• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 16
  • 10
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 113
  • 41
  • 38
  • 25
  • 24
  • 24
  • 19
  • 18
  • 18
  • 16
  • 14
  • 14
  • 13
  • 13
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

INVESTIGATION OF ELECTROCATALYTIC ENERGY CONVERSION REACTIONS ON 2D LAYERED MATERIALS: HYDROGEN EVOLUTION ON MoS2 AND CARBON DIOXIDE REDUCTION ON Ti3C2 AND Mo2C

Attanayake, Nuwan January 2019 (has links)
Anthropogenic release of the greenhouse gas carbon dioxide is believed to be a leading cause in the global rise in temperature. The main source of the carbon dioxide released is from combustion of fossil fuels. Thus, its necessary to mitigate the release of CO2, look for alternatives for fossil fuels and capture and sequester or capture and convert CO2 to other useful fuels and chemicals hence creating carbon neutral or carbon negative energy cycles. This thesis work was primarily focused on design, adapt and understand the chemistry of two-dimensional (2D) layered materials, particularly transition metal dichalcogenide (TMD) molybdenum disulfide and transition metal carbides (MXenes) as catalytic materials for the conversion of renewable energy into fuels and chemicals as an alternative for fossil fuels. This investigation was accomplished by combining electrochemistry, state of the art characterization and density functional theory (DFT) calculations. We hypothesized that it would be possible to improve the electrocatalytic hydrogen evolution reaction (HER) on MoS2 by engineering catalytically active sites on the plane, their edges and their interlayer regions. We also hypothesized 2D MXene sheets would serve as good carbon dioxide reduction reaction (CO2RR) catalysts under aprotic conditions. Conceivably the broad impact of this thesis work utilizing experimental and theoretical studies is the realization of transition metal doped metallic MoS2 as a potential candidate towards HER in alkaline conditions. Initially the interlayer region of MoS2 were investigated for the HER by introducing Na+, Ca2+, Ni2+ and Co2+ cations in the interlayers of metallic phase MoS2. Experimental results show that intercalation of cations (Na+, Ca2+, Ni2+, and Co2+) into the interlayer region of 1T-MoS2 to lower the overpotential for the HER. In acidic media the overpotential to reach 10 mAcm-2 for 1T-MoS2 with intercalated ions is lowered by ~60 mV relative to pristine 1T-MoS2 (~230 mV). DFT calculations suggest that the introduction of states from the intercalated metals whether sp or d, to lower the Gibbs free energy for H-adsorption (ΔGH) relative to intercalant-free 1T-MoS2. The DFT calculations suggest that Na+ intercalation results in ΔGH closest to zero, which is consistent with our experiments where the lowest overpotential for the HER is observed with Na+ intercalation. In order to explore the activity of the edge sites of MoS2 and the effect of a conductive support we used a microwave-assisted growth technique to synthesize interlayer expanded MoS2 with a vertically orientation on conductive two-dimensional Ti3C2 MXene nanosheets (MoS2⊥Ti3C2). Judicious choice of reaction temperature allows a control over the density of the edges obtained. Compared to pure MoS2 this unique inorganic hybrid structure allows an increased exposure of catalytically active edge sites of MoS2. The produced materials were investigated as electrocatalysts for the hydrogen evolution reaction (HER) in acidic conditions. The MoS2⊥Ti3C2 catalyst synthesized at 240 0C exhibited a low onset potential (-95 mV vs RHE) for the HER and a low Tafel slope (~40 mV dec-1). The decrease in the overpotential is linked to decrease in the charge transfer resistance of the materials with the electrode and the increased edge site density. In a third study the basal plane of metallic MoS2 was engineered by doping with transition metals Co and Ni to be evaluated as a catalyst for the alkaline HER. Due to a lack of oxygen evolution catalysts that can oxidize water at the anode under acidic conditions, there is an urgency to realize HER catalysts that can efficiently reduce water to hydrogen gas under alkaline conditions. Though metallic MoS2 has an optimum H binding free energy for the HER, the sluggish water dissociation step under alkaline conditions has made the implementation of MoS2 as a catalyst at higher pHs harder. We hypothesized that doping transition metals in the basal plane of metallic MoS2 that can efficiently catalyze the water dissociation step in alkaline conditions would help to reduce the overpotential required for the HER under alkaline conditions. Ni and Co were doped in orthorhombic MoO3 which was then converted metallic MoS2 under hydrothermal conditions. The polarization plots obtained in 1.0 M KOH solution shows a low onset overpotential of -75 mV vs RHE for the 10% Ni doped metallic MoS2 with an overpotential of -145 mV to reach a current density of 10 mA/cm2. Pure metallic MoS2 reaches the same current density at an overpotential of -238 mV vs RHE while samples doped with 10% Co atoms reached 10 mA/cm2 at -165 mV. This improvement in the doped samples is attributed to the improved kinetics of the water dissociation step under the alkaline reaction conditions. DFT calculations suggests that an optimal binding of water for the water dissociation step, H binding free and low free energy of binding for OH intermediates. Rigorous cycling of the catalysts shows extremely high stability with the doped samples while the pure metallic MoS2 loses its activity with continuous cycling. DFT calculations show that the doped samples provide extra stability to the metastable metallic MoS2 thus improving their long-term stability. Photo/electrochemical conversion of CO2 is an important step in the path to renewable production of carbon-based fuels and chemicals. Activity and selectivity have been major concerns on the CO2RR catalysts. The activity of known materials are hindered by the scaling relationship in the binding energies of the many intermediates involved in the CO2RR. Thus, the simplest of CO2RR products CO and HCOOH are of great value. Nano structured precious metals like silver and gold have shown promise as cathode materials for the conversion of CO2 to CO. In this thesis work we evaluate the electrocatalytic properties of Mo2C and Ti3C2 MXenes towards the electrochemical CO2 reduction reaction (CO2RR) as cheaper alternatives for precious metals. Though there have been theoretical predictions of the ability of MXenes with certain composition to have the ability to reduce CO2 to hydrocarbons, there are no experimental findings to support these calculations. In this study we observe very high faradaic efficiencies, ~90% for the CO2 reduction to CO at low overpotentials ~250 mV in acetonitrile/ionic liquid electrolytes on Mo2C MXene while Ti3C2 shows ~65% FE at an overpotential of ~600 mV for the cathodic half reaction. Density functional theory calculations suggests that the enhanced activity of Mo2C relative to Ti3C2 is due to relative lowering of the energy barrier for the initial proton couple electron transfer step of CO2 and the spontaneous dissociation of the absorbed *COOH species to *CO and H2O on the Mo2C surface. The calculations also predict the most probable active sites for the CO2 conversion to be vacant oxygen sites. High selectivity and high FE of CO2 reduction to CO makes these earth abundant materials an attractive electrocatalyst for the CO2RR. / Chemistry
62

