• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 1
  • Tagged with
  • 45
  • 45
  • 19
  • 17
  • 17
  • 15
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Utilização de materiais alternativos numa intervenção pedagógica para uma aprendizagem significativa das operações dos números inteiros

Costa, Antonio Silva da 19 June 2015 (has links)
Submitted by FERNANDA DA SILVA VON PORSTER (fdsvporster@univates.br) on 2016-04-29T18:10:09Z No. of bitstreams: 3 license_text: 22064 bytes, checksum: ef48816a10f2d45f2e2fee2f478e2faf (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) 2015AntonioSilvadaCosta.pdf: 3538059 bytes, checksum: 403c33778391a156f4f48498baa8a192 (MD5) / Approved for entry into archive by Ana Paula Lisboa Monteiro (monteiro@univates.br) on 2016-05-04T17:43:14Z (GMT) No. of bitstreams: 3 license_text: 22064 bytes, checksum: ef48816a10f2d45f2e2fee2f478e2faf (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) 2015AntonioSilvadaCosta.pdf: 3538059 bytes, checksum: 403c33778391a156f4f48498baa8a192 (MD5) / Made available in DSpace on 2016-05-04T17:43:14Z (GMT). No. of bitstreams: 3 license_text: 22064 bytes, checksum: ef48816a10f2d45f2e2fee2f478e2faf (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) 2015AntonioSilvadaCosta.pdf: 3538059 bytes, checksum: 403c33778391a156f4f48498baa8a192 (MD5) / O presente estudo evidencia alguns resultados de uma prática pedagógica efetivada em uma turma do 7º ano do Ensino Fundamental da Escola Estadual Coema Souto Maior, localizada na cidade de Boa Vista – Roraima. O objetivo geral da pesquisa consistiu em avaliar se o uso de materiais alternativos para o ensino das operações dos números inteiros é potencialmente significativo como recurso na aprendizagem dessas operações. Teoricamente, está embasado em Ausubel (2009), Lara (2011), Kishimoto (2011), Moreira (2011), Ribeiro (2008), Freire (2011), Borges (2008), entre outros. A pesquisa é de cunho qualitativo e quantitativo, sendo considerada um estudo de caso. O material da pesquisa foi gerado por meio de três questionários, denominados respectivamente de pré-teste, pós-teste e grau de satisfação, todos com questões abertas e fechadas. Também foram desenvolvidos materiais denominados de organizadores prévios. Ainda, foram utilizados diário de campo, fotografias e filmagens que auxiliaram na interpretação de dados. De acordo com as análises efetivadas sobre o material de pesquisa, pode-se entender que: 1) nas aulas com os materiais alternativos, os pesquisados mostraram-se ativos e participantes da construção do conhecimento frente ao conteúdo de números inteiros; 2) os registros realizados em sala e as atividades aplicadas indicaram melhoramento na aprendizagem dos discentes que utilizaram os materiais alternativos; 3) a metodologia usada no desenvolvimento dos organizadores prévios despertou curiosidade dos outros alunos e também da professora titular da sala. O material alternativo (jogo virtual, figuras, objetos) promoveu um maior interesse pela Matemática, fazendo com que seu aprendizado fosse significativo, propiciando um ambiente agradável e promovendo nos alunos uma predisposição para aprender. / The present study evidences the results of pedagogical practice applied in a class of 7th year of the Elementary School at the Escola Estadual Coema Souto Maior, located in Boa Vista, RR. The main objective of the research consists in evaluating whether the virtual game “Playing with the Operations of the Whole Numbers” is potentially significant as a resource for the learning of the integer numbers. Theoretically, it is based on Ausubel (2009), Lara (2011), Kishimoto (2011), Moreira (2011), Ribeiro (2008), Freire (2011), Borges (2008), among others. The research has a qualitative and quantitative feature, being considered as a study of case. The material for research was brought up by means of three questionnaires, respectively named pre-test, post-test, and level of satisfaction with open and cloze questions. Moreover, a field diary, photography and filming were used to support the interpretation of data. According to the analyses carried out on the research material it can be understood that: 1) In classes with the virtual game the researched students are active and participating in the construction of knowledge regarding the content of integer numbers; 2) the records made in classroom and the activities applied point out an improvement in the learning of the pupils who used the virtual game; 3) the methodology of the game awakened curiosity in other students as well as in the teacher in charge of the classroom. The game supplied a higher interest in Mathematics, making it funnier a more attractive to the presents. Bringing about a more comfortable environment and promoting a pre-disposition toward learning in the students.
12

