• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 167
  • 32
  • 24
  • 21
  • 19
  • 12
  • 8
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 341
  • 103
  • 76
  • 55
  • 50
  • 49
  • 46
  • 45
  • 44
  • 37
  • 36
  • 36
  • 33
  • 33
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Topological Transport Effects and Pure Spin Currents in Nanostructures

Schlitz, Richard 28 August 2020 (has links)
Magnetoresistive effects are powerful tools for studying the intricate structure of solid state electronic systems, and have many applications in our current information technology. In particular, the electronic system reflects the crystal symmetry and the orbital structure of the atoms of a given solid, and thus is crucial to understanding magnetism, superconductivity and many other effects which are of key interest to current solid state research. Consequently, studies of the electrical transport properties of solid state matter allow to evaluate this imprint and in turn draw conclusions about the interactions within a material. In this thesis, we will exploit the capabilities of magnetotransport measurements to infer the properties of a multitude of magnetic systems. In turn, this allows us to push the understanding of transport phenomena in magnetic materials. The first part of this work is focused on the magnetoresistance observed in spin Hall active metals in contact with a magnetic insulator. In such bilayers, the interfacial spin accumulation caused by the spin Hall effect in the metal can interact with the magnetic insulator, giving rise to interesting magnetoresistive effects. In the framework of this thesis, bilayers with several magnetic insulators are studied, including antiferomagnets, ferrimagnets and paramagnets (disordered magnets). For the disordered magnetic insulators, we find that the established spin Hall magnetoresistance framework does not allow to consistently describe the observed transport response. Consequently, we propose an alternative explanation of the magnetoresistance in such heterostructures, using the Hanle magnetoresistance and assuming an interface which has a finite electrical conductivity. This alternative model can serve to generalize the theory of the spin Hall magnetoresistance, providing addition information on the microscopic picture for the loss of the transverse spin component. Additionally, by partly removing the magnetic insulator and studying the ensuing changes, we verify that magnons are crucial for the observation of a non-local magnetoresistance in bilayers of a magnetic insulator and a metal. Finally, the local and non-local spin Seebeck effect (i.e. the electric field generated by a thermally driven pure spin current) is investigated in bilayers of Cr2O3 and Pt where the occurrence of a spin superfluid ground state was reported. In our sample, however, the transport response is consistent with the antiferromagnetic spin Seebeck effect mediated by the small magnetic field induced magnetization also reported for other antiferromagnet/metal heterostructures. As such, we cannot verify the presence of a spin superfluid ground state in the system. In the second part of this thesis, the topological properties of the electronic system and the related changes of the magnetoelectric and magnetothermal transport response are investigated. To that end, we first demonstrate a novel measurement technique, the alternating thermal gradient technique, allowing to separate the relevant thermovoltages from spurious other voltages generated within the measurement setup. We employ this novel technique for measuring the topological Nernst effect in Mn 1.8 PtSn and show the possibility to combine the magnetoelectric and magnetothermal transport response to evaluate the presence of topological transport signatures without requiring magnetization measurements. Additionally, we show that the anomalous Nernst effect in the non-collinear antiferromagnet Mn3Sn is connected to the antiferromagnetic domain structure: Using spatially resolved measurements of the anomalous Nernst effect, direct access to the antiferromagnetic domain structure is demonstrated. Additionally, a thermally assisted domain writing scheme is implemented, allowing the preparation of Mn3Sn into a defined antiferromagnetic domain state.
282

Untersuchung des elektronischen Transports an 28nm MOSFETs und an Schottky-Barrieren FETs aus Silizium-Nanodrähten

