441 |
DEFINING THE ROLE OF IMMUNE THERAPY IN PEDIATRIC CNS MALIGNANCYDorand, Rodney Dixon, Jr. 13 September 2016 (has links)
No description available.
|
442 |
Refining a Post-Stroke Pharmacological and Physical Treatment to Reduce Infarct Volume or Improve Functional Recovery, Using Gene Expression Changes in the Peri-Infarct Region to Examine Potential Mechanisms in Male and Female RatsRagas, Moner A. 05 August 2016 (has links)
No description available.
|
443 |
Vstat120 modulates inhibits oncolytic viral therapy induced angiogenesis and innate pro-inflamatory response, augmenting oncolytic viral thereapy of glioblastom multiformeHardcastle, Jayson James 22 July 2011 (has links)
No description available.
|
444 |
Effects of glucocorticoid receptor signaling on plasticity and recovery in central and peripheral nervous system injuriesMadalena, Kathryn Maria 29 September 2022 (has links)
No description available.
|
445 |
Deciphering The Contribution Of Microglia To Neurodegeneration In Friedreich's AtaxiaGillette, Sydney N 01 June 2024 (has links) (PDF)
Friedreich's ataxia (FRDA) is the most prevalent inherited ataxia, affecting one in every 50,000 individuals in the United States. This hereditary condition is caused by an abnormal GAA trinucleotide repeat expansion within the first intron of the frataxin gene resulting in decreased levels of the frataxin protein (FXN). Insufficient cellular frataxin levels results in iron accumulation, increased reactive oxygen species production and mitochondrial dysfunction. Tissues most heavily impacted are those most dependent on oxidative phosphorylation as an energy source and include the nervous system and muscle tissue. This is evident in the clinical phenotype which includes muscle weakness, ataxia, neurodegeneration and cardiomyopathy. However, there has been a lack of data regarding the cell type specific contributions in FRDA pathogenesis. We generated a cohort of induced pluripotent stem cells (iPSCs) consisting of FRDA patient lines, CRISPR-Cas9 edited controls, carriers and non-related controls. Our preliminary data identified a hyperinflammatory microglial phenotype with extensive defects in mitochondrial function; since microglia are the primary innate immune cell of the brain, we hypothesized microglia may decrease neuronal viability which contributes to FRDA pathology. To investigate this, the iPSC cohort was utilized to generate microglia (iMGs) and neurons to better understand microglia-mediated neurodegeneration and how this contributes to pathology. An in vitro co-culture model composed of neurons, astrocytes and microglia was employed to better understand microglia-neuronal communication in FRDA. Healthy neurons co-cultured with FRDA iMG or with FRDA iMG-conditioned media demonstrated higher incidences of caspase-3 mediated apoptosis. These findings were recapitulated in vivo as xenotransplantation of FRDA microglia progenitors into a murine model resulted in reduced Purkinje cell survival in the cerebellum. Previous research has demonstrated the therapeutic potential of wildtype microglia to rescue the FRDA phenotype in the Y8GR mouse model of FRDA. To further explore the potential mechanisms behind this rescue, the delivery of mitochondria and FXN to FRDA microglia and neurons was investigated. CRISPR-Cas9 edited microglia demonstrated transfer of healthy mitochondria to FRDA microglia and neurons in an in vitro co-culture model. To investigate the transfer of frataxin protein, an FRDA iPSC line was transduced with an FXN-GFP lentivirus. Restoring FXN expression was demonstrated to rescue the FRDA microglial morphological phenotype. FXN-GFP microglia demonstrated transfer of frataxin protein to FRDA microglia suggesting the potential role of microglia as a therapeutic vehicle in FRDA. Together these findings show that FRDA microglia have a deleterious effect on neuronal viability, while healthy microglia may work as a therapeutic vehicle through the delivery of mitochondria and frataxin to FRDA cells.
|
446 |
Defined astrocytic expression of human amyloid precursor protein in Tg2576 mouse brainHeiland, Tina, Zeitschel, Ulrike, Puchades, Maja A., Kuhn, Peer-Hendrik, Lichtenthaler, Stefan F., Bjaalie, Jan G., Hartlage-Rübsamen, Maike, Roßner, Steffen, Höfling, Corinna 26 September 2024 (has links)
Transgenic Tg2576 mice expressing human amyloid precursor protein (hAPP) with the Swedish mutation are among the most frequently used animal models to study the amyloid pathology related to Alzheimer's disease (AD). The transgene expression in this model is considered to be neuron-specific. Using a novel hAPP-specific antibody in combination with cell type-specific markers for double immunofluorescent labelings and laser scanning microscopy, we here report that-in addition to neurons throughout the brain-astrocytes in the corpus callosum and to a lesser extent in neocortex express hAPP. This astrocytic hAPP expression is already detectable in young Tg2576 mice before the onset of amyloid pathology and still present in aged Tg2576 mice with robust amyloid pathology in neocortex, hippocampus, and corpus callosum. Surprisingly, hAPP immunoreactivity in cortex is restricted to resting astrocytes distant from amyloid plaques but absent from reactive astrocytes in close proximity to amyloid plaques. In contrast, neither microglial cells nor oligodendrocytes of young or aged Tg2576 mice display hAPP labeling. The astrocytic expression of hAPP is substantiated by the analyses of hAPP mRNA and protein expression in primary cultures derived from Tg2576 offspring. We conclude that astrocytes, in particular in corpus callosum, may contribute to amyloid pathology in Tg2576 mice and thus mimic this aspect of AD pathology.