Representação de inteiros por algumas formas quadráticas ternárias

De Bona, Thayner Gomes January 2016 (has links)
O objetivo principal deste trabalho e descrever os números inteiros que podem ser representados nas formas 9x2+16y2+36z2+16yz+4xz+8xy e 9x2+17y2+ 32z2 - 8yz + 8xz + 6xy. Para isso, utilizamos uma série de resultados envolvendo funções theta, como a identidade do produto triplo de Jacobi e equações modulares. / The main goal of this work is to describe the integers which can be written in the forms 9x2 + 16y2 + 36z2 + 16yz + 4xz + 8xy and 9x2 + 17y2 + 32z2 - 8yz + 8xz + 6xy. To do so, we use a series of results concerning theta functions, such as the Jacobi triple product identity and modular equations.
13

As dificuldades dos alunos da EEM Virgílio Correia Lima em operações básicas com números naturais, inteiros e racionais / The difficulties of students EEFM Virgílio Correia Lima in basic operations with natural, whole and rational numbers

Rêgo, Francisco Rosiglei do January 2014 (has links)
RÊGO, Francisco Rosiglei do. As dificuldades dos alunos da EEM Virgílio Correia Llima em operações básicas com números naturais, inteiros e racionais. 2014. 69 f. Dissertação (Mestrado em Matemática em Rede Nacional) – Centro de Ciências, Universidade Federal do Ceará,Juazeiro do Norte, 2014. / Submitted by Rocilda Sales (rocilda@ufc.br) on 2016-04-22T13:39:19Z No. of bitstreams: 1 2014_dis_frrego.pdf: 2176942 bytes, checksum: 615e2205d8c4b3ab46eefead45c6cc20 (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2016-04-22T13:39:53Z (GMT) No. of bitstreams: 1 2014_dis_frrego.pdf: 2176942 bytes, checksum: 615e2205d8c4b3ab46eefead45c6cc20 (MD5) / Made available in DSpace on 2016-04-22T13:39:53Z (GMT). No. of bitstreams: 1 2014_dis_frrego.pdf: 2176942 bytes, checksum: 615e2205d8c4b3ab46eefead45c6cc20 (MD5) Previous issue date: 2014 / During years of experience in the classroom we face several times with students who have great difficulty in learning mathematics, especially in key operations involving the sets of natural, integers and rational numbers. This paper presents a journey through numerical sets, showing its historical operations and construction, presenting concrete facts of the difficulties encountered by students in basic math operations and statistical data prove that the student enters high school in EEM Virgílio Correia Lima without the domain of fundamental operations. Finally we present arguments that show the main factors that allow our students entering the high school without mastering the fundamental operations, among which we highlight the fact that teachers responsible for mathematics literacy, teachers in early elementary school, are not mathematicians; mathematics teachers from 6th to 9th grade in elementary school does not have adequate training; and the discrepancy between curriculum and workload, because we have a curriculum in elementary school too extensive for a limited workload. / Durante anos de vivência em sala de aula nos deparamos por diversas vezes com alunos que apresentam muita dificuldade de aprendizagem em matemática, principalmente em operações fundamentais envolvendo os conjuntos dos números naturais, inteiros e racionais. Esse trabalho apresenta uma viagem pelos conjuntos numéricos, mostrando sua construção histórica e por suas operações, apresentando fatos concretos das dificuldades encontradas pelos alunos em operações fundamentais da matemática e comprovando com dados estatísticos que o aluno ingressa no Ensino Médio da EEM Virgílio Correia Lima sem o domínio das operações fundamentais. Por último, apresentamos argumentos que mostram os principais fatores que possibilitam nossos alunos ingressarem no Ensino Médio sem dominar as operações fundamentais, entre os quais, destacamos o fato dos professores responsáveis pela alfabetização matemática, professores das séries iniciais do Ensino Fundamental, não serem matemáticos; professores de matemática do 6º ao 9º ano do Ensino Fundamental não terem a formação adequada; e a discrepância entre currículo e carga horária, pois temos um currículo no Ensino Fundamental muito extenso para uma carga horária limitada.
14