Beister, Jürgen 19 January 2019 (has links)
As modern microelectronics advances, enormous challenges have to be overcome in order to further increase device performance, enabling highspeed and ultra-low-power applications. With progressive scaling of Silicon MOSFETs, charge carrier mobility has dropped significantly and became a critical device parameter over the last decade. Present technology nodes make use of strain engineering to partially recover this mobility loss. Even though carrier mobility is a crucial parameter for present technology nodes, it cannot be determined accurately by methods typically available in industrial environments. A major objective of this work is to study the magnetoresistance mobility μMR of strained VLSI devices based on a 28 nm ground rule. This technique allows for a more direct access to charge carrier mobility, compared to conventional current/ voltage and capacitance/ voltage mobility derivation methods like the effective mobility μeff, in which series resistance, inversion charge density and effective channel length are necessary to extract the mobility values of the short channel devices. Aside from providing an anchor for accurate μeff measurements in linear operation conditions, μMR opens the possibility to investigate the saturation region of the device, which cannot be accessed by μeff. Electron and hole mobility of nFET and pFET devices with various gate lengths are studied from linear to saturation region. In addition, the interplay between mobility enhancement due to strain improvement, and mobility degradation due to short channel effects with decreasing channel length is analyzed. As a concept device for future nanoelectronic building blocks, silicon nanowire Schottky field-effect transistors are investigated in the second part of this work. These devices exhibit an ambipolar behaviour, which gives the opportunity to measure both electron and hole transport on a single device. The temperature dependence of the source/drain current for specific gate and drain voltages is analyzed within the framework of voltage dependent effective barrier heights.:1. Einleitung 2. Theoretische Grundlagen 3. Charakterisierungsmethoden 4. Messaufbau 5. Ergebnisse der Untersuchungen an MOSFETs 6. Ergebnisse der Untersuchungen an SiNW Transistoren 7. Zusammenfassung Anhang Danksagungen
283

Struktur und Magnetotransport laserdeponierter Lanthanmanganat Dünnschichtsysteme

Walter, Theresia 25 March 2004 (has links)
Die vorliegende Dissertation "Struktur und Magnetotransport laserdeponierter Lanthanmanganat Dünnschichtsysteme" beschäftigt sich mit der Herstellung, den strukturellen Eigenschaften und dem Magnetotransport von ferromagnetisch-metallischen Lanthanmanganat-Schichten La0.7A0.3MnO3 (A=Sr, Ca) und Schichtsystemen. Die untersuchten Schichten und Schichtsysteme wurden mittels Laserablation in "off-axis" Geometrie auf einkristallinen oxidischen Substraten abgeschieden. An einer Serie von polykristallinen La0.7Sr0.3MnO3/Y:ZrO2(100) Schichten wurde der Korngrenzen-Magnetowiderstandseffekt ferromagnetisch-metallischer Manganate untersucht. Durch Variation der Substrattemperatur während der Abscheidung läßt sich die Textur graduell einstellen. Untersuchungen des quantitativen Verhaltens des Magnetowiderstandes zeigen eine klare Korrelation des Niederfeld-Magnetowiderstandes und des Hochfeld-Magnetowiderstandes. Durch Untersuchungen an einer nichttexturierten Schicht in hohen gepulsten Magnetfeldern konnte auf einen indirekten Tunnelprozeß der Elektronen durch die Korngrenze entsprechend einem Modell von Lee et al. geschlossen werden, wobei die magnetische Ordnung der Korngrenze antiferromagnetisch ist. An den epitaktischen Schichtserien La0.7Ca0.3MnO3/NdGaO3(110) und La0.7Sr0.3MnO3/SrTiO3(100) und an heteroepitaktischen Multilagen (La0.7Sr0.3MnO3/SrTiO3)n/SrTiO3(100) wurden die strukturellen, magnetischen und elektrische Eigenschaften in Abhängigkeit von der Schichtdicke und der Einfluß der Grenzflächeneigenschaften untersucht. Allgemein zeigte sich, daß die mechanische Verspannung und Mikrostruktur der Schichten einen großen Einfluß auf deren physikalischen Eigenschaften haben. Die beobachtete Reduzierung der Curie-Temperatur, der Metall-Isolator-Übergangstemperatur und der spontanen Magnetisierung kann auf den finite-size Effekt und auf die Ausbildung von Perkolationspfaden (metallische Cluster in nichtmetallischer Matrix) in den ultradünnen Schichen zurückgeführt werden.
284

[en] ADAPTABLE SCANNING MAGNETIC MICROSCOPE FOR MEASUREMENT OF REMANENT FIELDS / [pt] MICROSCÓPIO MAGNÉTICO DE VARREDURA ADAPTÁVEL PARA MEDIÇÃO DE CAMPOS REMANENTES

