• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • 1
  • Tagged with
  • 17
  • 13
  • 8
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Σηματοδοτικά πολυπρωτεϊνικά σύμπλοκα ρυθμίζουν την μεταγωγή μηνυμάτων κατά την κυτταροφαγία των αιμοκυττάρων της μύγας της Μεσογείου. Ο ρυθμιστικός ρόλος της FAK και η συμμετοχή των ιντεγκρινών, των MAPCs και άλλων σηματοδοτικών μορίων / Multiprotein signal transduction complexes regulate the phagocytosis of E.coli in Medfly hemocytes suspension. The role of FAK and the participation of integrins, PI3K, ERK, ELK-1 and other cytoskeletal and regulatory proteins

Φερτάκης, Βασίλειος 29 June 2007 (has links)
Η κινάση εστιακής προσκόλλησης (FAK) είναι μια πρωτεϊνική κινάση τυροσίνης (nRPTK) με κυτταροπλασματική κατανομή στην περιφέρεια του κυττάρου. Εντοπίζεται κυρίως σε περιοχές του κυττάρου γνωστές ως εστίες προσκόλλησης, με τις οποίες το κύτταρο προσκολλάται στην εξωκυτταρική ύλη. Συμμετέχει σε σημαντικές κυτταρικές διεργασίες όπως στην κυτταρική κίνηση και μετανάστευση, στον κυτταρικό πολλαπλασιασμό, στην κυτταρική επιβίωση και απόπτωση. Η FAK ενεργοποιείται από πολλά ερεθίσματα που μπορούν να επάγουν φωσφορυλίωση της σε αμινοξέα τυροσίνης (Υ397, Υ576, Υ577, Υ861, Υ925) όπως για παράδειγμα αυξητικοί παράγοντες, νευροπεπτίδια, παράγοντες που ενεργοποιούν υποδοχείς συνδεδεμένους με G-πρωτεΐνες και μηχανικά ερεθίσματα αλλά κυρίως μετά από τη διέγερση των ιντεγκρινικών υποδοχέων των κυττάρων. Ο ρόλος της FAK στην μεταγωγή μηνυμάτων, στο πλαίσιο της κυτταρικής επικοινωνίας είναι διττός: δρα ως κινάση φωσφορυλιώνοντας τα υποστρώματα της αλλά και ως πρωτεΐνη συνδετήρας (adaptor protein) δημιουργώντας πολυπρωτεϊνικά σηματοδοτικά σύμπλοκα. Δεδομένης, λοιπόν, της ιδιαίτερης φύσης του μορίου, η FAK θα μπορούσε να χαρακτηριστεί ως ενεργοποιούμενη πρωτεΐνη ικρίωμα (activable scaffold protein). Στην παρούσα εργασία μελετήσαμε την ενεργοποίηση της FAK κατά την κυτταροφαγία του βακτηρίου E. coli. Έτσι, χρησιμοποιήθηκαν φαρμακολογικοί αναστολείς για να ανιχνευθεί η συμμετοχή τελεστών της μεταγωγής σημάτων στην ενεργοποίηση της FAK. Επιπλέον, διερευνήθηκε με ανοσοκατακρημνίσεις η συμπλοκοποίηση της FAK με πρωτεΐνες-κλειδιά σημαντικών κυτταρικών μονοπατιών σε κύτταρα που βρίσκονταν σε εναιώρημα. / Cells respond to extracellular stimuli with the recruitment of multiple cytoskeletal and regulatory proteins, which form specialized complexes. These complexes are usually involved in the promotion of integrin-mediated signals to the nucleus. In this study, we investigated whether any signal transduction complexes are constitutively present, in Medfly hemocyte suspension, in the absence of external stimuli. Hemocytes from the 3rd instar larvae were isolated and protein crude extracts were prepared. In hemocyte lysates, the presence of FAK (focal adhesion kinase), Integrin β1 and the adaptor protein Paxillin was identified with immunoprecipitation and immunoblot analysis. The presence of these proteins was also confirmed with immunofluorescence microscopy, in attached hemocytes on glass slides. Co-immunoprecipitation with FAK and immunoblot analysis with anti-Paxillin, anti-tubulin, anti-actin and anti-ERK revealed the complex formation of FAK with Paxillin, Tubulin, Actin and ERK in hemocyte suspensions. The profiles of this complex and of each one of these proteins, separately, varies, during development and phagocytosis of E.coli. Consequently, it was demonstrated that FAK forms complex with cytoskeletal proteins like paxillin, tubulin, actin and signalling proteins such as ERK, in Medfly hemocytes, without the influence of any extracellular stimuli.
2