Representação de inteiros por algumas formas quadráticas ternárias

De Bona, Thayner Gomes January 2016 (has links)
O objetivo principal deste trabalho e descrever os números inteiros que podem ser representados nas formas 9x2+16y2+36z2+16yz+4xz+8xy e 9x2+17y2+ 32z2 - 8yz + 8xz + 6xy. Para isso, utilizamos uma série de resultados envolvendo funções theta, como a identidade do produto triplo de Jacobi e equações modulares. / The main goal of this work is to describe the integers which can be written in the forms 9x2 + 16y2 + 36z2 + 16yz + 4xz + 8xy and 9x2 + 17y2 + 32z2 - 8yz + 8xz + 6xy. To do so, we use a series of results concerning theta functions, such as the Jacobi triple product identity and modular equations.
15

Representação de inteiros por algumas formas quadráticas ternárias

De Bona, Thayner Gomes January 2016 (has links)
O objetivo principal deste trabalho e descrever os números inteiros que podem ser representados nas formas 9x2+16y2+36z2+16yz+4xz+8xy e 9x2+17y2+ 32z2 - 8yz + 8xz + 6xy. Para isso, utilizamos uma série de resultados envolvendo funções theta, como a identidade do produto triplo de Jacobi e equações modulares. / The main goal of this work is to describe the integers which can be written in the forms 9x2 + 16y2 + 36z2 + 16yz + 4xz + 8xy and 9x2 + 17y2 + 32z2 - 8yz + 8xz + 6xy. To do so, we use a series of results concerning theta functions, such as the Jacobi triple product identity and modular equations.
16

Menos Com Menos é Menos ou é Mais? resolução de problemas de multiplicação e divisão de números inteiros por alunos do ensino regular e da educação de jovens e adultos