Modeling and simulations of 2D nano-mechanical resonators

Rezaeepazhand, Amirreza 28 May 2024 (has links)
Nanoelectromechanical systems (NEMS) play an important role in advancing high-precision sensing and high-speed computational applications due to their exceptional sensitivity and reduced size. This thesis explores the dynamic behaviors and vibrational properties of NEMS, focusing on coupled systems of molybdenum disulfide (MoS2) membrane and silicon nitride (SiNx) drumhead, and the effects of gas pressure on an MoS2 membrane resonator. Employing finite element simulations alongside theoretical modeling, the study thoroughly analyzes the coupling dynamics between MoS2 and SiNx resonators and investigates the vibrational responses of MoS2 membranes under pressure. Key achievements include the identification of vibrational modes, calculation of coupling constants, and comprehensive understanding of pressurized MoS2 membrane resonator behavior. These insights pave the way for enhancing NEMS applications in sensitive detection and resonant frequency modulation, significantly contributing to the field of nanotechnology and the development of advanced NEMS devices.
63

Chiral transition metal dichalcogenides for spintronics and spin-dependent electrochemical applications / キラル遷移金属ダイカルコゲナイドによるスピントロニクスとスピン電気化学への応用

Bian, Zhiyun 25 September 2023 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第24904号 / 工博第5184号 / 新制||工||1990(附属図書館) / 京都大学大学院工学研究科分子工学専攻 / (主査)教授 関 修平, 准教授 須田 理行, 教授 生越 友樹, 教授 水落 憲和 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
64

