• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 24
  • 5
  • 4
  • 2
  • Tagged with
  • 86
  • 86
  • 47
  • 27
  • 21
  • 20
  • 18
  • 17
  • 16
  • 14
  • 13
  • 13
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Folheações ortogonais em variedades riemannianas / Orthogonal foliations on riemannian manifolds

Euripedes Carvalho da Silva 29 November 2017 (has links)
Neste trabalho, estabelecemos uma equação que relaciona a curvatura de Ricci de uma variedade riemanniana M e as segundas formas fundamentais de duas folheações ortogonais de dimensões complementares, F e F, definidas em M. Usando essa equação, encontramos uma estimativa da curvatura média da folheação F e uma condição necessária e suficiente para que tal folheação seja totalmente geodésica. Mostramos também uma condição suficiente para que M seja localmente um produto riemanniano das folhas de F e F, se uma das folheações for totalmente umbílica. Por fim, provamos ainda uma fórmula integral válida para tais folheações. / In this work, we and an equation that relates the Ricci curvature of a riemannian manifold M and the second fundamental forms of two orthogonal foliations of complementary dimensions, F and F, defined on M. Using this equation, we and an estimate of the mean curvature of the foliation F and a necessary and suficient condition for the foliation F to be totally geodesic. We also show a suficient condition for the manifold M to be locally a riemannian product of the leaves of F and F, if one of the foliations is totally umbilical. Finally, we also prove an integral formula for such foliations.
32

An Obstacle Problem for Mean Curvature Flow

Logaritsch, Philippe 19 October 2016 (has links)
We adress an obstacle problem for (graphical) mean curvature flow with Dirichlet boundary conditions. Using (an adapted form of) the standard implicit time-discretization scheme we derive the existence of distributional solutions satisfying an appropriate variational inequality. Uniqueness of this flow and asymptotic convergence towards the stationary solution is proven.
33

Convergence of phase-field models and thresholding schemes via the gradient flow structure of multi-phase mean-curvature flow

Laux, Tim Bastian 13 July 2017 (has links)
This thesis is devoted to the rigorous study of approximations for (multi-phase) mean curvature flow and related equations. We establish convergence towards weak solutions of the according geometric evolution equations in the BV-setting of finite perimeter sets. Our proofs are of variational nature in the sense that we use the gradient flow structure of (multi-phase) mean curvature flow. We study two classes of schemes, namely phase-field models and thresholding schemes. The starting point of our investigation is the fact that both, the Allen-Cahn Equation and the thresholding scheme, preserve this gradient flow structure. The Allen-Cahn Equation is a gradient flow itself, while the thresholding scheme is a minimizing movements scheme for an energy that Γ-converges to the total interfacial energy. In both cases we can incorporate external forces or a volume-constraint. In the spirit of the work of Luckhaus and Sturzenhecker (Calc. Var. Partial Differential Equations 3(2):253–271, 1995), our results are conditional in the sense that we assume the time-integrated energies to converge to those of the limit. Although this assumption is natural, it is not guaranteed by the a priori estimates at hand.
34

[en] CALCULUS OF AFFINE STRUCTURES AND APPLICATIONS FOR ISOSURFACES / [pt] CÁLCULO DE ESTRUTURAS AFINS E APLICAÇÃO ÀS ISOSSUPERFÍCIES

04 October 2011 (has links)
[pt] A geometria diferencial provê um conjunto de medidas invariantes sob a ação de um grupo de transformações, em particular rígidas, afins e projetivas. Os invariantes por transformações rígidas são usados em quase todas as aplicações de computação gráfica e modelagem geométrica. O caso afim, por ser mais geral, permite estender essas ferramentas. Neste trabalho, propriedades geométricas são apresentadas no caso de superfícies paramétricas ou implícitas, em particular, a métrica afim, os vetores co-normal e normal afins e as curvaturas Gaussiana e média afins. Alguns resultados usuais de geometria Euclidiana, como a fórmula de Minkowski, são estendidos para o caso afim. Esse estudo permite definir estimadores das estruturas afins no caso de isossuperfícies. Porém, um cálculo direto dessas estruturas resulta em um grande número de operações e instabilidade numérica. Uma redução geométrica é proposta, obtendo fórmulas mais simples e mais estáveis numericamente. As propriedades geométricas incorporadas no Marching Cubes são analisadas e discutidas. / [en] Differential Geometry provides a set of measures invariant under a set of transformations, in particular rigid, affine, and projective. The invariants by rigid motions are using almost all applications of computer graphics and geometric modeling. The affine case, since it is more general, allows to extend these tools. In this work, geometric properties are presented in the case of parametric or implicit surfaces, in particular the affine metric, the conormal and normal vectors, and the affine Gaussian and mean curvatures. Some usual results of Euclidean geometry, as the Minkowski formula, are extended for the affine case. This study allows to define estimators of affines structure in the case of isosurfaces. Although, the direct calculation of these structures greatly increases the number of operations and numerical instabilities. A geometrical reduction is proposed obtaining a much simpler and numerical stabler formulae. The geometrical properties are incorporated in the Marching Cubes algorithms, then they are analyzed and discussed.
35