ALVES, Evanilson Landim 31 January 2012 (has links)
Submitted by Etelvina Domingos (etelvina.domingos@ufpe.br) on 2015-03-13T18:51:10Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) ELA.pdf: 3746068 bytes, checksum: 11dc9cc482cf495aaa439a3bfce3a506 (MD5) / Made available in DSpace on 2015-03-13T18:51:10Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) ELA.pdf: 3746068 bytes, checksum: 11dc9cc482cf495aaa439a3bfce3a506 (MD5) Previous issue date: 2012 / Afirmar que menos com menos é mais não é uma ação trivial, tampouco uma verdade que se sustenta em todas as situações. A princípio isso já indica que aprender e ensinar conceitos relativos à multiplicação e divisão de números inteiros na Educação Básica tem sido uma tarefa hercúlea para àqueles que precisam desenvolvê-la. A marcha desse processo, na maioria das vezes, tem sido marcada por intempéries e frustrações constituídas e constitutivas de resistências como a ausência de situações que dão sentido à multiplicação e a divisão de números inteiros relativos, as formas de representação dessas operações e a falta de relação significativa entre as atividades forjadas pela escola e as características de quem deveria aprender. É diante de tantas questões que esta pesquisa nasce com vistas a entender as dificuldades e resistências de adolescentes, jovens e adultos escolarizados na compreensão dos conceitos relativos à multiplicação e a divisão de números inteiros, dado que apesar de a literatura já indicar estudos sobre a aprendizagem dos números inteiros, realizadas com as operações adição e subtração, ainda não se têm registros de experimentos realizados com as operações multiplicação e divisão em z. Soma-se a isso a nossa curiosidade como professor da Educação de Jovens e Adultos e do Ensino Fundamental dito regular sobre a origem das competências e estratégias empregadas por esses estudantes na resolução de situações, que requerem tais operações. Assim, o nosso objeto de estudo resulta da união de todas essas demandas e faz-nos partir da seguinte questão: Quais as principais competências e dificuldades evidenciadas por adultos e adolescentes escolarizados em relação à multiplicação e divisão de números inteiros e que aspectos específicos (modalidade de ensino, idade, atividade profissional) podem influenciar a compreensão e as estratégias mobilizadas pelos estudantes? A pesquisa foi realizada por meio de entrevistas clínicas aplicadas a 32 estudantes já escolarizados na multiplicação e divisão de números inteiros. Os participantes foram distribuídos em quatro grupos, a saber: jovens na 4ª fase da EJA, adultos na 4ª fase da EJA, adolescentes no 8º ano do Ensino Fundamental e adultos no 8º ano do Ensino Fundamental. Essa organização deu-se em função da necessidade de criarmos algumas condições de controle sobre as variáveis modalidade de ensino e idade, já que as possíveis especificidades apontadas nas formas de agir dos estudantes da 4ª fase e do 8º ano poderiam ter origem na modalidade de ensino ou na idade dos mesmos, além de outras como a atividade profissional que eles desenvolvem, o que também consideramos, embora de modo mais distante. Para o instrumento de coleta de dados, necessitávamos de um suporte rigoroso capaz de auxiliar o desenvolvimento e a análise das questões, dando luz ao fenômeno que queríamos investigar. Por isso, elaboramos 26 itens, assentados em sete questões baseadas na Teoria dos Campos Conceituais. Os resultados trouxeram à tona que tanto os estudantes da EJA quanto os do 8º ano ainda apresentam dificuldades na resolução de situações que envolvem a multiplicação e a divisão de números inteiros relativos, embora as suas ações indiquem que eles estão a caminho da compreensão desses conceitos. Na comparação do desempenho dos grupos, não foram identificadas diferenças importantes, mas, quando em situação, adolescentes e adultos mobilizaram estratégias com diferenças expressivas. Enquanto os adultos com frequência fogem dos algoritmos da multiplicação e divisão, os mais novos se agarram a essas formas de resolução.
17

Sobre as construções dos sistemas numéricos: N, Z, Q e R / About the constructions of numerical systems: N, Z, Q and R

Zangiacomo, Tassia Roberta [UNESP] 20 February 2017 (has links)
Submitted by Tassia Roberta Zangiacomo null (tassia_zangiacomo@hotmail.com) on 2017-03-23T22:04:31Z No. of bitstreams: 1 TASSIA ROBERTA ZANGIACOMO - MESTRADO.pdf: 1004175 bytes, checksum: 12925ba240f8d9a89e295b32b2efb13e (MD5) / Approved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-03-24T17:23:14Z (GMT) No. of bitstreams: 1 zangiacomo_tr_me_rcla.pdf: 1004175 bytes, checksum: 12925ba240f8d9a89e295b32b2efb13e (MD5) / Made available in DSpace on 2017-03-24T17:23:15Z (GMT). No. of bitstreams: 1 zangiacomo_tr_me_rcla.pdf: 1004175 bytes, checksum: 12925ba240f8d9a89e295b32b2efb13e (MD5) Previous issue date: 2017-02-20 / Este trabalho tem como objetivo construir os sistemas numéricos usuais, a saber, o conjunto dos números naturais N, o conjunto dos números inteiros Z, o conjunto dos números racionais Q e o conjunto dos números reais R. Iniciamos o trabalho tratando de noções sobre conjuntos e relações binárias. Em seguida, apresentamos o conjunto dos números naturais, definido através dos axiomas de Peano; o conjunto dos números inteiros via uma relação de equivalência com o conjunto dos números naturais; o conjunto dos números racionais, que são obtidos também via relação de equivalência, mas dessa vez com o conjunto dos números inteiros; a construção do conjunto dos números reais, feita via cortes no conjunto dos números racionais; e, para todos esses casos, mostramos a imersão do conjunto anterior no conjunto que surge na sequência. Por fim, observamos alguns materiais do ensino fundamental e médio com o intuito de investigar de que forma esses temas estão sendo apresentados para os alunos. / This work aims to construct the usual numerical systems, namely the set of natural numbers N, the set of integers Z, the set of rational numbers Q and the set of real numbers R. We begin the work dealing with notions about sets and binary relations. Next, we present the set of natural numbers, defined by Peano's axioms; the set of integers via an equivalence relation with the set of natural numbers; the set of rational numbers, which are also obtained via equivalence relation, but this time with the set of integers; the construction of the set of real numbers, made through cuts in the set of rational numbers; end for all these cases we show the immersion of the previous set in the ensemble that appears in the sequence. Finally, we observed some materials in elementary school and high school in order to investigate how these themes are being presented to the students.
18