Raman Spectroscopy Of Graphene And Graphene Analogue MoS2 Transistors

Chakraborty, Biswanath 08 1900 (has links) (PDF)
The thesis presents experimental studies of device characteristics and vibrational properties of atomic layer thin graphene and molybdenum disulphide (MoS2). We carried out Raman spectroscopic studies on field effect transistors (FET) fabricated from these materials to investigate the phonons renormalized by carrier doping thus giving quantitative information on electron-phonon coupling. Below, we furnish a synoptic presentation of our work on these systems. Chapter1: Introduction Chapter1, presents a detailed introduction of the systems studied in this the¬sis, namely single layer graphene (SLG), bilayer graphene (BLG) and single layer molybdenum disulphide (MoS2). We have mainly discussed their electronic and vibrational properties in the light of Raman spectroscopy. A review of the Raman studies on graphene layers is presented. Chapter2: Methodology and Experimental Techniques Chapter 2 starts with a description of Raman instrumentation. The steps for isolating graphene and MoS 2 flakes and the subsequent device fabrication procedures involving lithography are discussed in detail. A brief account of the top gated field effect transistor (FET) using solid polymer electrolyte is presented. Chapter3: Band gap opening in bilayer graphene and formation of p-n junction in top gated graphene transistors: Transport and Raman studies In Chapter3 the bilayer graphene (BLG) field effect transistor is fabricated in a dual gate configuration which enables us to control the energy band gap and the Fermi level independently. The gap in bilayer energy spectrum is observed through different values of the resistance maximum in the back gate sweep curves, each taken at a fixed top gate voltage. The gate capacitance of the polymer electrolyte is estimated from the experimental data to be 1.5μF/cm2 . The energy gap opened between the valence and conduction bands using this dual-gated geometry is es¬timated invoking a simple model which takes into account the screening of gate induced charges between the two layers. The presence of the controlled gap in the energy band structure along with the p-n junction creates a new possibility for the bilayer to be used as possible source of terahertz source. The formation of p-n junction along a bilayer graphene (BLG) channel is achieved in a electrolytically top gated BLG FET, where the drain-source voltage VDS across the channel is continuously varied at a fixed top gate voltage VT(VT>0). Three cases may arise as VDS is varied keeping VT fixed: (i) for VT-VDS0, the entire channel is doped with electron, (ii) for VT-VDS= 0, the drain end becomes depleted of carriers and kink in the IDS vs VDS curve appears, (iii) for VT-VDS « 0, carrier reversal takes place at the drain end, accumulation of holes starts taking place at the drain end while the source side is still doped with electrton. The verification of the spatial variation of carrier concentration in a similar top gated single layer graphene (SLG) FET device is done using spatially resolved Ra¬man spectroscopy. The signature 2D Raman band in a single layer graphene shows opposite trend when doped: 2D peak position decreases for electron doping while it increases for hole doping. On the other hand, the G mode response being symmetric in doping can act as a read-out for the carrier concentration. We monitor the peak position of the G and the 2D bands at different locations along the SLG FET channel. For a fixed top gate voltage V T , both G and the 2D band frequencies vary along the channel. For a positive VTsuch that VT-VDS= 0, the peak frequencies ωGand ω2DωG/2D occur at the undoped frequency (ωG/2D)n=0 near the drain end while the source end corresponds to non-zero concentration. When VT-VDS<0, Raman spectra from hole doped regions (drain end) in the channels show an blue-shift in ω2Dwhile from the electron doped regions (near source) ω2Dis softened. Chapter4: Mixing Of Mode Symmetries In Top Gated Bilayer And Multilayer Graphene Field Effect Devices In Chapter4, the effect of gating on a bilayer graphene is captured by using Raman spectroscopy which shows a mixing of different optical modes belonging to differ¬ent symmetries. The zone-center G phonon mode splits into a low frequency (Glow) and a high frequency (Ghigh) mode and the two modes show different dependence on doping. The two G bands show different trends with doping, implying different electron-phonon coupling. The frequency separation between the two sub-bands in¬creases with increased doping. The mode with higher frequency, termed as Ghigh, shows stiffening as we increase the doping whereas the other mode, Glow, shows softening for low electron doping and then hardening at higher doping. The mode splitting is explained in terms of mixing of zone-center in-plane optical phonons rep¬resenting in-phase and out-of-phase inter-layer atomic motions. The experimental results are combined with the theoretical predictions made using density functional theory by Gava et al.