Analysis of Mre11 complex roles : in response to physiological sources of DNA damage in the mouse /

Adelman, Carrie A. January 2009 (has links)
Thesis (Ph. D.)--Cornell University, January, 2009. / Vita. Includes bibliographical references (leaves 167-195).
3

The role of transforming growth factor beta-1 in bone remodeling

Tang, Yi, January 2009 (has links) (PDF)
Thesis (Ph.D.)--University of Alabama at Birmingham, 2009. / Title from first page of PDF file (viewed on June 11, 2009). Includes bibliographical references.
4

Métabolisme de l'ARN chez les archées : identification et caractérisation du complexe ribonucléase β-CASP/hélicase Ski2-like de Pyrococcus abyssi / RNA metabolism in archea : identification and characterization of beta-casp ribonuclease/ski2-like helicase complex in pyrococcus abyssi

Phung, Duy Khanh 27 September 2017 (has links)
Les ribonucléases et les hélicases à ARN sont des acteurs clé du métabolisme des ARN et jouent donc des rôles cruciaux pour la régulation de l'expression des gènes. Peu de données sont connues concernant ce métabolisme chez les Archées, le troisième domaine du vivant. L'équipe dans laquelle j'ai effectué mes travaux de thèse s'intéresse au métabolisme de l'ARN chez les archées et plus particulièrement aux ribonucléases ß-CASP. Dans ce contexte, nous focalisons nos études sur la compréhension physiologique que pourrait jouer les ribonucléases ß-CASP aCPSF1 et aRNase J, orthologue respectivement du facteur de terminaison de la transcription eucaryotes CPSF-73 et RNase J bactérienne. Par analogie avec CPSF-73 et RNase J, qui font partie de complexes multi-protéiques, des indices sur les fonctions des homologues archéens de ces ribonucléases pourraient provenir de l'identification des complexes autour de aCPSF1 et aRNase J. Utilisant des extraits de Pyrococcus abyssi et les protéines recombinantes aCPSF1 et aRNase J comme appâts, nous avons identifié que aRNase J fait partie d'un réseau d'interaction incluant une hélicase de la famille des Ski2-like (ASH-Ski2). En parallèle, des fractionnements d'extrait de P. abyssi sur gradient de saccharose par ultracentrifugation indiquent que aRNase J et ASH-Ski2 sont présentes toutes deux dans les fractions de haut poids moléculaires avec les sous-unités du ribosome et ceux de l'exosome. Nous avons aussi démontré une interaction stable entre aRNase J et ASH-Ski2 ainsi que des motifs impliquées dans cette interaction par des expériences de co- purification par chromatographie d'affinité. De plus, les caractérisations biochimiques de ASH-Ski2 indiquent que cette protéine possède une activité d'hydrolyse de l'ATP dépendant de la présence d'acides nucléiques. ASH-Ski2 possède de plus la capacité d'hybridation et de déroulement de deux brins d'acides nucléiques en présence d'ATP. A notre connaissance, nos résultats sont les premiers à indiquer un complexe contenant une ribonucléase et d'une hélicase à ARN Ski2-like chez les archées. De manière intriguent, aRNase J est orthologue de la RNase J bactérienne et ASH-Ski2 des hélicases Ski2-like des eucaryotes. Cela démontre que les Archées pourraient posséder un système composite impliqué dans le métabolisme des ARN partageant des caractéristiques bactériens et eucaryotes. Ces résultats mettent en lumière l'avantage de l'étude des Archées pour la compréhension des mécanismes moléculaires et évolutives des processus fondamentaux des trois domaines du vivant. / Ribonucleases and RNA helicases are the main actors of RNA processing and have a critical role in gene expression regulation. Little is known about this process in Archaea. Our group focuses in RNA metabolism in Archaea involving ß-CASP ribonucleases. Recently, we published phylogenomic and experimental work demonstrating that archaeal ß-CASP proteins, aCFSF1 and aRNase J, are highly conserved ribonucleases in Archaea. Archaeal aCPSF1, an ortholog of the eukaryal transcription termination factor CPSF73, is ubiquitous in Archaea suggesting an essential conserved function. Archaeal aRNase J, an ortholog of the bacterial ribonuclease RNase J, is conserved through a major phylum of the Archaea, the Euryarchaeota. These findings suggest that the role of these enzymes in RNA processing can be reminiscent of ancient functions that had arisen early in evolution. We now want to focus on understanding the physiological role of aCPSF1 and aRNase J with the hyperthermophilic euryarchaeal Pyrococcus abyssi as model. By analogy to eukaryal CPSF73 and bacterial RNase J, which are part of multiprotein complexes, clues to the function of the archaeal ß-CASP homologs might come from the identification of archaeal multiprotein complex(es) containing aCPSF1 and aRNase J orthologs. Using P. abyssi cell extracts and recombinant aCPSF1 or aRNase J as bait, we have found that aRNase J is a part of protein interaction networks that include Ski2-like RNA helicase (ASH-Ski2). In parallel, fractionation of P. abyssi whole cell extracts in sucrose gradient by ultracentrifugation shows that aRNase J and ASH-Ski2 are present in high sedimentation fractions with ribosomal and exosome sub-units. We also demonstrate a direct interaction of aRNase J with ASH-Ski2 by co-purification affinity chromatography experiments and identify motifs that potentially involve in this interaction. Biochemical characterization of ASH-Ski2 demonstrates a nucleic dependant ATPase activity. ASH-Ski2 also possesses annealing and unwinding activities in presence of ATP. To our knowledge, our results are the first experimental indications of interacting of a complex containing ribonuclease and RNA helicase-like proteins in Archaea. Remarkably, aRNase J is an orthologue of the bacterial RNase J and ASH-Ski2 is an orthologue of the eukaryotic Ski2-like family proteins. This shows that Archaea might possess a composite RNA processing system sharing both eukaryal and bacterial features. This highlights the advantage of an archaeal model to gain further mechanistic and evolutionary information of fundamental processes across the three domains of life.
5