O pensamento dos comerciantes medievais como elemento textual para o ensino dos números inteiros na educação básica / The medieval merchants thought as a textual element for the teaching of integers in the Basic Education

Luna, Everton Luiz Silva de 18 December 2018 (has links)
Neste trabalho, após analisar a prática pedagógica deste pesquisador relativa ao conceito dos números inteiros, identificamos as dificuldades para explicá-lo aos alunos da Educação Básica, que resultou no seguinte problema de pesquisa: Quais elementos devem conter uma atividade para o ensino dos números inteiros de modo a propiciar uma melhor aprendizagem para os alunos? Esta pesquisa tem um aspecto qualitativo (BOGDAN E BIKLEN, 1994) e outro documental (PÁDUA, 1997). Com Tardif (2002) e Cardoso (2012) buscamos entender os elementos sobre os saberes docentes e a relação com a formação profissional de professores e, em Shulman (2014) a análise das bases do conhecimento, essenciais para nos fundamentarmos no exercício da docência. Procuramos os elementos textuais necessários ao desenvolvimento das ideias iniciais, analisando documentos oficiais que nos guiaram à história dos números inteiros como um elemento facilitador da aprendizagem. Consequentemente, nos baseamos na necessidade de sobrevivência do comerciante indicado por Crosby (1999) para inserirmos esse contexto na matemática escolar, acreditando que ele possibilita um pensamento fora das estruturas matemáticas. Nessa pesquisa, os elementos textuais sobre o ensino dos números inteiros na Educação Básica, indicados por LIMA E MOISÉS (1998), alicerçam o pensamento com contrários e aproximam-se das situações do comerciante medieval de Crosby (1999). Finalmente, formulamos e apresentamos atividades para o ensino da matemática escolar que forneceram elementos textuais sobre o ensino do conceito dos números inteiros para alunos do Ensino Fundamental. Essas atividades visam facilitar o processo de ensino-aprendizagem e reduzir as dificuldades dos alunos na área numérica. / In this dissertation, after analyzing the pedagogical practice of this researcher on concept of integers, we identify the difficulties to explain it to the students of Basic Education, which resulted in the following research problem: What elements should an activity contain for the teaching of whole numbers in order to provide a better learning for the students? This research has a qualitative aspect (Bogdan and Biklen, 1994) and another documentary (Padua, 1997). With Tardif (2002) and Cardoso (2012) we seek to understand the elements about teacher knowledge and the relation with the professional formation of teachers, in Shulman (2014) the analysis of knowledge bases, essential to be based on the exercise of teaching. We searched for the textual elements necessary for the development of initial ideas, analyzing official documents that guided us to the history of integers as a facilitator of learning. Consequently, we rely on the merchant\'s need for survival as indicated by Crosby (1999) to insert this context into school mathematics, believing that it enables one thinking outside of mathematical structures. In this research, the textual elements on the teaching of integers in Basic Education, indicated by LIMA AND MOISÉS (1998) support the thinking with opposites and approach the situations of the medieval merchant of Crosby (1999). Finally, we formulate and present activities for the teaching of school mathematics that provided textual elements on the teaching of the concept of integers for elementary school students. These activities aim to facilitate the teaching-learning process and reduce students difficulties in the numerical area.
19