[PRB 80, 155422 (2009)]. Similar G band splitting is observed in the Raman spectra from multilayer graphene showing influence of stacking on the symmetry properties. Chapter5: Anomalous dispersion of D and 2D modes in graphene and doping dependence of 2D ′and 2D+G bands Chapter 5 consists of two parts: Part A titled “Doping dependent anomalous dispersion of D and 2D modes in graphene” describes the tunability of electron-phonon coupling (EPC) associated with the highest optical phonon branch (K-A) around the zone corner K using a top gated single layer graphene field effect transistor. Raman D and 2D modes originate from this branch and are dispersive with laser excitation energy. Since the EPC is proportional to the slope of the phonon branch, doping dependence of the D and 2D modes is carried out for different laser energies. The dispersion of the D mode decreases for both the electron and the hole doping, in agreement with the recent theory of Attaccalite et. al [Nano Letters, 10, 1172 (2010)]. In order to observe D-band in the SLG samples, low energy argon ion bombardment was carried out. The D peak positions for variable carrier concentration using top-gated FET geometry are determined for three laser energies, 1.96 eV, 2.41 eV and 2.54 eV. However, the dispersion of the 2D band as a function of doping shows an opposite trend. This most curious result is quantitatively explained us¬ing a fifth order process rather than the usual fourth order double resonant process usually considered for both the D and 2D modes. Part B titled “Raman spectral features of second order 2D’ and 2D+G modes in doped graphene transistor” deals with doping dependence of 2D’ and 2D+G bands in single layer graphene transistor. The phonon frequency blue shifts for the hole doping and whereas it red shifts for electron doping, similar to the behaviour of the 2D band. The linewidth of the 2D+G combination mode too follows the 2D trend increasing with doping while that of 2D’ mode remains invariant. Chapter6: New Raman modes in graphene layers using 2eV light Unique resonant Raman modes are identified at 1530 cm−1 and 1445 cm−1 in single, bi, tri and few layers graphene samples using 1.96 eV (633 nm) laser excitation energy (EL). These modes are absent in Raman spectra using 2.41 eV excitation energy. In addition, the defect-induced D band which is observed only from the edges of a pristine graphene sample, is observed from the entire sample region using E L = 1.96 eV. Raman images with peak frequencies centered at 1530 cm−1, 1445 cm−1 and D band are recorded to show their correlations. With 1.96 eV, we also observe a very clear splitting of the D mode with a separation of ∼32 cm−1, recently predicted in the context of armchair graphene nanoribbons due to trigonal warping effect for phonon dispersion. All these findings suggest a resonance condition at ∼2eVdue to homo-lumo gap of a defect in graphene energy band structure. Chapter7: Single and few layer MoS2: Resonant Raman and Phonon Renormalization Chapter 7 is divided into two parts. In Part A “Layer dependent Resonant Raman scattering of a few layer MoS2”, we discuss resonant Raman scattering from single, bi, four and seven layers MoS2. As bulk crystal of MoS2is thinned down to a few atomic layers, the indirect gap widens turning into a direct gap semiconductor with a band gap of 1.96 eV in its monolayer form. We perform Raman study from MoS 2 layers employing 1.96 eV laser excitation in order to achieve resonance condition. The prominent Raman modes for MoS 2 include first order E12g mode at ∼383 cm−1 and the A1gmode at ∼408 cm−1 which are observed under both non resonant and resonant conditions. A1gphonon involves the sulphur atomic vibration in opposite direction along the c axis (perpendicular to the basal plane) whereas for E12g mode, displacement of Mo and sulphur atoms are in the basal plane. With decreasing layer thickness, these two modes shifts in opposite direction, the E12g mode shows a blue shift of ∼2cm−1 while the A1gis red shifted by ∼4cm−1 . Under resonant condi¬tion, apart from E12g and A1gmodes, several new Raman spectral features, which are completely absent in bulk, are observed in single, bi and few layer spectra pointing out the importance of Raman characterization. New Raman mode attributed to the longitudinal acoustic mode belonging to the phonon branch at M along the Γ-M direction of the Brillouin zone is seen at ∼230 cm−1 for bi, four and seven layers. The most intense region of the spectrum around 460 cm−1 is characterized by layer dependent frequencies and spectral intensities with the band near 460 cm−1 becoming asymmetric as the sample thickness is increased. In the high frequency region between 510-630 cm−1, new bands are seen for bi, four and seven layers. In Part B titled “Symmetry-dependent phonon renormalization in monolayer MoS2transistor”, we show that in monolayer MoS2the two Raman-active phonons, A1g and E21 g, behave very differently as a function of doping induced by the top gate voltage in FET geometry. The FET achieves an on-off ratio of ∼ 105 for electron doping. We show that while E12g phonon is essentially unaffected, the A1gphonon is strongly influenced by the level of doping. We quantitatively understand our experimental results through the use of first-principles calculations to determine frequencies and electron-phonon coupling for both the phonons as a function of carrier concentration. We present symmetry arguments to explain why only A1g mode is renormalized significantly by doping. Our results bring out a quantitative under¬standing of electron-phonon interaction in single layer MoS2.
65

