• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 237
  • 74
  • 67
  • 43
  • 8
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 687
  • 211
  • 123
  • 122
  • 92
  • 89
  • 84
  • 79
  • 67
  • 65
  • 63
  • 63
  • 58
  • 57
  • 56
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
641

Solution-Phase Synthesis of Earth Abundant Semiconductors for Photovoltaic Applications

Apurva Ajit Pradhan (17476641) 03 December 2023 (has links)
<p dir="ltr">Transitioning to a carbon-neutral future will require a broad portfolio of green energy generation and storage solutions. With the abundant availability of solar radiation across the Earth’s surface, energy generation from photovoltaics (PVs) will be an important part of this green energy portfolio. While silicon-based solar cells currently dominate the PV market, temperatures exceeding 1000 °C are needed for purification of silicon, and batch processing of silicon wafers limits how rapidly Si-based PV can be deployed. Furthermore, silicon’s indirect band gap necessitates absorber layers to exceed 100 µm thick, limiting its applications to rigid substrates.</p><p dir="ltr">Solution processed thin-film solar cells may allow for the realization of continuous, high-throughput manufacturing of PV modules. Thin-film absorber materials have direct band gaps, allowing them to absorb light more efficiently, and thus, they can be as thin as a few hundred nanometers and can be deposited on flexible substrates. Solution deposition of these absorber materials utilizing molecular precursor-based inks could be done in a roll-to-roll format, drastically increasing the throughput of PV manufacturing, and reducing installation costs. In this dissertation, solution processed synthesis and the characterization of two emerging direct band gap absorber materials consisting of earth abundant elements is discussed: the enargite phase of Cu<sub>3</sub>AsS<sub>4</sub> and the distorted perovskite phase of BaZrS<sub>3</sub>.</p><p dir="ltr">The enargite phase of Cu<sub>3</sub>AsS<sub>4</sub> (ENG) is an emerging PV material with a 1.42 eV band gap, making it an ideal single-junction absorber material for photovoltaic applications. Unfortunately, ENG-based PV devices have historically been shown to have low power conversion efficiencies, potentially due to defects in the material. A combined computational and experimental study was completed where DFT-based calculations from collaborators were used inform synthesis strategies to improve the defect properties of ENG utilizing new synthesis techniques, including silver alloying, to reduce the density of harmful defects.</p><p dir="ltr">Chalcogenide perovskites are viewed as a stable alternative to halide perovskites, with BaZrS<sub>3</sub> being the most widely studied. With a band gap of 1.8 eV, BaZrS<sub>3</sub> could be an excellent wide-bandgap partner for a silicon-based tandem solar cell.<sub> </sub>Historically, sputtering, and solid-state approaches have been used to synthesize chalcogenide perovskites, but these methods require synthesis temperatures exceeding 800 °C, making them incompatible with the glass substrates and rear-contact layers required to create a PV device. In this dissertation, these high synthesis temperatures are bypassed through the development of a solution-processed deposition technique.<sub> </sub>A unique chemistry was developed to create fully soluble molecular precursor inks consisting of alkaline earth metal dithiocarboxylates and transition metal dithiocarbamates for direct-to-substrate synthesis of BaZrS<sub>3</sub> and BaHfS<sub>3</sub> at temperatures below 600 °C.</p><p dir="ltr">However, many challenges must be overcome before chalcogenide perovskites can be used for the creation of photovoltaic devices including oxide and Ruddlesden-Popper secondary phases, isolated grain growth, and deep level defects. Nevertheless, the development of a moderate temperature solution-based synthesis route makes chalcogenide perovskite research accessible to labs which do not have high temperature furnaces or sputtering equipment, further increasing research interest in this quickly developing absorber material.</p>
642

Infrared Emitting PbS Nanocrystals through Matrix Encapsulation

Liyanage, Geethika Kaushalya 03 July 2014 (has links)
No description available.
643

Examination Of The Solution Behaviors Of The Giant Inorganic-Organic Amphiphilic Hybrids