O número médio de representações de um inteiro positivo como soma dos quadrados de dois inteiros / The mean number of representations of a positive integer as the sum of the squares of two integers

Avela, Adriano Silva 07 1900 (has links)
AVELA, Adriano Silva. O número médio de representações de um inteiro positivo como soma dos quadrados de dois inteiros. 2017. 46 f. Dissertação (Mestrado Profissional em Matemática em Rede Nacional) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017. / Submitted by Jessyca Silva (jessyca@mat.ufc.br) on 2017-08-16T14:27:56Z No. of bitstreams: 1 2017_dis_asavela.pdf: 787094 bytes, checksum: 1b45101b32e7b3738ea38b152f128087 (MD5) / Rejected by Rocilda Sales (rocilda@ufc.br), reason: Boa tarde, Conferi a Dissertação de ADRIANO SILVA AVELA e detectei alguns erros que devem ser corrigidos pelo próprio autor. Os mesmos seguem listados abaixo: 1- CAPA (altere o termo MESTRADO PROFISIONAL EM MATEMÁTICA EM REDE NACIONAL para PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA EM REDE NACIONAL) 2- FICHA CATALOGRÁFICA (está faltando a ficha catalográfica do trabalho, a mesma poderá ser elaborada sistema CATALOG, no endereço eletrônico: - http://fichacatalografica.ufc.br/ - e deve ser inserida antes da folha de aprovação) 3- FOLHA DE APROVAÇÃO (a folha de aprovação do trabalho está com formatação inadequada a mesma deve ocupar apenas uma página. O modelo encontra-se disponível no GUIA DE NORMALIZAÇÃO DE TRABALHOS ACADÊMICOS DA UFC, disponível no endereço eletrônico: http://www.biblioteca.ufc.br/images/arquivos/documentos_tecnicos/guia_normalizacao_trabalhos_ufc_2013.pdf 4- DEDICATÓRIA (veja o modelo de formatação da dedicatória no GUIA DE NOEMALIZAÇÃO DA UFC) 5- AGRADECIMENTOS (este item do trabalho não deve conter o nome do autor ao final dos agradecimentos, verifique o modelo no GUIA DE NORMALIZAÇÃO) 6- NUMERAÇÃO INADEQUADA DE PÁGINAS (verifique o trabalho e retire as numerações desordenada das primeiras páginas do trabalho. O número das páginas só deve aparecer a partir da INTRODUÇÃO) 7- EPÍGRAFE (a frase que compõe este elemento do trabalho deve conter a identificação do autor ao qual ela pertence. Mas ela é um elemento opcional, assim você poderá retirá-la sem nenhum prejuízo) 8- RESUMO/ABSTRACT (a formatação dos termos RESUMO e ABSTRACT está incorreta, esses dois termos devem estar em CAIXA ALTA, NEGRITO e FONTE n° 12) 9- PALAVRAS-CHAVE/KEYWORD (acrescente um ponto final no lugar das vírgulas que separam as Palavras e as Keywords) 10 – LISTA DE FIGURAS/LISTA DE TABELAS (Veja o modelo adequado para esses dois itens no GUIA DE NORMALIZAÇÃO) 11 - SUMÁRIO (verifique no GUIA DE NORMALIZAÇÃO o modelo adequado para a elaboração do sumário. Ressalto que o item INTRODUÇÃO é um capítulo e deve constar no sumário com a numeração de primeiro capítulo, Já os termos REFERÊNCIAS e APÊNDICE não devem apresentar numeração de capítulo, verifique no GUIA a formatação desses itens) 12 - TITULO DOS CAPÍTULOS (os títulos de capítulos e seções devem seguir a seguinte formatação: 1 TÍTULOS DE CAPÍTULOS (incluindo a Introdução, CAIXA ALTA, FONTE n° 12, NEGRITO, ALINHADO À ESQUERDA) 1.1 Títulos de seções (seção primária, CAIXA BAIXA, NEGRITO, FONTE N° 12, ALINHADO À ESQUERDA) *NO CASO DE DUVIDA CONSULTE O GUIA DE NORMALIZAÇÃO 13 - NUMERAÇÃO DE PÁGINAS (a número das páginas deve começar a aparecer a partir da folha de introdução, no CANTO SUPERIOR DIREITO) 14- CONCLUSÃO (a conclusão é um item obrigatório que deve constar na dissertação, o GUIA DE NORMALIZAÇÃO DA UFC menciona que “A conclusão deve ser decorrência natural do que foi exposto no desenvolvimento. Assim, em qualquer tipo de trabalho, deve resultar de deduções lógicas sempre fundamentadas no que foi apresentado e discutido anteriormente. Visa a recapitular sinteticamente os resultados da pesquisa.” 