Une nouvelle approche dans l’évaluation de l’effet de support des catalyseurs d’hydrodésulfuration / A new approach in the evaluation of support effect with hydrodesulfurization catalysts

Ninh, Thi Kim Thoa 02 February 2011 (has links)
L’objectif de ce travail est d’évaluer l’effet de la nature du support et l’effet de promotion sur les propriétés catalytiques des catalyseurs d’HDS à base de Mo. Pour obtenir les systèmes catalytiques adéquats, nous avons appliqué la préparation par « voie acac », qui consiste à faire réagir le promoteur sous forme de complexe acétylacétonate (de Co, Ni ou Fe) sur le sulfure de molybdène supporté (sur γ-Al2O3, SiO2, TiO2 ou ZrO2). Les différents solides obtenus ont été caractérisés par MET, IR(CO) et SPX notamment pour tenter de quantifier les phases actives, puis ils ont été testés dans les réactions d’HDS du thiophène et du 4,6-DMDBT. L’activité catalytique a pu être corrélée aux résultats de caractérisation par une nouvelle approche qui consiste à calculer l’activité apparente par site NiMoS ou CoMoS. Cette approche montre que la qualité des sites actifs CoMoS et NiMoS est la meilleure sur SiO2 et comparable sur les supports γ-Al2O3, TiO2 et ZrO2. Par la même méthode nous avons préparé de nouveaux catalyseurs de type CoNiMoS supportés, en ajoutant les promoteurs Co et Ni soit simultanément soit successivement au MoS2. Cette étude permet un fort apport expérimental aux études théoriques qui avancent l’hypothèse de différentes affinités du Co et du Ni pour les deux type de bords S-edge et Mo-edge sur γ-Al2O3 et TiO2. / The main objective of this work was to evaluate the support and the promoting effect on the catalytic properties of HDS catalysts. In order to obtain appropriate catalytic systems, we applied the “acac method” which consists to add the promoter as an acetylacetonate complex (of Co, Ni or Fe) onto the supported molybdenum sulfide (on γ-Al2O3, SiO2, TiO2 and ZrO2). The various solids obtained were characterized by TEM, IR(CO) and XPS in particular to quantify the active phases, and then they have been tested in the HDS reactions of thiophene and 4,6-DMDBT. The catalytic activity has been correlated to the characterization datas by a new approach which consists in calculating the apparent catalytic activity by NiMoS or CoMoS site. This approach showed that the quality of the active sites is the best on SiO2 and comparable on γ-Al2O3, TiO2 and ZrO2. Moreover, this “acac method” allowed us to study supported CoNiMoS catalysts synthesized by adding Co and Ni either simultaneously or successively to MoS2. This study represents an important experimental contribution which allow to discuss the hypothesis developped in theoretical studies about the different affinities of Co and Ni for the S-edge and Mo-edge on γ-Al2O3 and TiO2.
66