|
447 |
L'impact de GPR120 microglial sur l'équilibre énergétique et le comportement anxiodépressifOmidi Arjenaki, Neda 07 1900 (has links)
GPR120 est un récepteur couplé à une protéine G pour les acides gras à longue chaîne (AGCL), connu pour ses effets anti-inflammatoires et pour la médiation des effets de sensibilisation à l'insuline des acides gras oméga-3. Les études révèlent une forte expression de GPR120 dans les microglies, suggérant son rôle potentiel dans les réponses immunitaires du cerveau. Cependant, l'impact spécifique de GPR120 microgliale sur les changements de comportement reste incertain. Les études suggèrent qu'un système Cre-Lox inducible élimine GPR120 dans les microglies, entraînant une augmentation des comportements semblables à l'anxiété et favorisant une augmentation de la prise alimentaire, du gain de poids et une réduction de la dépense énergétique chez les souris. Cette recherche vise à étudier l'impact de GPR120 microgliale sur l'équilibre énergétique et le comportement semblable à l'anxiété dans des conditions basales. À cet effet, nous avons créé un modèle de souris knockout pour GPR120 (génétiquement modifié ; GPR120lox/CXCR1Cre-ER). Ensuite, une cohorte de ces souris a été soumise à des analyses comportementales et métaboliques. Les évaluations métaboliques comprenaient la surveillance de l'apport alimentaire et de la dépense énergétique dans des chambres métaboliques. Des tests comportementaux tels que le labyrinthe en croix surélevé (EPM), la boîte claire-sombre (LDB) et le test des trois chambres (3CT) pour l'interaction sociale ont été réalisés. Nous avons observé que les souris femelles GPR120 KO présentaient une interaction significativement accrue dans le 3CT, suggérant une sociabilité améliorée. De plus, les souris avec GPR120 KO microgliale ont montré une augmentation du poids corporel et une réduction de l'apport alimentaire dans les cages métaboliques par rapport aux témoins. Les niveaux de corticostérone étaient augmentés chez les mâles et une tendance à l’augmentation a aussi observée chez les femelles. En conclusion, nos résultats soulignent l'influence potentielle de GPR120 sur les processus comportementaux et métaboliques. Une investigation plus poussée est essentielle pour comprendre pleinement le rôle de GPR120 dans la neuroinflammation et l'activité microgliale. Cette exploration de GPR120 offre des perspectives prometteuses pour le développement de nouvelles options thérapeutiques pour divers troubles. / GPR120 is a G protein-coupled receptor for long-chain fatty acids (LCFAs), known for its anti-inflammatory and insulin-sensitizing effects of omega-3 fatty acids. Studies reveal high expression of GPR120 in microglia, suggesting its potential role in brain immune responses. However, the specific impact of microglial GPR120 on behavioral changes remains unclear.The studies suggest that an inducible Cre-Lox system will knock out GPR120 in microglia, leading to increased anxiety-like behavior and promoting increased feeding, body weight gain, and reduced energy expenditure in mice. This research aims to investigate the impact of microglial GPR120 on energy balance and anxiety-like behavior under basal conditions For this purpose we created a knockout GPR120 mouse mode (genetically modified; GPR120lox/CXCR1Cre-ER). Subsequently, a cohort of these mice underwent behavioral and metabolic analyses. Metabolic assessments included monitoring food intake, and energy expenditure in metabolic chambers. Behavioral tests such as the elevated plus maze (EPM), light-dark box (LDB), and three-chamber test (3CT) for social interaction were conducted. We observed that Female GPR120 KO mice exhibited significantly increased interaction in the 3CT, suggesting enhanced sociability. Moreover, mice with microglial GPR120 KO showed increased body weight and reduced food intake in metabolic cages compared to controls. Corticosterone levels exhibited increased in males and a trend in females. In conclusion, our findings underscore the potential influence of GPR120 on both behavioral and metabolic processes. Further investigation is essential to fully understand the role of GPR120 in neuroinflammation and microglial activity. This exploration of GPR120 holds promise for developing novel treatment options for various disorders.