15 – REFERÊNCIAS/APÊNDICE (verifique no GUIA DE NORMALIZAÃO a formatação adequada para os títulos da REFERÊNCIAS e APÊNCE) on 2017-08-16T16:56:52Z (GMT) / Submitted by Jessyca Silva (jessyca@mat.ufc.br) on 2017-08-21T13:41:34Z No. of bitstreams: 1 2017_dis_asavela.pdf: 834141 bytes, checksum: 7d55f68b04bdc455d1c717f7a76571de (MD5) / Rejected by Rocilda Sales (rocilda@ufc.br), reason: Boa tarde, Ainda há alguns erros na Dissertação de ADRIANO SILVA AVELA que devem ser corrigidos. Eu envie uma cópia desse email para ele, pois contem o anexo com a ficha catalográfica, que não tem como ser enviado aqui pelo repositório. 1- FICHA CATALÓGRAFICA (havia alguns erros na ficha catalográfica, por isso enviamos em anexo a nova ficha para ser inserida no trabalho) 2- RESUMO E ABSTRACT (Retire o recuo do parágrafo na primeira linha do resumo e do abstract. A letra inicial das duas palavras chaves e das Keywords deve ser maiúscula) 3- NUMERAÇÃO DAS PÁGINAS ( o modelo da numeração está coreto, apenas comece com o número 9 na página da INTRODUÇÃO) 4- SUMÁRIO (segue abaixo o modelo do sumário com a formatação adequada, apenas deve ser inserida a numeração das páginas e a linha pontilhada) 1 INTRODUÇÃO 2 ARITMÉTICA DO RESTOS 2.1 A relação de congruência 2.2 Congruências lineares 2.3 Resíduos quadráticos 3 NÚMEROS PRIMOS E SOMAS DE QUADRADOS 4 FUNÇÃO˜ s2 E FUNÇÃO˜ s3 4.1 Função s2 4.2 Função s3 5 SOMA DE DOIS QUADRADOS 6 SOMA DE TRES QUADRADOS 7 CONCLUSÃO REFERÊNCIAS APÊNDICE A - TABELAS DE VALORES APÊNDICE B - RESULTADOS COMPLEMENTARES APÊNDICE C - TEOREMA DOS QUATRO QUADRADOS on 2017-08-21T17:16:15Z (GMT) / Submitted by Jessyca Silva (jessyca@mat.ufc.br) on 2017-08-22T15:34:15Z No. of bitstreams: 1 2017_dis_asavela.pdf: 833511 bytes, checksum: 0e2b00b8533fc647e6c76928c5de4671 (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-08-23T11:09:25Z (GMT) No. of bitstreams: 1 2017_dis_asavela.pdf: 833511 bytes, checksum: 0e2b00b8533fc647e6c76928c5de4671 (MD5) / Made available in DSpace on 2017-08-23T11:09:25Z (GMT). No. of bitstreams: 1 2017_dis_asavela.pdf: 833511 bytes, checksum: 0e2b00b8533fc647e6c76928c5de4671 (MD5) Previous issue date: 2017-07 / This paper aims to address two themes: the representation of positive integers as sum of squares and the average number of representations of a positive integer as the sum of two squares. About the first theme, we will prove several results to understand under what conditions a positive integer has a representation as a sum of two, three or four squares. About the second theme, we will prove that the mean number of representations of a positive integer as the sum of the squares of two integers is . To do so, we will introduce the function s 2 which associates an integer n with the cardinality of the set X n = {( a, b ) ∈ Z 2 ; a 2 + b 2 = n } and we will calculate the limit of its average value. Finally, as an analogy to the result regarding the mean value of s 2 , we will define the function s 3 , that associates a positive integer n with the cardinality of the set Y n = {( a, b, c ) ∈ Z 3 ; a 2 + b 2 + c 2 = n } and we will prove that there is no mean number of representations of a positive integer as the sum of the squares of three integers. / Este trabalho tem como objetivo abordar dois temas: a representação de inteiros positivos como soma de quadrados e o número médio de representações de um inteiro positivo como soma de dois quadrados. Sobre o primeiro tema, provaremos diversos resultados para entender em quais condições um inteiro positivo possui uma representação como soma de dois, três ou quatro quadrados. Sobre o segundo tema, provaremos que um inteiro positivo tem, em média,pi representações como soma dos quadrados de dois inteiros. Para tanto, introduziremos a função s2 (n), que associa um inteiro n com a cardinalidade do conjunto Xn = {(a, b) Z2 ; a2 + b2 = n} e calcularemos o limite do seu valor médio. Por fim, como analogia ao resultado a respeito do valor médio de s2, definiremos uma outra função s3 que associa um inteiro positivo n com a cardinalidade do conjunto Yn = {(a, b, c) Z3 ; a2 + b2 + c2 = n} e provaremos que não existe um número médio de representações de um inteiro positivo como soma dos quadrados de três inteiros.
20