Influence de la morphologie 2D de la phase active sur la sélectivité des catalyseurs sulfures en HDS des essences / Influence of 2D morphology of active phase on selectivity of sulfide catalysts in HDS of gasoline

Baubet, Bertrand 24 April 2013 (has links)
Ce travail de thèse étudie l’influence de la morphologie des feuillets de sulfure de molybdène sur la sélectivité des catalyseurs d’hydrotraitement. Les feuillets de phase active présentent en effet deux types de bords appelés « M-edge » et « S-edge » susceptibles de conduire à des réactivités différentes. Le changement de la morphologie 2D des feuillets pourrait modifier les proportions de bords M et S exposés et ainsi les propriétés catalytiques des catalyseurs sulfures. Pour cela, des catalyseurs non promus (Mo) et promus (CoMo), supportés sur alumine ont été préparés par imprégnation à sec puis sulfurés dans des conditions variées (gaz et température). Des tests catalytiques en hydrodésulfuration (HDS) sélective des essences de FCC (sélectivité HDS/HYD) ont ensuite permis d’évaluer l’impact de la morphologie en s’appuyant sur des modèles géométriques construits à partir de calculs DFT et de caractérisations expérimentales (TEM, IR (CO), TPR, XPS). Les résultats obtenus pour les catalyseurs de type Mo semblent ainsi confirmer l’influence de la morphologie 2D sur la sélectivité HDS/HYD, le bord M paraissant être le plus sélectif pour les catalyseurs non promus. Ils mettent également en évidence l’importance de la réductibilité plus ou moins marquée des bords sur les propriétés catalytiques, notamment sur le bord M. Le changement des conditions de sulfuration semble donc affecter la morphologie des particules mais également les propriétés chimiques propres à chaque bord. En ce qui concerne les catalyseurs promus, la variation des conditions de sulfuration semble agir essentiellement au niveau de la répartition du promoteur entre les bords M et S. Cependant, les interactions avec le support paraissent constituer un frein aux effets de promotion. Dans ce contexte, les sulfurations à haute température sous H2S pur permettent d’obtenir des gains significatifs en activité et sélectivité. Ces résultats semblent dus à de faibles interactions avec le support et une décoration privilégiée du bord S qui pourrait favoriser la réaction d’HDS et limiter la réaction d’HYD. Au final, les interprétations effectuées en terme de morphologie 2D tendent à confirmer que ce paramètre peut constituer un axe de développement intéressant pour les catalyseurs d’hydrotraitement. L'optimisation des conditions de sulfuration permettraient bien de faire varier la morphologie et le taux de décoration du promoteur des catalyseurs, améliorant ainsi significativement l'activité et la sélectivité / This thesis examines the influence of the morphology of particles of molybdenum sulfide on selectivity of hydrotreating catalysts. Nanoparticles of active phase present two types of edges called “M-edge” and “S-edge” which may lead to different reactivities. The change in morphology of the 2D sheets could change the proportions of M and S edges exposed and thus the catalytic properties of sulfide catalysts. For this, non-promoted (Mo) and promoted (CoMo) catalysts, supported on alumina were prepared by dry impregnation and sulfide in various conditions (gas and temperature). Catalytic tests in selective hydrodesulfurization (HDS) of FCC gasoline (selectivity HDS /HYD) were then used to assess the impact of the morphology based on geometrical models which were constructed with DFT calculations and experimental characterizations (TEM, IR (CO), TPR, XPS). The results for Mo catalysts seem to confirm the influence of the 2D morphology selectivity HDS / HYD, M-edge appearing to be the most selective for non-promoted catalysts. They also highlight the importance of the reducibility more or less pronounced of the edges on the catalytic properties, especially on the M-edge. The different conditions of sulfidation seem to affect the morphology of the particles but also the specific chemical properties at each edge. Regarding to the promoted catalysts, the different conditions of sulfidation appear to act primarily at the distribution of the promoter between the M and S edges. However, interactions with the carrier appear to constitute an obstacle to promoting effects. In this context, sulfidations at high temperature in pure H2S lead to obtain significant gains in activity and selectivity. These results appear to be due to weak interactions with the carrier and to the presence of the promoter on the S-edge which could promote the HDS reaction and limit the HYD reaction. Finally, the interpretations made in terms of 2D morphology tend to confirm that this parameter can be an interesting line of development for hydrotreating catalysts. Optimization of the sulfidation conditions could effectively allow to vary the morphology and the rate of decoration of promoted catalysts which significantly improve the activity and selectivity
67

Structure électronique des interfaces Co(OOOl)/MoS2 et Ni(lll)/WSe2 pour l'injection de spin dans un semi-conducteur bidimensionnel / Electronic structure and magnetic properties of the Co(OOOl)/MoS2 and Ni(lll)/WSe2 interfaces for electrical spin injection in two-dimensional semiconductors