Levels of YCG1 Limit Condensin Function during the Cell Cycle: A Dissertation

Doughty, Tyler W. 10 August 2016 (has links)
For nearly five decades, the simple eukaryote Saccharomyces cerevisiae has been used as a model for understanding the eukaryotic cell cycle. One vein of this research has focused on understanding how chromosome structure is regulated in relation to the cell cycle. This work characterizes a new mechanism that modulates the chromatin organizing condensin complex, in hopes of furthering the understanding of chromosome structure regulation in eukaryotes. During mitosis, chromosomes are condensed to facilitate their segregation through a process mediated by the condensin complex. Upon interphase onset, condensation is reversed, allowing for efficient transcription and replication of chromosomes. This work demonstrates that Ycg1, the Cap-G subunit of budding yeast condensin, is cell-cycle regulated with levels peaking in mitosis and decreasing as cells enter G1 phase. The cyclical expression of Ycg1 is unique amongst condensin subunits, and is established by a combination of cell cycle-regulated transcription and constitutive proteasomal degradation. Interestingly, when cyclical expression of Ycg1 is disrupted, condensin formation and chromosome association increases, and cells exhibit a delay in cell-cycle entry. These results demonstrate that Ycg1 levels limit condensin function, and suggest that regulating the expression of an individual condensin subunit helps to coordinate chromosome conformation with the cell cycle. These data, along with recent corroborating results in Drosophila melanogaster suggest that condensin regulation through limiting the expression of a single condensin subunit may be broadly conserved amongst eukaryotes.
6

Régulation du suppresseur d'invasion Arpin par les Tankyrases / Regulation of the invasion suppressor Arpin by Tankyrases