JOAO FELIPE CHAVES E SILVA 13 June 2023 (has links)
[pt] A Microscopia Magnética de Varredura (MMV) surgiu com o objetivo de permitir a visualização de campos magnéticos de uma amostra ou material por meio de varredura, mostrando-se especialmente útil para geologia, biomedicina, caracterização de materiais e na indústria de aços. Nesse sentido, foi montada uma MMV utilizando uma estrutura de blindagem magnética de micro-metal para analisar campos remanescentes. A área sensível dos sensores foi avaliada, e foram escolhidos os sensores HQ-0811 (AKM - Asahi Kasei Microdevices), e STJ-010 (Micro Magnetics), sendo o HQ-0811 padronizado em PCBs (Printed Circuit Board) para facilitar o manuseio e aumentar a robustez do sistema. Na câmara blindada, foram utilizados dois motores de passo piezoelétricos ANC-150 (Attocube Systems), dispostos planarmente, para permitir o movimento das amostras analisadas sob o sensor montado. Para adquirir dados dos sensores, foram usados o Precision Current Source Model 6220 e o Nanovoltimeter Model 2182A (ambos Keithley), utilizando o sistema integrado da Keithley chamado Delta-Mode. Para analisar a eficácia do sistema, três amostras distintas foram analisadas para calibração, e um programa em MATLAB foi escrito para analisar as imagens e extrair a magnetização do material analisado. Além disso, uma amostra de rocha da Bacia do Parnaíba foi mapeada para demonstrar as capacidades do sistema. / [en] Magnetic Scanning Microscopy (MMV) was developed to visualize magnetic fields of a sample or material via scanning, making it particularly useful for geology, biomedicine, material characterization, and the steel industry. To this end, an MMV was assembled using a micro-metal magnetic shielding structure to analyze remanent fields. The sensors sensitive area was evaluated, and the HQ-0811 (AKM - Asahi Kasei Microdevices) and STJ-010 (Micro Magnetics) sensors were chosen, with the HQ-0811 standardized on PCBs (Printed Circuit Board) for easy handling and to enhance the system s robustness. Two piezoelectric step motors, ANC-150 (Attocube Systems), were placed in a planar arrangement in the shielded chamber to enable the analyzed samples movement under the mounted sensor. The Keithley Delta-Mode system was used in conjunction with the Precision Current Source Model 6220 and Nanovoltimeter Model 2182A (both Keithley) to acquire sensor data. Three distinct samples were analyzed for calibration, and a MATLAB program was created to extract the magnetization of the analyzed material from the images obtained. Additionally, the system s capabilities were demonstrated by mapping a rock sample from the Parnaíba Basin.
285

Study of Heavy Metal/Ferromagnetic Films Using Electrical Detection and Local Ferromagnetic Resonance Force Microscopy

White, Shane Paul, White 26 July 2018 (has links)
No description available.
286

Magneto-Transport and Optical Control of Magnetization in Organic Systems: From Polymers to Molecule-based Magnets

Bozdag, Kadriye Deniz 30 September 2009 (has links)
No description available.
287

Resistivity and Tunnel Magnetoresistance in Double-Perovskite Strontium Ferromolybdate Ceramics

Suchaneck, Gunnar, Artiukh, Evgenii, Gerlach, Gerald 07 June 2024 (has links)
The low-field magnetoresistance properties in double-perovskite strontium ferromolybdate core–shell structures arise from spin-dependent tunneling through a barrier formed by the shell. It is strongly dependent on synthesis conditions. In this work, first, the resistivity behavior of granular strontium ferromolybdate ceramics comprising intergrain tunnel barriers is reviewed. Based on this generalization, the modification of the tunneling process with barrier thickness and interface conditions is demonstrated. For the first time, equations for the magnetoresistance in each special case are derived.
288

Experimental Measurements by Antilocalization of the Interactions between Two-Dimensional Electron Systems and Magnetic Surface Species