Garandel, Thomas 13 November 2017 (has links)
Les monofeuillets de dichalcogénures de métaux de transition (TMDC) tels que MoS2 ou WSe2 sont des semiconducteurs bidimensionnels à gap direct, dont les allées K et K' sont inéquivalentes dans la première zone de Brillouin : la levée de dégénérescence induite par le couplage spin-orbite entre les bandes de spin up et dawn est inversée entre les vallées K et K'. Des contacts métalliques magnétiques devraient permettre une injection de spin efficace depuis une électrode magnétique vers un TMDC. Les indices de vallée (Kou K') et de spin (up ou dawn) étant fortement couplés, cela permettrait de sélectionner électriquement l'une ou l'autre des vallées et de réaliser des dispositifs à base de TMDC pour la spintronique (exploitant le spin des électrons) ou pour la valléetronique (exploitant l'indice de vallée des électrons). Dans cette thèse, nous explorons les propriétés physiques des interfaces Co(OOOl)/MoS2 et Ni(lll)/WSe2 par des méthodes de calcul ab-initia basées sur la théorie de la fonctionnelle de la densité. Nous démontrons la nature covalente des liaisons à l'interface entre les monofeuillets de TMDC et les surfaces magnétiques Co(OOOl) et Ni(lll). Nous décrivons la structure atomique de ces interfaces, ainsi que la modification des moments magnétiques induite par des transferts de charge électrique entre atomes. Les liaisons covalentes aux interfaces confèrent aux monofeuillets de MoS2 et de WSe2 un caractère métallique. Nos calculs donnent finalement accès à la polarisation en spin au niveau de Fermi du TMDC connecté à ces électrodes magnétiques, ainsi qu'à la hauteur de la barrière Schottky (différence entre le niveau de Fermi dans la phase métallique du TMDC situé sous le contact magnétique et le bas de la bande de conduction du TMDC pur dans le canal). / Transition metal dichalcogenide (TMDC) single layers like MoS2 or WSe2 are direct band gap two-dimensional semiconductors, with non-equivalent K and K' valleys in the first Brillouin zone. The degeneracy liftingbetween spin-up and spin-down energy bands induced by spin-orbit coupling is inverted between the K and K' valleys . Magnetic metallic contacts should allow spin-injection from a magnetic electrode to a TMDC single layer. The valley (K or K') and spin (up or down) indexes being strongly coupled, this should also allow to electrically select one of the valleys in TMDC-based spintronic or valleytronic deviees. In this Thesis, we have studied the physical properties of the Co(OOOl)/MoS2 and Ni(lll)/WSe2 interfaces with first-principles methods based on the density functional theory. We demonstrated that the TMDC single layers are covalently bound to the Co(OOOl) and Ni(lll) surfaces. We describe the atomic structure of these interfaces and the modification of the magnetic moments induced by charge transfer between interface atomes. The MoS2 and WSe2 single layers become metallic when they are covalently bound to the magnetic metals. We also calculated the spin-polarization at the Fermi level of the TMDC layers connected to th Co and Ni electrodes and the Schottky barrier height (difference between the Fermi level in the metallic phase of the TMDC below the magnetic contact and the bottom of the conduction band in a pure TMDC channel).
68

Hydrodésoxygénation de composés phénoliques modèles. Évaluation de phases actives : sulfures, oxyde, métallique et phosphure / Hydrodeoxygenation of model phenolic compounds. Evaluation of active phases : sulfide, oxide, metallic and phosphide

Gonçalves, Vinicius Ottonio Oliveira 24 May 2017 (has links)
Dans une bioraffinerie, la biomasse peut être transformée par différents procédés (thermiques, chimiques et biochimiques) en carburants et en produits chimiques à haute valeur ajoutée. Plus spécifiquement, le procédé catalytique d'hydrodésoxygénation (HDO) devrait permettre de valoriser à la fois les bio-huiles obtenues par pyrolyse en biocarburants, ainsi que les composés aromatiques oxygénés issus de la dépolymérisation de la lignine en aromatiques simples.Afin de modéliser la désoxygénation de ces fractions, les isomères du crésol (ortho-, méta- et para-crésol) ont été choisis comme molécules oxygénés modèles. Les réactions ont été effectuées sous haute pression (2-4 MPa) et à des températures comprises entre 250 et 340° C. Plusieurs phases actives à base de molybdène (sulfures et oxyde) et de nickel (métallique et phosphure) ont été étudiées. L'influence du support des phases oxydes de molybdène (SiO2, SBA-15, Al2O3) et des phases à base de nickel (SiO2 et ZrO2) a également été examinée.Dans ces conditions expérimentales, les composés phénoliques sont désoxygénés selon deux voies de transformations parallèles. La voie de désoxygénation directe (DDO) conduit uniquement au toluène par hydrogénolyse de la liaison C-O. La voie hydrogénante (HYD), quant à elle, conduit à un mélange de produits obtenus après hydrogénation du cycle aromatique, impliquant des réactions d'hydrogénolyse, d'hydrogénation, de déshydratation et d'isomérisation. L'activité des catalyseurs ainsi que la contribution de chaque voie de désoxygénation sont dépendantes de la phase active étudiée, du support choisi ainsi que des conditions opératoires utilisées. / In a biorefinery, biomass can be converted by different process (thermal, chemical and biochemical) into fuels and valued-added chemicals. More specifically, the catalytic hydrodeoxygenation (HDO) process could upgrade both bio-oils obtained from pyrolysis into biofuels and oxygenated aromatic compounds from the depolymerization of lignin into aromatics.In order to model the deoxygenation of these fractions, the cresol isomers (ortho, meta and para-cresol) were chosen as model oxygenated molecules. The reactions were carried out under high pressure (2-4 MPa) and temperatures between 250 and 340° C. Several active phases based on molybdenum (sulphides and oxide) and nickel (metal and phosphide) have been studied. The influence of the support of the molybdenum oxide phases (SiO2, SBA-15, Al2O3) and of the nickel-based phases (SiO2 and ZrO2) was also examined.Under these experimental conditions, phenolic compounds are deoxygenated by two parallel pathways. The direct deoxygenation (DDO) route only leads to toluene by hydrogenolysis of the C-O bond. The hydrogenating route (HYD), on the other hand, leads to a mixture of products obtained through the hydrogenation of cresol aromatic ring, involving hydrogenolysis, hydrogenation, dehydration and isomerization reactions. The activity of the catalysts as well as the contribution of each deoxygenation pathway are dependent on the active phase studied, on the support chosen as well as on the operating conditions used.
69