|
448 |
Génération de modèles cellulaires pour étudier l'impact du vieillissement sur la microglie humaineArmanville, Sandrine 08 1900 (has links)
Les microglies sont les cellules immunitaires du système nerveux central. Elles sont essentielles pour son bon fonctionnement et son homéostasie. Avec l’âge, elles adoptent une morphologie dystrophique accompagnée d’un dérèglement de leurs fonctions homéostatiques. Le dysfonctionnement microglial associé au vieillissement est soupçonné de contribuer à la progression de maladies neurodégénératives. Cependant, la cause de ces changements phénotypiques est peu connue, d’autant plus chez l’humain compte tenu du manque d’accessibilité des microglies humaines âgées vivantes pour le travail moléculaire in vitro. Les travaux présentés dans ce mémoire visent donc le développement d’un modèle cellulaire qui permettrait d’étudier l’impact du vieillissement cellulaire sur la microglie humaine. Dans ce mémoire, nous formulons l’hypothèse que l’induction chimique de la sénescence dans les microglies humaines induira rapidement des caractéristiques associées au vieillissement cellulaire alors que la reprogrammation microgliale directe à partir de cellules de peau d’individus âgés maintiendra la signature associée au vieillissement cellulaire de manière physiologique. Les résultats démontrent que les microglies dans lesquelles la sénescence est chimiquement induite présentent des caractéristiques phénotypiques de vieillissement cellulaire et un dérèglement de leurs fonctions homéostatiques. De plus, les produits cellulaires obtenus par la reprogrammation microgliale directe adoptent plusieurs caractéristiques clés de la microglie, mais certaines conditions de reprogrammation directe doivent encore être déterminées afin d’obtenir un produit cellulaire authentique. Ces techniques fourniront une source renouvelable de microglies humaines âgées pouvant être dérivée de patients, afin d’étudier l’impact du vieillissement sur leurs fonctions physiologiques et sur leur interaction avec les cellules du cerveau dans les maladies neurodégénératives. / Microglia are the resident immune cells of the central nervous system (CNS). They are essential for brain functioning and cerebral homeostasis. With age, they adopt a dystrophic morphology and a disruption of their homeostatic functions occurs. Microglial dysfunction associated with aging is believed to contribute to the progression of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. However, how aging confers to microglia this change in phenotype is still unknown, especially in human given the lack of accessibility of live human aged microglia for in vitro molecular work. As such, the work presented in this Master’s thesis aims the development of a cellular model in which the effect of aging on microglial function can be studied in human microglia. In this paper, we formulate the hypothesis that chemical induction of senescence in human microglia rapidly induces phenotypic characteristics of cellular aging, whereas direct microglial reprogramming from fibroblasts of elderly individuals will maintain the aging signature following cellular conversion. The results obtained show that microglia in which senescence is chemically induced show phenotypic characteristics of cellular aging as well as disruption of their homeostatic functions. On the other hand, cellular product obtained from microglial reprogramming adopt several key features of human microglia, but some direct microglial reprogramming conditions still need to be determined in order to obtain a cell product closely resembling human microglia. These two methods will provide a renewable source of patient-derived aged microglia to study the impact of aging on their physiological functions and on their interaction with other CNS cells in neurodegenerative diseases.
|
449 |
Einwanderung und Differenzierung von hämatogenen Zellen zu Mikroglia im adulten Zentralnervensystem / eine qualitative und semiquantitative Studie in Mäusen unter Verwendung des grünen fluoreszierenden ProteinsWehner, Tim 26 January 2004 (has links)
Zur langfristigen Markierung von hämatogenen Zellen wurde Knochenmark mit dem Gen für das grüne fluoreszierende Protein (GFP) transduziert und in bestrahlte Empfängermäuse transplantiert. Die GFP-Expression im peripheren Blut dieser Tiere war über den untersuchten Zeitraum von vier Monaten stabil. Die Hirne der Empfängertiere wurden zu den Zeitpunkten zwei, vier, acht und fünfzehn Wochen nach Knochenmarktransplantation auf die Präsenz von GFP-exprimierenden Zellen untersucht. Es fand sich eine im Zeitverlauf zunehmende Einwanderung und Differenzierung von GFP-exprimierenden hämatogenen Zellen zu ramifizierten Mikrogliazellen in der grauen und weißen Substanz. Nach vier Monaten stammten bis zu ein Viertel aller regionalen Mikrogliazellen aus dem transplantierten Knochenmark. Nach fokaler cerebraler Ischämie wanderten deutlich mehr GFP-positive Zellen aus dem Blut in das ischämische Areal ein und differenzierten zu ramifizierten Mikrogliazellen. Diese Ergebnisse implizieren einen Weg für den Transfer des humanen Immunodefizienzvirus in das Zentralnervensystem und offerieren einen nichtinvasiven Weg, genetisch manipulierte Zellen in das adulte Hirnparenchym einzuschleusen. / In order to stably label hematogenous cells, bone marrow was transduced with the gene for the green fluorescent protein (GFP) and transplanted into irradiated recipient mice. The GFP- expression in peripheral blood cells of these animals was stable within the examined time frame of four months. Brains of recipient animals were examined for the presence of GFP- expressing cells at two, four, eight and fifteen weeks after bone marrow transplantation. An increasing migration and differentiation of hematogenous GFP-expressing cells into ramified parenchymal microglia within the white and grey matter was found. After four months, up to quarter of regional microglia were bone-marrow derived. Following focal cerebral ischemia, an increased influx of GFP-positive blood-borne cells differentiating into ramified microglia was observed. These results imply a route for the human immunodeficiency virus into the central nervous system, and they offer a noninvasive approach for the transfer of genetically manipulated cells into the adult brain parenchyma.