O jogo de escopa adaptado para o uso em sala de aula / The scopa game adapted for use in the classroom

Pires, Willians Freire [UNESP] 14 January 2016 (has links)
Submitted by WILLIANS FREIRE PIRES null (oprofessor.quata@hotmail.com) on 2016-02-22T03:16:16Z No. of bitstreams: 1 _DISSERTAÇÃO.pdf: 1371435 bytes, checksum: 34264a19e414c627b5556cfd456a6420 (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-02-23T14:13:04Z (GMT) No. of bitstreams: 1 pires_wf_me_sjrp.pdf: 1371435 bytes, checksum: 34264a19e414c627b5556cfd456a6420 (MD5) / Made available in DSpace on 2016-02-23T14:13:04Z (GMT). No. of bitstreams: 1 pires_wf_me_sjrp.pdf: 1371435 bytes, checksum: 34264a19e414c627b5556cfd456a6420 (MD5) Previous issue date: 2016-01-14 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Os tradicionais jogos de baralho são excelentes para se aplicar diversos conceitos matemáticos. A lógica matemática, a análise combinatória e a probabilidade são a base das regras que geram a competitividade desses jogos. Além disso, diversos jogos baseiam-se em cálculos, como é o caso da Escopa e do Black Jack, este último já muito estudado por se tratar de um jogo amplamente usado em casas de apostas. Pelo fato de estar muito associado a vícios e até à contravenção, o baralho não vem sendo usado como ferramenta no ensino de matemática. O objetivo desse trabalho é adaptar o jogo de escopa para uso didático, colaborando com o cálculo mental da soma de números inteiros, suas propriedades operatórias, o conceito do elemento neutro e de números opostos. / The traditional card games are excellent when applying several mathematical concepts. Mathematical logic, combinatorial analysis and probability are the foundations of the rules that create the competitiveness in those games. Furthermore, many games such as Scopa and Black Jack rely on calculations, but the latter has already been widely studied because it is a distinguishing game in gambling houses. However, since those games are related to compulsiveness and even to legal offenses, the card deck has not been used as a tool in the teaching of Mathematics. Thus, this paper is aimed to adapt Scopa to didactic use, fostering mental calculation of the sum of integers, and the teaching of the properties of the operations, and the concept of identity element and additive inverse. / CAPES: 90.897-5

Page generated in 0.0704 seconds