Luminiscence polovodičů studovaná rastrovací optickou mikroskopií v blízkém poli / Luminescence of semiconductors studied by scanning near-field optical microscopy

Těšík, Jan January 2017 (has links)
This work is focused on the study of luminescence of atomic thin layers of transition metal chalkogenides (eg. MoS2). In the experimental part, the work deals with the preparation of atomic thin layers of semiconducting chalcogenides and the subsequent manufacturing of plasmonic interference structures around these layers. The illumination of the interference structure will create a standing plasmonic wave that will excite the photoluminescence of the semiconductor. Photoluminescence was studied both by far-field spectroscopy and near-field optical microscopy.
70

Hollow MoSx nanomaterials for aqueous energy storage applications

Quan, Ting 31 May 2021 (has links)
Die vorliegende Arbeit konzentriert sich auf die Synthese von neuartigen hohlen MoSx-Nanomaterialien mit kontrollierbarer Größe und Form durch die kolloidale Template Methode. Ihre möglichen Anwendungen in wässrigen Energiespeichersystemen, einschließlich Superkondensatoren und Li-Ionen-Batterien (LIBs), wurden untersucht. Im ersten Teil wurde eine neue Nanostruktur aus hohlen Kohlenstoff-MoS2-Kohlenstoff-nanoplättchen erfolgreich durch eine L-Cystein unterstützte hydrothermale Methode unter Verwendung von Gibbsit als Templat und Polydopamin (PDA) als Kohlenstoffvorläufer synthetisiert. Nach dem Kalzinieren und Ätzen des Gibbsit Templates wurden gleichförmige Hohlplättchen erhalten, die aus einer sandwichartigen Anordnung von teilweise graphitischem Kohlenstoff und zweidimensional geschichteten MoS2 Flocken bestehen. Die Plättchen haben eine ausgezeichnete Dispergierbarkeit und Stabilität in Wasser sowie eine gute elektrische Leitfähigkeit aufgrund des durch die Kalzinierung von Polydopaminbeschichtungen erzeugten Kohlenstoffs gezeigt. Das Material wird dann in einem symmetrischen Superkondensator mit 1 M Li2SO4 als Elektrolyt aufgebracht, der eine spezifische Kapazität von 248 F/g (0.12 F/cm2) bei einer konstanten Stromdichte von 0.1 A/g und eine ausgezeichnete elektrochemische Stabilität über 3000 Zyklen aufweist, was darauf hindeutet, dass hohle Kohlenstoff-MoS2-Kohlenstoffnanoplättchen vielversprechende Materialien als Kandidaten für Superkondensatoren sind. Im zweiten Teil wurde 21 molare LiTFSI, das sogenannte "Wasser-in-Salz" (WIS) Elektrolyt, in Superkondensatoren mit hohlen Kohlenstoffnanoplättchen als Elektrodenmaterial untersucht. Im Vergleich zu dem im ersten Teil verwendeten 1 molaren Li2SO4-Elektrolyten wurden bei dem vorliegenden WIS Elektrolyt signifikante Verbesserungen in einem breiteren und stabilen Potentialfenster festgestellt, das durch die geringere Leitfähigkeit mit dem Gegenstück leicht beeinflusst wird. Die elektrochemische Impedanzspektroskopie (EIS) wurde ausgiebig eingesetzt, um einen Einblick in die Reaktionsmechanismen der WIS-Superkondensatoren zu erhalten. Zusätzlich wurde auch der Einfluss der Temperatur auf die elektrochemische Leistung im Temperaturbereich zwischen 15 und 55 °C untersucht, was eine hervorragende spezifische Kapazität von 128 F/g bei dem optimierten Zustand von 55 °C ergab. Die EIS-Messungen deckten die Abnahme der angepassten Widerstände mit der Temperaturerhöhung und umgekehrt auf und beleuchteten direkt die Beziehung zwischen elektrochemischer Leistung und Arbeitstemperatur von Superkondensatoren für zuverlässige praktische Anwendungen. Im dritten Teil wurde MoS3, ein amorphes, kettenförmig strukturiertes Übergangsmetall Trichalcogenid, als vielversprechende Anode in "Wasser-in-Salz" Li-Ionen-Batterien (WIS-LIBs) nachgewiesen. Die in diesem Teil verwendeten hohlen MoS3-Nanosphären wurden mittels einer skalierbaren Säurefällungsmethode bei Raumtemperatur synthetisiert, wobei sphärische Polyelektrolytbürsten (SPB) als Schablonen verwendet wurden. Beim Einsatz in WIS-LIBs mit LiMn2O4 als Kathodenmaterial erreicht das präparierte MoS3 eine hohe spezifische Kapazität von 127 mAh/g bei einer Stromdichte von 0.1 A/g und eine gute Stabilität über 1000 Zyklen sowohl in Knopf- als auch in Pouch-Zellen. Der Arbeitsmechanismus von MoS3 in WIS-LIBs wurde auch durch Ex-situ-Röntgenbeugungsmessungen (XRD) untersucht. Während des Betriebs wird MoS3 während der anfänglichen Li-Ionen-Aufnahme irreversibel in Li2MoO4 umgewandelt und dann allmählich in eine stabilere und reversible LixMoOy-Phase (2≤y≤4)) entlang der Zyklen umgewandelt. Amorphes Li-defizientes Lix-mMoOy/MoOz wird bei der Delithiierung gebildet. Die Ergebnisse der vorliegenden Studie zeigen einfache Ansätze zur Synthese hohler MoSx-Nanomaterialien mit kontrollierbarer Morphologie unter Verwendung einer Template-basierten Methode, die auf die vielversprechende Leistung von MoSx für wässrige Energiespeicheranwendungen zurückzuführen sind. Die elektrochemischen Untersuchungen von hohlen MoSx-Nanomaterialien in wässrigen Elektrolyten geben Einblick in die Reaktionsmechanismen von wässrigen Energiespeichersystemen und treiben die Entwicklung von Metallsulfiden für wässrige Energiespeicheranwendungen voran. / The present thesis focuses on the synthesis of novel hollow MoSx nanomaterials with controllable size and shape through the colloidal template method. Their possible applications in aqueous energy storage systems, including supercapacitors and Li-ion batteries (LIBs), have been studied. In the first part, hollow carbon-MoS2-carbon nanoplates have been successfully synthesized through an L-cysteine-assisted hydrothermal method by using gibbsite as the template and polydopamine (PDA) as the carbon precursor. After calcination and etching of the gibbsite template, uniform hollow platelets, which are made of a sandwich-like assembly of partial graphitic carbon and two-dimensional layered MoS2 flakes, have been obtained. The platelets have shown excellent dispersibility and stability in water, and good electrical conductivity due to carbon coating generated by the calcination of polydopamine. The material is then applied in a symmetric supercapacitor using 1 M Li2SO4 as the electrolyte, which exhibits a specific capacitance of 248 F/g (0.12 F/cm2) at a constant current density of 0.1 A/g and an excellent electrochemical stability over 3000 cycles, suggesting that hollow carbon-MoS2-carbon nanoplates are promising candidate materials for supercapacitors. In the second part, 21 m LiTFSI, so-called “water-in-salt” (WIS) electrolyte, has been studied in supercapacitors with hollow carbon nanoplates as electrode materials. In comparison with 1 M Li2SO4 electrolyte used in the first part, significant improvements on a broader and stable potential window have been revealed in the present WISE, which is slightly influenced by the lower conductivity with the counterpart. The electrochemical impedance spectroscopy (EIS) has been extensively employed to provide an insight look on the formation of solid electrolyte interphase in the WIS-supercapacitors. Additionally, the effect of temperature on the electrochemical performance has also been investigated in the temperature range between 15 and 55 °C, yielding eminent specific capacitance of 128 F/g at the optimized condition of 55 °C. The EIS measurements disclosed the decrease of fitted resistances with the increase of temperature and vise versa, directly illuminating the relationship between electrochemical output and working temperature of supercapacitors for reliable practical applications. In the third part, MoS3, an amorphous chain-like structured transitional metal trichalcogenide, has been demonstrated as a promising anode in the “water-in-salt” Li-ion batteries (WIS-LIBs). Hollow MoS3 nanospheres used in this part have been synthesized via a scalable room-temperature acid precipitation method using spherical polyelectrolyte brushes (SPB) as the template. When applied in WIS-LIBs with LiMn2O4 as the cathode material, the prepared MoS3 achieves a high specific capacity of 127 mAh/g at the current density of 0.1 A/g and good stability over 1000 cycles in both coin cells and pouch cells. The working mechanism of MoS3 in WIS-LIBs has also been studied by ex-situ X-ray diffraction (XRD) measurements. During operation, MoS3 undergoes irreversible conversion to Li2MoO4 during the initial Li ion uptake, and is then gradually converted to a more stable and reversible LixMoOy (2≤y≤4)) phase along cycling. Amorphous Li-deficient Lix-mMoOy/MoOz is formed upon delithiation. The results in the present thesis demonstrate facile approaches for synthesizing hollow MoSx nanomaterials with controllable morphologies using a template-based method, which attribute to the promising performance of MoSx for aqueous energy storage applications. The electrochemical studies of hollow MoSx nanomaterials in aqueous electrolytes provide insight into the reaction mechanisms of aqueous energy storage systems and push forward the development of metal sulfides for aqueous energy storage applications.

Page generated in 0.0754 seconds