>2</sup>/Vs, carrier densities of 1.3×10<sup>11</sup> cm<sup>-2</sup> and a device contact resistance of 150 Ω µm. This sensitivity increments to 443 pT/√Hz if the mobility is 245,000 cm<sup>2</sup>/Vs, carrier density is 1.6×10<sup>10</sup> cm<sup>-2</sup>, and a lower contact resistance of 30 Ω µm. Such devices could readily be deployed in wearable devices to detect biomagnetic signals originating from the human heart and skeletal muscles and for developing advanced human-machine interfaces.
235

Magnetische Charakterisierung von Vortex-Dreifachlagen mittels Röntgentransmissionsmikroskopie, Magnetowiderstand und ferromagnetischer Resonanz

Banholzer, Anja 14 December 2015 (has links)
In dieser Arbeit werden magnetische Vortex-Dreifachlagen-Systeme untersucht. Mittels Magnetfeld, Strom und Röntgenzirkulardichroismus kann erstmals die magnetische Konfiguration der Vortexlagen mit dem simultan gemessenen Magnetowiderstand verglichen werden. Die senkrecht mit Strom durchflossenen Kobalt-Kupfer-Permalloy Scheiben werden in einem Mehrschrittprozess mittels Elektronenstrahllithographie auf einer Membran hergestellt, um mit Rastertransmissions-Röntgenmikroskopie untersuchbar zu sein. Die Auswertung der STXM-Bilder zeigt das gleiche Verhalten wie die Widerstandsmessungen und erlaubt eine eindeutige Zuordnung. Um auch die kleinsten scheibenförmigen Dreifachlagensysteme mittels ferromagnetischer Resonanz zu messen, wurde die Mikroresonator FMR optimiert. Damit können bereits etwa 2.3*10^7 Kobaltatome gemessen werden, wobei die Empfindlichkeit bis zu 4*10^6 Atomen ausreichend sein sollte. Durch 6-fache Mittelung lässt sich ein Kobaltwürfel mit einer Kantenlänge von 12,5nm detektieren. Dabei sind nicht nur die uniforme Mode, sondern auch lokal angeregte Moden sichtbar. Mittels mikromagnetischer Simulationen lassen sich den Resonanzen Modenbilder zuordnen. Die scheibenförmige Dreifachlage wird mit den FMR-Messungen sowohl mit verringertem Durchmesser, als auch mit reduzierter Zwischenschicht untersucht.
236

Various energy scales in rare earth compounds: Multiplets, band energy gaps and crystal fields in RE nickel antimonides

Karla, Ingo 26 September 2000 (has links)
The properties of RNiSb compounds were studied from various points of view: Magnetism, transport, electronic structure. The compounds with a light rare earth are metallic, while the cubic phases with a heavy rare earth element have the semi-Heusler structure and are narrow gap semiconductors. A giant magnetoresistance effect was found at low temperatures, the larger as the density of charge carriers is weak. It was explained by the polarisation of the impurity levels situated within the band gap of the semiconductor under the field of the magnetic moment of the 4f shell. The crystal field, as well as the magnetic order at low temperatures, were studied by neutron scattering and diffraction. Particular magnetic properties (absence of magnetic order in the Pr compound, antiferromagnetic structure in the second group, orientation of the moments) have been explained, at least qualitatively. CeNiSb is a Kondo-type compound with a Kondo temperature of about 8 K. Photoemission measurements have allowed to analyse the electronic structure in the valence band of these compounds, in agreement with band structure calculations. By resonant photoemission of TbNiSb and GdCu, different resonance channels have been resolved, which depend on the spin configuration of the excited states.
237

Ferromagnetic manganites: spin-polarized conduction and competing interactions

Dörr, Kathrin 02 July 2007 (has links)
Electronic properties of solids are vitally important for modern technology, one may think of microelectronics, magnetic data storage, communication technologies and others. Sometimes, it seems possible to postpone the step of fundamental understanding when starting the application of a new material. However, lasting success and discovery of principally new approaches is based on it ...
238

Structure, magnetism and transport properties of Ca<sub>x</sub>Sr<sub>1-x</sub>Mn<sub>0.5</sub>Ru<sub>0.5</sub>O<sub>3</sub> bulk and thin film materials

Meyer, Tricia Lynn January 2013 (has links)
No description available.
239

Radiation Damage in GMR Spin Valves

Carroll, Turhan Kendall 22 October 2010 (has links)
No description available.
240

Magnetic Characterization of Electrodeposited Nanocrystalline Ni and Ni-Fe alloys

Arabi, Sahar 10 1900 (has links)
<p>This research study has been devoted to the study of magnetic properties and magnetic transport of nanocrystalline Ni and Ni-15% Fe alloys consisting of randomly oriented grains with an average size of 23 and 12 (nm), respectively. The structures of the deposits were confirmed by the XRD analysis using Rietveld refinement technique. The as-deposited Ni and Ni-15%Fe sample was comprised exclusively of the γ phase with lattice parameter of 3.5270 (nm) and 3.5424 (nm), respectively. The small increase in lattice parameter was attributed to the replacement of iron solutes in the Ni sites in lattice. Texture analysis of nanocrystalline Ni and Ni-15%Fe revealed that textures components of both materials is qualitatively the same and vary in terms of volume fraction. Both material showed strong <100> fibre texture with some contribution of the <111> component. The calculated volume fraction of the <100> and <111> components were respectively 17.157% and 3.201% for Ni and, 22.032% and 6.160% for Ni-15%Fe and the rest being confined to the random texture.</p> <p>Magnetic measurements show that all samples exhibit low loss hysteresis loops with high permeabilities. The presence of 15%Fe in Ni leads to enhancement of the saturation magnetization (M<sub>s</sub>) regardless of the direction of the applied field. M<sub>s</sub> shows an increase from 60.169 (emu/gr) in nanocrystalline Ni to 93.67 (emu/gr) in Ni-15%Fe sample at T=2K. No strong temperature–dependence of the magnetization was observed for samples, but the magnetization of the Ni-15%Fe samples at T=2K were slightly higher than that of T=298K. The coercivity values of nanocrystalline Ni-15%Fe were in all cases smaller than that of nanocrystalline Ni samples. Good agreement between random anisotropy model (RAM) theory and experiment for nanocrystalline Ni and Ni-15%Fe samples was observed. The ferromagnetic exchange length (L<sub>ex</sub>) was larger than the average grain size (D) for samples at all times. The effective magnetic anisotropy constants (K<sub>eff</sub>) of the nanocrystalline Ni and Ni-15%Fe alloys were measured using the law of approach to saturation. At T=2K, the K<sub>eff</sub> of Ni-15%Fe samples were measured to be 1.7037´10<sup>5</sup> (erg/cm<sup>3</sup>) and 2.71996 ´10<sup>5</sup> (erg/cm<sup>3</sup>) at field parallel and perpendicular, respectively. These values were almost half of the values obtained for nanocrystalline Ni samples 4.66091´10<sup>5</sup> (erg/cm<sup>3</sup>) and 4.19703´10<sup>5</sup> (erg/cm<sup>3</sup>). Temperature dependence measurements showed that K<sub>eff</sub> constants decrease with increasing temperature. The angular dependence MR studies on nanocrystalline Ni and Ni-15%Fe resulted in a twofold, and a fourfold symmetric behaviour, respectively. The field dependence MR measured at various sample tilt with respect to the applied field, showed various trends from pure positive MR to pure negative MR, which partially could be explained by magnetocrystalline anisotropy of the samples.</p> / Master of Applied Science (MASc)

Page generated in 0.0658 seconds