Chemeris, Angelina 21 September 2018 (has links)
Le complexe Arp2/3, conservé sur le plan évolutif, joue un rôle central dans la nucléation d’actine branchée, qui entraîne la migration cellulaire, l’endocytose et d’autres processus cellulaire. Récemment, une petite protéine, Arpin, qui inhibe le complexe Arp2/3 au front du lamellipode a été découverte et caractérisée. Sur sa partie C-terminale, Arpin possède un motif acide (A), qui est homologue au motif A des différents NPF (Nucleation Promoting Factor). Il a été prédit qu’Arpin peut se lier à deux sites de liaison au complexe Arp2/3, similaire aux domaines VCA des NPF. Ici, nous utilisons la microscopie électronique de particules uniques pour obtenir une reconstruction 3D du complexe Arp2/3 lié à Arpin, à une résolution de 25 Å. Nous avons montré que la liaison d’Arpin induit la conformation ouverte, standard, du complexe Arp2/3. Nous avons confirmé qu’il y a deux sites de liaison sur le complexe Arp2/3 pour Arpin : un à l’arrière de la sous-unité Arp3, et le second localisé entre les sous-unités Arp2 et ARPC1. La distance entre le complexe Arp2/3 et Arpin (5nm) confirme qu’Arpin interagit avec son partenaire via sa queue acide C-terminale non structurée.Nous avons, ensuite, identifié Tankyrases1/2, comme un nouveau partenaire qui se lie à Arpin, par « pull-down ». De façon intéressante, les sites de liaisons d’Arpin aux Tankyrases et à Arp2/3 se chevauchent. Nous avons, par conséquent, démontré qu’il y a une compétition dose-dépendante entre le domaine ARC4 de Tankyrase1 et le complexe Arp2/3.Pour comprendre les principes de l’interaction entre Arpin et Tankyrases, nous avons créé un mutant d’Arpin (ArpinG218D) qui, in vitro, se lie toujours au complexe Arp2/3, mais plus aux Tankyrases. In vivo, ArpinG218D n’est pas capable d’inhiber le complexe Arp2/3, ce qui suggère que Tankyrase pourrait être nécessaire pour l’interaction entre Arpin et le complexe Arp2/3. Arpin est le facteur responsable du changement de direction des cellules migrantes. Nous avons donc analysé, la migration de cellules MCF10A exprimant soit la forme sauvage d’Arpin (ArpinWT) soit son mutant ArpinG218D en parallèle de la déplétion d’Arpin endogène. Les cellules exprimant ArpinG218D ont une persistance de migration supérieure, similaire à celles déplétées d’Arpin endogène. Nous avons, ainsi, fait l’hypothèse que le mutant ArpinG218D ne peut pas inactiver le complexe Arp2/3 car il n’est pas présent au niveau du lamellipode. Nous avons donc comparé la quantité de protéine d’ArpinWT et d’ArpinG218D dans la fraction membranaire de cellules migrantes. Une différence significative (44%) dans la quantité d’ArpinWT et d’ArpinG218D a confirmé notre hypothèse.Les Tankyrases sont des cibles thérapeutiques dans de nombreux cancers, mais il n’existe pas de modèle structural pour ces protéines grandes et flexibles. Dans ce travail, nous avons, pour la première fois, obtenu deux reconstructions 3D de Tankyrase1 et Tankyrase2 complètes liées à Arpin en utilisant la microscopie électronique de particules uniques. La résolution obtenue (27 Å) a été suffisante pour détecter un changement de conformation dramatique des domaines SAM et PARP de Tankyrase après fixation d’Arpin. Dans notre reconstruction, trois molécules d’Arpin se lient aux domaines ARC1, ARC4 et ARC5 de Tankyrase1. ARC5 a été montré pour être la partie le plus flexible de l’ensemble des domaines ARC.Grâce aux données que nous avons obtenues, nous avons suggéré un modèle de régulation de l’activité d’Arpin par les Tankyrases. Selon notre modèle, les Tankyrases se lient à Arpin dans le cytoplasme, changent sa conformation et amènent Arpin au niveau de la membrane dans le lamellipode. Traduisant