Zhang, Baofang 07 June 2016 (has links)
No description available.
644

Development of highly porous crystalline titania photocatalysts

Marszewski, Michal 14 October 2016 (has links)
No description available.
645

Synthesis of Magnetic Ternary Chalcogenides and Their Magneto-Structural Properties

Robert J Compton (13164669) 28 July 2022 (has links)
<p>  </p> <p>Magnetism plays a vital role in the technologies of today, and materials used for magnetic applications largely consist of solid state phases. Intermetallic chalcogenides are one such material which have exhibited a full range of properties useful for a variety of applications requiring soft magnets, superconductors, magnetocalorics, and even rarer magnetic phenomenon such as 1D Heisenburg magnetic chains. Solid state chemists continue to develop new synthesis methods for chalcogenides as they produce both new phases and modifications of existing phases, usually with the express intent of improving their physical and chemical properties. Low dimensional chalcogenides often have predictable structure-property relationships which when understood aids in these efforts of optimizing existing materials.</p> <p>In this work, we have synthesized novel, low-dimensional Tl1-xAxFe3Te3 (A = K, Na)-based magnetocalorics for magnetic refrigeration technologies utilizing a variety of synthetic methods. Doping of alkali metals into the thallium site simultaneously reduces the toxicity and cost of the material, and also modifies their crystal structures leading to changes in their magnetic properties including ordering temperature, magnetic anisotropy, magnetic hysteresis, coercivity, and magnetic entropies. Most notably, the magnetic ordering temperature has been boosted from 220 K of the prior known TlFe3Te3 phase up to 233 K in the new Tl0.68Na0.32Fe2.76Te3.32 phase, further towards room temperature which is required for the commercialization of magnetic refrigerants for home appliances. There exist strong magnetostructural correlations for most of the alterations in the magnetic properties, and relationships have been modelled where trends exist to match the magnetism to the changes in the unit cell of the structure.</p> <p>New synthetic methods were also developed for the ternary TBi4S7 (T = transition metal) phase which exhibits a pseudo-1D structure of Heisenberg antiferromagnetic chains. These synthetic techniques resulted in more consistent high purity of phases than methods reported previously in literature. Attempts at synthesizing new phases were made, and crystallographic and composition analysis methods suggested the synthesis of a new Mn1-xCoxBi4S7 phase, though magnetic impurities prevented characterization of this new material’s magnetic properties. </p>
646

Electrodeposition of Tunable Zinc Oxide Nanomaterials for Optical Applications

Pavlovski, Joey 01 October 2014 (has links)
<p>Renewable energy technologies and the development of cleaner and more environmentally friendly power have been at the forefront of research for the past few decades. Photovoltaic systems – systems that convert photon energy to electrical energy – are at the center of these research efforts. Decreasing the cost of energy production, through increasing the power conversion efficiency or decreasing the device cost, is a key factor in widespread use of these energy production systems. To increase the energy conversion efficiency, ideally, all useful photons should be absorbed by the solar cell; however, due to the large discontinuity in the refractive index at the solar cell/air interface, a large fraction of incidence light is lost due to reflection (30% loss in crystalline silicon cells). The currently used single and double layer anti-reflection coatings reduce the reflection losses, but their optimal performance is limited to a narrow range of wavelengths and angles of incidence. Moth-eye anti-reflection coatings are composed of patterned single layer films having a gradual decrease in refractive index from the solar cell surface to air. This study is focused on developing an inexpensive method for direct deposition of patterned films – in the form of moth-eye anti-reflection coatings – on solar cell surface.</p> <p>In this research, the creation of moth-eye anti-reflection coatings has been attempted through the process of electrodeposition. ZnO was chosen for the thin film material, and the ability to develop the required moth-eye structure by changing the electrodeposition parameters including temperature, applied potential, type and concentration of solution-borne species, and type of substrate was investigated. Using this method, pyramidal and hemispherical structures with a 100-200 nm diameter and 100-200 nm height were created directly on ITO substrates. Similar structures were also developed on silicon substrates. The anti-reflection properties of ZnO-coated silicon substrates were investigated by comparing their broadband and broad angle reflection-mode UV-VIS spectrum with uncoated silicon. The optimized ZnO-coated silicon substrate showed a reflectance of at most 20% for wavelengths between 400-1500 nm at angles of incidence less than 50<sup>O</sup>.</p> / Master of Applied Science (MASc)
647