|
450 |
Investigating the contribution of ICAM-1 on the surface of oligodendrocytes and microglia to cell-cell interactions and neuroinflammation in MS and EAEKrysak, Megan 08 1900 (has links)
La sclérose en plaques (SEP) est une maladie inflammatoire auto-immune du système nerveux central (SNC). Les lésions actives chroniques, associées à la progression en SEP, présentent une zone de démyélinisation centrale entourée d’une bordure de microglies activées. Des lymphocytes T sont également identifiés dans ces lésions, suggérant un potentiel d'interactions glie/lymphocytes délétères en SEP et dans son modèle animal l’encéphalomyélite auto-immune expérimentale
(EAE). Nous émettons l'hypothèse que les interactions entre la molécule d'adhérence intercellulaire-1 (ICAM-1) exprimée sur les cellules gliales et l'antigène de fonction lymphocytaire-1 (LFA-1) exprimée sur les lymphocytes T contribuent aux contacts et promeuvent l'activation des cellules gliales et T au sein du SNC. Des souris ICAM-1 knock out (KO) conditionnel ont été croisées avec des lignées Cre pour explorer cette hypothèse. La délétion spécifique d'ICAM-1 sur les oligodendrocytes n'était pas efficace et n'induisait pas de différences en EAE. La délétion spécifique d'ICAM-1 sur la microglie a été efficace et montré une légère
réduction de la gravité de l'EAE chez les femelles, en parallèle avec une altération des populations de lymphocytes T infiltrant le SNC. En cytométrie de flux sur du tissu SNC humain post-mortem, nous avons observé que la microglie en SEP comparée au contrôle exprimait plus d'ICAM-1. Notamment, la microglie ICAM-1+ exprimait des niveaux élevés de marqueurs d’activation. In vitro, le blocage d'ICAM-1 sur la microglie avant la co-culture avec les lymphocytes T n'a toutefois pas diminué l'activation microgliale. Nos résultats suggèrent qu’ICAM-1 sur les microglies représente un marqueur d'activation et contribue aux processus neuro-inflammatoires. / Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system (CNS). Chronic active MS lesions are associated with disability progression and characterized by central demyelination with a rim of activated microglia. T cells are also identified at the rim, suggesting a potential for deleterious glia-T cell interactions. We hypothesized that interactions between intercellular adhesion molecule-1 (ICAM-1) on glial cells and ligand lymphocyte function antigen-1 (LFA-1) on T cells contribute to cell contacts and subsequent glial and T cell activation in MS and its animal model experimental autoimmune encephalomyelitis (EAE). To test this, ICAM-1 conditional knockout (KO) mice were crossed with different Cre lines. ICAM-1 is transiently upregulated by a small proportion of oligodendrocytes in EAE. Oligodendrocyte-specific ICAM-1 KO did not significantly reduce ICAM-1 nor EAE severity compared to control littermates. Up to 80% of microglia express ICAM-1 in EAE. Microglia-specific ICAM-1 KO mice reduced expression of ICAM-1 on microglia and resulted in a slight amelioration in EAE course in females, in parallel with altered T cell populations infiltrating the CNS compared to control littermates. Using flow cytometry on rapid autopsy human CNS tissue, microglia from MS compared to control showed higher expression of ICAM-1. Notably, ICAM-1+ microglia expressed higher levels of activation markers than their ICAM-1neg counterparts. In vitro, blocking ICAM-1 on microglia prior to co-culture with T cells however did not impact microglial activation. Overall, our data suggest that ICAM-1 on microglia may represent an activation marker and contribute to neuroinflammatory processes in MS and EAE.
|
Page generated in 0.0516 seconds