les signaux extracellulaires, la GTPase Rac active Arpin, qui séquentiellement inactive le complexe Arp2/3, tandis que les Tankyrases sont libérées. / The evolutionarily conserved Arp2/3 complex plays a central role in nucleating the branched actin filament arrays that drive cell migration, endocytosis, and other processes. Recently, an inactivator of the Arp2/3 complex at the lamellipodium tip, a small protein, Arpin, was discovered and characterized. On its C-terminus, Arpin possesses an acidic (A) motif, which is homologous to the A-motif of various Nucleation Promoting Factors (NPFs). It was predicted that Arpin can bind at two binding sites to the Arp2/3 complex, similar to VCA domains of NPFs. Here, we used single particle electron microscopy to obtain a 3D reconstruction of the Arp2/3 complex bound to Arpin at a 25Å resolution. We showed that the binding of Arpin causes the standard open conformational of the Arp2/3 complex. We confirmed that there are two binding sites on the Arp2/3 complex for Arpin: one on the back of the Arp3 subunit, and the second is located between Arp2 and ARPC1 subunits. The distance between the Arp2/3 complex and Arpin (5 nm) supports the view that Arpin interacts with its partner via its unstructured C-terminal acidic tail.Next, using the pull-down assay, we identified the new Arpin binding partners, Tankyrases1/2. Interestingly, Tankyrases and the Arp2/3 complex possess overlapping amino acid sequences at Arpin binding sites. Hence, we demonstrated a competition between the ARC4 domain of Tankyrase1 and the Arp2/3 complex in a dose-dependent manner.To understand the principles of Tankyrases-Arpin interaction, we created a mutant Arpin (ArpinG218D) that lacks its ability to interact with Tankyrases, but not with the Arp2/3 complex in vitro. Interestingly, ArpinG218D was not able to inhibit the Arp2/3 complex in vivo, suggesting that Tankyrase may be necessary for Arpin-Arp2/3 complex interaction. Arpin is the turning factor of migrating cells, so we performed a migration analysis of MCF10-A cells expressing either wild type Arpin (ArpinWT) or mutant ArpinG218D in parallel with the depletion of endogenous Arpin. Cells expressing ArpinG218D had higher directional persistence, similar to the cells where the endogenous Arpin was knocked down. Thus, we suggested that mutant ArpinG218D cannot inactivate the Arp2/3 complex since it is not present at the lamellipodial tip. We compared the amount of protein for both ArpinWT and ArpinG218D in the membrane fraction of the migrating cells. A significant difference (44%) in the amount of ArpinWT and Arpin G218D was consistent with our hypothesis.Tankyrases are therapeutic targets in a variety of cancers, but currently there is no structural model available for these large and flexible proteins. In this work, we obtained for the first time two 3D reconstructions of full-length Tankyrase1 and Tankyrase1 bound to Arpin using single particle electron microscopy. The achieved resolution (27Å) was enough to detect a dramatic conformational change in Tankyrase SAM and PARP domains upon binding of Arpin molecules. In our reconstruction, three Arpins were bound to the ARC1, ARC4 and ARC5 domains of Tankyrase1. ARC5 was shown to be the most flexible part of the ARC cluster.Based on the obtained data, we suggested a model of regulation of the activity of Arpin by Tankyrases. According to our model, Tankyrases bind Arpin in the cytoplasm, change their conformational state and bring Arpin closer to the membrane in the lamellipodia. Deciphering the extracellular signals, Rac GTPase activates Arpin, which sequentially inactivates the Arp2/3 complex, while Tankyrases are released.
7