Zhang, Yao 18 June 2014 (has links)
Low-temperature weak-localization (WL) and antilocalization (AL) magnetotransport measurements are sensitive to electron interference, and thus can be used as a probe of quantum states. The spin-dependent interactions between controllable surface magnetism and itinerant electrons in a non-magnetic host provide insight for spin-based technologies, magnetic data storage and quantum information processing. This dissertation studies two different host systems, an In$_{0.53}$Ga$_{0.47}$As quantum well at a distance from the surface of a heterostructure, and an accumulation layer on an InAs surface. Both the systems are two-dimensional electron systems (2DESs), and possess prominent Rashba spin-orbit interaction caused by structural inversion asymmetry, which meets the prerequisites for AL. The surface local moments influence the surrounding electrons in two ways, increasing their spin-orbit scattering, and inducing magnetic spin-flip scattering, which carries information about magnetic interactions. The two effects modify the AL signals in opposing directions: the spin-flip scattering of electrons shrinks the signal, and requires a close proximity to the species, whereas the increase of spin-orbit scattering broadens and increases the signal. Accordingly, we only observe an increase in spin-orbit scattering in the study of the interactions between ferromagnetic Co$_{0.6}$Fe$_{0.4}$ nanopillars and the relatively distant InGaAs quantum well. With these CoFe nanopillars, a decrease in spin decoherence time is observed, attributed to the spatially varying magnetic field from the local moments. A good agreement between the data and a theoretical calculation suggests that the CoFe nanopillars also generate an appreciable average magnetic field normal to the surface, of value $\sim$ 35 G. We also performed a series of comparative AL measurements to experimentally investigate the interactions and spin-exchange between InAs surface accumulation electrons and local magnetic moments of rare earth ions Sm$^{3+}$, Gd$^{3+}$, Ho$^{3+}$, of transition metal ions Ni$^{2+}$, Co$^{2+}$, and Fe$^{3+}$, and of Ni$^{2+}$-, Co$^{2+}$-, and Fe$^{3+}$-phthalocyanines deposited on the surface. The deposited species generate magnetic scattering with magnitude dependent on their electron configurations and effective moments. Particularly for Fe$^{3+}$, the significant spin-flip scattering due to the outermost 3d shell and the fairly high magnetic moments modifies the AL signal into a WL signal. Experiments indicate a temperature-independent magnetic spin-flip scattering for most of the species except for Ho$^{3+}$ and Co$^{2+}$. Ho$^{3+}$ yields electron spin-flip rates proportional to the square root of temperature, resulting from transitions between closely spaced energy levels of spin-orbit multiplets. In the case of Co$^{2+}$, either a spin crossover or a spin-glass system forms, and hence spin-flip rates transit between two saturation regions as temperature varies. Concerning the spin-orbit scattering rate, we observe an increase for all the species, and the increase is correlated with the effective electric fields produced by the species. In both 2DESs, the inelastic time is inversely proportional to temperature, consistent with phase decoherence via the Nyquist mechanism. Our method provides a controlled way to probe the quantum spin interactions of 2DESs, either in a quantum well, or on the surface of InAs. / Ph. D.
289

Atomistic simulations of competing influences on electron transport across metal nanocontacts

Dednam, Wynand 14 June 2019 (has links)
In our pursuit of ever smaller transistors, with greater computational throughput, many questions arise about how material properties change with size, and how these properties may be modelled more accurately. Metallic nanocontacts, especially those for which magnetic properties are important, are of great interest due to their potential spintronic applications. Yet, serious challenges remain from the standpoint of theoretical and computational modelling, particularly with respect to the coupling of the spin and lattice degrees of freedom in ferromagnetic nanocontacts in emerging spintronic technologies. In this thesis, an extended method is developed, and applied for the first time, to model the interplay between magnetism and atomic structure in transition metal nanocontacts. The dynamic evolution of the model contacts emulates the experimental approaches used in scanning tunnelling microscopy and mechanically controllable break junctions, and is realised in this work by classical molecular dynamics and, for the first time, spin-lattice dynamics. The electronic structure of the model contacts is calculated via plane-wave and local-atomic orbital density functional theory, at the scalar- and vector-relativistic level of sophistication. The effects of scalar-relativistic and/or spin-orbit coupling on a number of emergent properties exhibited by transition metal nanocontacts, in experimental measurements of conductance, are elucidated by non-equilibrium Green’s Function quantum transport calculations. The impact of relativistic effects during contact formation in non-magnetic gold is quantified, and it is found that scalar-relativistic effects enhance the force of attraction between gold atoms much more than between between atoms which do not have significant relativistic effects, such as silver atoms. The role of non-collinear magnetism in the electronic transport of iron and nickel nanocontacts is clarified, and it is found that the most-likely conductance values reported for these metals, at first- and lastcontact, are determined by geometrical factors, such as the degree of covalent bonding in iron, and the preference of a certain crystallographic orientation in nickel. / Physics / Ph. D. (Physics)
290

Non-linear magnetoconductivity of the two-dimensional electron fluid and solid on liquid helium

Djerfi, Kheireddine January 1999 (has links)
No description available.

Page generated in 0.0784 seconds