Construction de surfaces à courbure moyenne constante et surfaces minimales par des méthodes perturbatives / Construction of constant mean curvature and minimal surfaces by perturbation methods

Zolotareva, Tatiana 29 January 2016 (has links)
Cette thèse s'inscrit dans l'étude des sous-variétés minimales et à courbure moyenne constante et de l'influence de la géométrie de la variété ambiante sur les solutions de ce problème.Dans le premier chapitre, en suivant les idées de F. Almgren, on propose une généralisation de la notion d'hypersurface de courbure moyenne constante à toutes codimensions. En dimension n-k on définie les sous-variétés à courbure moyenne constante comme les points critiques de la fonctionnelle de k-volume des bords des variétés minimales de dimension k+1. On prouve l'existence dans une variété riemannienne compacte de dimension n de sous-variétés à courbure moyenne constante de codimension n-k pour tout k < n qui sont des perturbations des sphères géodésiques de petit volume.Dans le deuxième chapitre, on s'intéresse aux surfaces minimales à bords libres dans la boule unité de l'espace euclidien de dimension 3, c'est-à-dire aux surfaces minimales plongées dans la boule unité dont le bord rencontre la sphère unité orthogonalement. On démontre l'existence de deux famille géométriquement distinctes de telles surfaces qui sont indexées par un entier n assez grand, qui représente le nombre de composantes connexes du bord de ces surfaces. Nous donnons en particulier une deuxième preuve d'un résultat de A. Fraser et R. Schoen concernant l'existence de telles surfaces.Un des résultats fondamentaux de la théorie des surfaces à courbure moyenne constante est le théorème de Hopf qui affirme que les seules sphères topologiques à courbure moyenne constante dans l'espace euclidien de dimension 3 sont les sphères rondes. Dans le troisième chapitre, on propose une construction dans une variété riemannienne de dimension 3 d'une famille de sphères topologiques à courbure moyenne constante qui ne sont pas convexes et dont la courbure moyenne est très grande. / The subject of this thesis is the study of minimal and constant mean curvature submanifolds and of the influence of the geometry of the ambient manifold on the solutions of this problem.In the first chapter, following the ideas of F. Almgren, we propose a generalization of the notion of hypersurface with constant mean curvature to all codimensions. In codimension n-k we define constant mean curvature submanifolds as the critical points of the functional of the k - dimensional volume of the boundaries of k+1 - dimensional minimal submanifolds. We prove the existence in compact n-dimensional manifolds of n-k codimensional submanifolds with constant mean curvature for all k<n which are perturbations of geodesic spheres of small volume.In the second chapter, we consider free boundary minimal surfaces in the unit ball of the three dimensional Euclidean space, i.e. minimal surfaces embedded in the unit ball and which meet the unit sphere orthogonally. We prove the existence of two geometrically distinct families of such surfaces parametrized by an integer n large enough, which represents the number of the boundary components. In particular, we give an independent proof of the result of A. Fraser and R. Schoen concerning the existence of such surfaces.One of the fundamental results of the theory of constant mean curvature surfaces is the Hopf's theorem which asserts that the only topological spheres with constant mean curvature in the Euclidean 3-space are round spheres. In the third chapter, we propose a construction in a three dimensional Riemannian manifold of a family of nonconvex topological spheres with large constant mean curvature.
36

[pt] SUPERFÍCIES DE CURVATURA MEDIA CONSTANTE EM VARIEDADES HOMOGÉNEAS DE DIMENSÃO 3 COM ENFÂSE EM GPSL2(R, Τ) / [en] SURFACES OF CONSTANT MEAN CURVATURE IN HOMOGENEOUS THREE MANIFOLDS WITH EMPHASIS IN GPSL2(R, Τ )

CARLOS DIOSDADO ESPINOZA PENAFIEL 01 September 2010 (has links)
[pt] Nesta teses, nós estudamos H-superfícies, isto é, superfícies tendo curvatura media constante, imersas em variedades homogêneas simplesmente conexas de dimensão 3. Nós focamos nossa atenção no estudo de existência de H multigráficos. Também estudamos a H-superfícies invariantes por um grupo a um parâmetro de isometrias que estão imersas no espaço PSL(2) (R, T). / [en] In this thesis we study H-surfaces, that is, surfaces having constant mean curvature, immersed in homogeneous simply connected 3-manifold. We focus our attention in the study of existence of H multigraphs. We also study the H-surfaces invariant by one-parameter group of isometries which are immersed in the space]PSL2(R, T).
37

Hipersuperficies completas com curvatura de Gauss-Kronecker nula em esferas / Complete hypersurfaces with constant mean curvature and zero Gauss-Kronecker curvature in spheres.