Insights into the control of mRNA decay by YTH proteins during the transition from meiosis to mitosis in yeasts. / Contrôle de la dégradation des ARNm par les protéines YTHpendant la transition de la méiose à la mitose chez les levures.

Hazra, Ditipriya 05 September 2019 (has links)
Aperçu du contrôle de la dégradation des ARNm par les protéines YTHpendant la transition de la méiose à la mitose chez les levures.Le cycle cellulaire est contrôlé par des processus complexes et interconnectés. Un gène est transcrit en ARNm qui est traduit en protéines mais de nombreux processus de régulation travaillent pour contrôler chaque étape de ce processus apparemment simple. Parmi ces points de contrôle, la régulation post-transcriptionnelle est importante, et la formation d'un complexe protéine-ARN peut diriger le destin cellulaire. Parmi ces protéines de liaison à l'ARN, les protéines contenant des domaines YTH n’ont été découvertes qu’à la fin des années 90. Les protéines contenant des domaines YTH sont abondantes chez les eucaryotes et absentes chez les procaryotes. Elles constituent la majorité des protéines « readers » capables de reconnaître spécifiquement la modification m6A. L’Homme possède cinq protéines YTH, YTHDF1-3, YTHDC1,2 (Hazra, D., C. Chapat, et Graille, M. (2019). Destin de l'ARNm de m6A : enchaînés au rythme par les protéines contenant de la YTH. , 10 (1), 49.). Bien qu'il soit évident que ces protéines contrôlent le destin cellulaire, la fonction de chaque protéine et son réseau d’interaction restent à élucider. Chez les levures, une seule protéine YTH est présente: Pho92 chez Saccharomyces cerevisiae et Mmi1 chez Schizosaccharomyces pombe. Hormis le domaine YTH, il n'y a pas d'homologie de séquence entre ces deux protéines mais leur fonction cellulaire est similaire.Il est bien établi que Mmi1 est responsable de la dégradation des transcrits spécifiques de la méiose au cours de la croissance végétative des cellules chez la levure S. pombe. Mmi1 forme un complexe stable avec une petite protéine, Erh1 (complexe Erh1-Mmi1 ou EMC). Le complexe EMC peut physiquement interagir avec la sous-unité Not1 du complexe CCR4-Not et la recruter pour la dégradation des ARNm contenant des motifs DSR (déterminant de l'élimination sélective). L'action de Mmi1 est à son tour régulée par une protéine possédant un domaine RRM, Mei2. Au cours de la méiose, Mei2, avec l’aide d’un lncRNA meiRNA, séquestre Mmi1 dans un point nucléaire, le rendant inactif et assurant la continuité de la méiose. Ces trois protéines, Mmi1-Erh1-Mei2, jouent un rôle clé dans la transition de la mitose vers la méiose.Chez S. cerevisiae, Pho92 est impliquée dans la dégradation des transcrits de PHO4, contribuant à la voie du métabolisme du phosphate, pendant la privation en phosphate et participe également à la dégradation des ARNm contenant les marques épitranscriptomiques de N6-méthyladénosine (m6A). Comme pour S. pombe Mmi1, Pho92 recrute le complexe CCR4-Not via une interaction physique avec Not1.Au cours de ma thèse, j'ai tenté d'élucider le rôle de ces deux protéines du domaine YTH de deux organismes modèles, S. cerevisiae et S. pombe, dans la dégradation de l'ARNm et la régulation du cycle cellulaire par des approches biochimiques et structurales.Pho92 de S. cerevisiae interagit physiquement avec Not1 du complexe CCR4-Not, nous avons pu déterminer les limites des domaines impliqués dans cette interaction. L’interaction entre ces deux protéines a été étudiée par anisotropie de fluorescence. Le complexe protéique a été purifié avec succès et des essais de cristallisation sont en cours.Chez S. pombe, la structure de Mei2-RRM3 a été résolue avec et sans ARN. Les propriétés de liaison à l'ARN de Mei2-RRM3 ont été étudiées par ITC. La structure de Erh1 a également été résolue révélant une organisation en homodimere. Nous avons montré que la formation de cet homodimere est important pour la fonction biologique de Mmi1. Des essais de co-cristallisation ont été réalisés avec de l'ARN et les protéines Mmi1 et Mei2, mais sans succès et nous avons obtenu des cristaux de Mmi1. / Insights into the control of mRNA decay by YTH proteinsduring the transition from meiosis to mitosis in yeasts.Keywords: Epitranscriptomics, mRNA decay, meiosis, multi-protein complexes, YTH domainCell cycle is controlled by multi-layered processes. A gene is transcribed in mRNA which is translated in proteins but innumerable regulation processes are working to control every step of this apparently simple process. Among these regulatory check points, post-transcriptional regulation is an important one, where formation of a protein-RNA complex may direct the cellular fate. Among these RNA binding proteins, YTH domain proteins are most novel, discovered in late 90s. YTH domain proteins are abundant in eukaryotes and absent in prokaryotes. YTH domain proteins constitute the majority of reader proteins that can specifically identify m6A modification. Human beings have five YTH domain proteins YTHDF1-3, YTHDC1-2 (Hazra, D., Chapat, C., & Graille, M. (2019). m6A mRNA Destiny: Chained to the rhYTHm by the YTH-Containing Proteins. Genes, 10(1), 49.). Although it is evident that these proteins are controlling cellular fate, the function of each protein and their network is yet to be elucidated. In yeast, there is only one YTH domain protein present: Pho92 in Saccharomyces cerevisiae and Mmi1 in Schizosaccharomyces pombe. Apart from the YTH domain there is no sequence homology between these two proteins but their cellular function is similar.It is well established that Mmi1 is responsible for degradation of meiosis specific transcripts during vegetative growth of the cell. Mmi1 forms a tight complex with a small protein, Erh1 (Erh1-Mmi1 complex or EMC). EMC can physically interact with Not1 of CCR4-Not complex and recruit it for degradation of DSR (determinant of selective removal) containing RNAs. The action of Mmi1 is in turn regulated by an RRM domain protein, Mei2. During meiosis, Mei2, along with a lncRNA meiRNA sequesters Mmi1 in a nuclear dot, rendering it inactive and ensuring smooth continuance of meiosis. These three proteins, Mmi1-Erh1-Mei2 play a key role in mitosis to meiosis switch.In S. cerevisiae, Pho92 is involved in the degradation of PHO4 transcripts contributing to phosphate metabolism pathway, during phosphate starvation and also participates in the degradation of mRNAs containing the N6-methyladenosine (m6A) epitranscriptomics marks. Similarly, to S. pombe Mmi1, Pho92 recruits CCR4-Not complex by physical interaction with Not1.During my PhD, I have tried to elucidate the role of these two YTH domain proteins from two model organisms, S. cerevisiae and S. pombe, in mRNA degradation and cell cycle regulation using biochemical and structural approaches.Pho92 of S. cerevisiae physically interacts with Not1 of CCR4-Not complex, we were able to determine the boundaries of this interaction. The interaction between these two proteins was studied by Fluorescence anisotropy. The protein complex was successfully purified and crystallization trials are ongoing.From S. pombe, structure of Mei2-RRM3 was solved with and without an RNA. RNA binding properties of Mei2-RRM3 was studied by ITC. The structure of Erh1 was also solved and we tried to elucidate its importance for biological function of Mmi1. A co-crystallization trial was performed with Mmi1-Mei2-RNA but it was unsuccessful and we ended up with Mmi1 crystals.
8

Nouvelles applications et opportunités en protéomique / New applications and opportunities in proteomics

Guillaumot, Nina 25 September 2017 (has links)
Les objectifs de mes travaux de thèse étaient de développer de nouvelles méthodes d’identification, de caractérisation et de quantification de protéines, mieux adaptées à la diversité des études en protéomique, ce dont la biologie a besoin aujourd’hui. L’analyse protéomique par spectrométrie de masse est apparue comme un outil précieux et pertinent pour évaluer la qualité de l’isolement d’un complexe spécifique, et pour guider les biologistes dans les choix de la stratégie à adopter. La stratégie de marquage de N-terminomique développée a permis de caractériser un processus de maturation biologique en déterminant précisément les sites d’activation de la protéine Perséphone par marquage spécifique des extrémités N-terminales. Ce travail a permis d’élucider un nouveau mécanisme fin de régulation dans l’immunité innée chez la drosophile. De nouveaux modes de marquages ont été mis au point et les familles chimiques des réactifs de marquage étudiés permettront d’adapter au mieux les études de quantifications protéomiques à la nature et aux contraintes des études biologiques à mener. / The aim of this work was to develop new methods for the identification, characterization and quantification of proteins best suited to a large diversity of proteomics studies, which is nowadays essential to biology. Our work has shown that proteomic analysis based on mass spectrometry can be a valuable and relevant tool to evaluate the isolation strategy efficiency set up for a specific complex and thus guide the biologists in their choice. The N-terminomic labeling strategy developed allowed us to describe a biological maturation process by determining precisely the Persephone protein activation sites using specific labeling of the successively generated N-terminal extremities. This work allowed elucidating a new regulation mechanism in the Drosophila innate immunity system. New chemical labeling reagents to target specific amino acids (cysteine, tyrosine and tryptophan) have been set up for fast mass-spectrometry based proteomics. These labeling strategies combined with proteomic tools will allow developing a robust and quantitative approach essential for biological studies.
9