Zapata, Juan Fernando Zapata 05 September 2013 (has links)
Neste trabalho mostramos que hipersuperfícies completas da esfera Euclidiana S^4, com curvatura média constante e curvatura de Gauss-Kronecker nula são mínimas, sempre que o quadrado da norma da segunda forma fundamental for limitado superiormente. Além disso apresentamos uma descrisão local das hipersuperfícies mínimas e completas em S^5 com curvatura de Gauss- Kronecker nula e algumas hipóteses adicionais sobre as funções simétricas das curvaturas principais. / In this work we show that a complete hipersurface of the unitary sphere S^4, with constant mean curvature and zero Gauss-Kronecker curvature must be minimal, if the squared norm of the second fundamental form is bounded from above. Also, we present a local description for complete minimal hipersurfaces in S^5 with zero Gauss-Kronecker curvature, and some restrictions for the symmetric functions of the principal curvatures.
38

Hipersuperficies completas com curvatura de Gauss-Kronecker nula em esferas / Complete hypersurfaces with constant mean curvature and zero Gauss-Kronecker curvature in spheres.

Juan Fernando Zapata Zapata 05 September 2013 (has links)
Neste trabalho mostramos que hipersuperfícies completas da esfera Euclidiana S^4, com curvatura média constante e curvatura de Gauss-Kronecker nula são mínimas, sempre que o quadrado da norma da segunda forma fundamental for limitado superiormente. Além disso apresentamos uma descrisão local das hipersuperfícies mínimas e completas em S^5 com curvatura de Gauss- Kronecker nula e algumas hipóteses adicionais sobre as funções simétricas das curvaturas principais. / In this work we show that a complete hipersurface of the unitary sphere S^4, with constant mean curvature and zero Gauss-Kronecker curvature must be minimal, if the squared norm of the second fundamental form is bounded from above. Also, we present a local description for complete minimal hipersurfaces in S^5 with zero Gauss-Kronecker curvature, and some restrictions for the symmetric functions of the principal curvatures.
39

Uma caracterização das superfícies de delaunay

Bezerra, Geziel Damasceno 31 December 2012 (has links)
Made available in DSpace on 2015-04-22T22:16:06Z (GMT). No. of bitstreams: 1 Geziel Damasceno.pdf: 743020 bytes, checksum: 0001ac62bcb357c87e266dd4d0de7a3b (MD5) Previous issue date: 2012-12-31 / FAPEAM - Fundação de Amparo à Pesquisa do Estado do Amazonas / Admits that in a complete surface, connected and oriented immersed in R3 with non-zero constant mean curvature, there is a geodesic triangle whose interior angles satisfy a relationship involving the integral mean curvature and the angle formed by unit vector parallel to a coordinate axis of either R3 and the unit vector normal to the surface, and in such cases shows that the immersion is a surface of revolution, ie, a surface Delaunay. Then give a characterization of the sphere is changing some hypotheses on the previous result. / Admite-se que, numa superfície completa, conexa e orientada imersa no espaço euclidiano tri-dimensional com curvatura média constante não nula, existe um triângulo geodésico cujos ângulos internos satisfazem uma relação integral envolvendo a curvatura média e o ângulo formado pelo vetor unitário paralelo a um eixo coordenado qualquer do espaço ambiente e o vetor unitário normal a superfície, e sob tais hipóteses mostra-se que a imersão é uma superfície de revolução, ou seja, uma superfície de Delaunay. Em seguida darse uma caracterização da esfera alterando-se algumas hipóteses no resultado anterior.
40

Uniformly Area Expanding Flows in Spacetimes

Xu, Hangjun January 2014 (has links)
<p>The central object of study of this thesis is inverse mean curvature vector flow of two-dimensional surfaces in four-dimensional spacetimes. Being a system of forward-backward parabolic PDEs, inverse mean curvature vector flow equation lacks a general existence theory. Our main contribution is proving that there exist infinitely many spacetimes, not necessarily spherically symmetric or static, that admit smooth global solutions to inverse mean curvature vector flow. Prior to our work, such solutions were only known in spherically symmetric and static spacetimes. The technique used in this thesis might be important to prove the Spacetime Penrose Conjecture, which remains open today. </p><p>Given a spacetime $(N^{4}, \gbar)$ and a spacelike hypersurface $M$. For any closed surface $\Sigma$ embedded in $M$ satisfying some natural conditions, one can ``steer'' the spacetime metric $\gbar$ such that the mean curvature vector field of $\Sigma$ becomes tangential to $M$ while keeping the induced metric on $M$. This can be used to construct more examples of smooth solutions to inverse mean curvature vector flow from smooth solutions to inverse mean curvature flow in a spacelike hypersurface.</p> / Dissertation

Page generated in 0.0928 seconds