The Impact of mTORC2 Signaling on the Initiation and Progression of KRAS-Driven Pancreatic Neoplasias: A Dissertation

Driscoll, David R. 28 March 2016 (has links)
Pancreatic ductal adenocarcinoma (PDAC), the most common form of pancreatic cancer, develops through progression of premalignant pancreatic intraepithelial neoplasias (PanINs). In mouse-models, KRAS-activation in acinar cells induced an acinar-to-ductal metaplasia (ADM), and mutation of the Kras oncogene is believed to initiate PanIN formation. ADM is also promoted by pancreatic injury, which cooperates with activated KRAS to stimulate PanIN and PDAC formation from metaplastic ducts. Our lab, and others, have shown that the downstream PI3K/AKT pathway is important for KRAS-mediated proliferation and survival in vitro and in vivo. Prior studies have demonstrated that full activation of AKT requires both PDK1- mediated phosphorylation of AKTT308 and mTOR complex 2 (mTORC2)-mediated phosphorylation of AKTS473. Given the importance of the PI3K/AKT signaling axis, I hypothesized that mTORC2 is required for KRAS-driven pancreatic tumorigenesis and investigated this relationship in mice by combining pancreasspecific expression of an activated KRASG12D molecule with deletion of the essential mTORC2 subunit RICTOR. In the context of activated KRAS, Rictor-null pancreata developed fewer PanIN lesions; these lesions lacked mTORC2 signaling and their proliferation and progression were impaired. Higher levels of nuclear cyclin dependent kinase inhibitors (CDKIs) were maintained in Rictor-null lesions, and nuclear BMI1, a known regulator of the CDKI Cdkn2a, inversely correlated with their expression.Rictor was not required for KRAS-driven ADM following acute pancreatitis, however the inverse correlation between CDKIs and BMI1 was maintained in this system. Treatment of PDX-Cre;KRASG12D/+;Trp53R172H/+ mice with an mTORC1/2 inhibitor delayed tumor formation, and prolonged the survival of mice with late stage PDAC. Knockdown of Rictor in established PDAC cell lines impaired proliferation and anchorage independent growth supporting a role for mTORC2 in fully transformed cells. These data suggest that mTORC2 cooperates with activated KRAS in the initiation and progression of PanIN lesions and is required for the transformation and maintenance of PDAC. My work illustrates phenotypic differences between pancreatic loss of Rictor and PDK1 in the context of KRAS, broadens our understanding of this signaling node and suggests that mTORC2 may potentially be a viable target for PDAC therapies.
10

The Linear Ubiquitin Assembly Complex Modulates Latent Membrane Protein 1 Activation of NF-κB and Interferon Regulatory Factor 7

Wang, Ling, Wang, Yujia, Zhao, Juan, Ren, Junping, Hall, Kenton H., Moorman, Jonathon P., Yao, Zhi Q., Ning, Shunbin 01 January 2017 (has links)
Recently, linear ubiquitin assembly complex (LUBAC)-mediated linear ubiquitination has come into focus due to its emerging role in activation of NF-κB in different biological contexts. However, the role of LUBAC in LMP1 signaling leading to NF-κB and interferon regulatory factor 7 (IRF7) activation has not been investigated. We show here that RNF31, the key component of LUBAC, interacts with LMP1 and IRF7 in Epstein-Barr virus (EBV)-transformed cells and that LUBAC stimulates linear ubiquitination of NEMO and IRF7. Consequently, LUBAC is required for LMP1 signaling to full activation of NF-κB but inhibits LMP1-stimulated IRF7 transcriptional activity. The protein levels of RNF31 and LMP1 are correlated in EBV-transformed cells. Knockdown of RNF31 in EBV-transformed IB4 cells by RNA interference negatively regulates the expression of the genes downstream of LMP1 signaling and results in a decrease of cell proliferation. These lines of evidence indicate that LUBAC-mediated linear ubiquitination plays crucial roles in regulating LMP1 signaling and functions. IMPORTANCE We show here that LUBAC-mediated linear ubiquitination is required for LMP1 activation of NF-κB but inhibits LMP1-mediated IRF7 activation. Our findings provide novel mechanisms underlying EBV-mediated oncogenesis and may have a broad impact on IRF7-mediated immune responses.

Page generated in 0.1009 seconds