Non-Coding RNA-Based Biosensors for Early Detection of Liver Cancer

Falahi, Sedigheh, Rafiee-Pour, Hossain-Ali, Zarejousheghani, Mashaalah, Rahimi, Parvaneh, Joseph, Yvonne 12 July 2024 (has links)
Primary liver cancer is an aggressive, lethal malignancy that ranks as the fourth leading cause of cancer-related death worldwide. Its 5-year mortality rate is estimated to be more than 95%. This significant low survival rate is due to poor diagnosis, which can be referred to as the lack of sufficient and early-stage detection methods. Many liver cancer-associated non-coding RNAs (ncRNAs) have been extensively examined to serve as promising biomarkers for precise diagnostics, prognostics, and the evaluation of the therapeutic progress. For the simple, rapid, and selective ncRNA detection, various nanomaterial-enhanced biosensors have been developed based on electrochemical, optical, and electromechanical detection methods. This review presents ncRNAs as the potential biomarkers for the early-stage diagnosis of liver cancer. Moreover, a comprehensive overview of recent developments in nanobiosensors for liver cancer-related ncRNA detection is provided.
648

<b>Substrate-Directed Heterogeneous Hydrogenation of Olefins Using Bimetallic Nanoparticles</b>

William Alexander Swann (19172248) 18 July 2024 (has links)
<p dir="ltr">Directed hydrogenation, in which product geometric selectivity is dictated by the binding of an ancillary directing group on the substrate to the catalyst, is typically achieved by homogeneous Rh and Ir complexes. No heterogeneous catalyst has been able to achieve equivalently high directivity due to a lack of control over substrate binding orientation at the catalyst surface. In this work, we demonstrate through structure-activity studies that careful control of surface ensemble geometry in bimetallic nanoparticle catalysts can confer hydroxyl-directed selectivity in heterogeneous double bond hydrogenation. We postulate that the oxophilic alloy component binds hydroxyl groups to pre-orient the molecule on the surface, while proximal noble metal atoms impart facially selective addition of hydride to the olefin. We found that controlling the degree of surface alloying between oxophilic and noble metal component as well as alloy component identity is critical to maximizing reaction selectivity and starting material conversion. Our optimized catalysts exhibit good functional group tolerance on a variety of cyclohexenol and cyclopentenol scaffolds, with Pd-Cu and Pt-Ni systems being developed for the diastereoselective hydrogenation of tri- and more challenging tetra-substituted olefins, respectively. The applicability of this method is then demonstrated in a four-step synthesis of a fine fragrance compound, (1<i>R</i>,2<i>S</i>)-(+)-<i>cis</i>-methyldihydrojasmonate (Paradisone®), with high yield and enantiopurity.</p>
649

TOWARDS SCALABLE QUANTUM PHOTONIC SYSTEMS:INTRINSIC SINGLE-PHOTON EMITTERS IN SILICONNITRIDE/OXIDE

Samuel Peana (18521370) 08 May 2024 (has links)
<p dir="ltr">This thesis is about the exciting discovery of a new kind of single photon emitter that<br>is suspected to occur at the interface of silicon nitride SixNy and silicon dioxide SiO2 after<br>being rapidly annealed. Since SixNy is one of the most developed platforms for integrated<br>photonics the discovery of a native emitter in this platform opened up the possibility for<br>seamless integration of these single photon emitters with photonic circuitry for the first<br>time. This seamless integration was demonstrated as is shown in Chapter 3 by creating the<br>emitters and then patterning the SixNy layer into a waveguide. This work demonstrated for<br>the first time the coupling of such single photon emitters with on-chip integrated photonics.<br>However, the integration approach demonstrated was based on the stochastic integration of<br>emitters which limits the efficiency of the devices and the possible types of devices that can<br>be designed. This is why the next stage of research focused on the development of a site-<br>controlled process for creating these single photon emitters. Remarkably, it was found that<br>if the SixNy and SiO2 are nanostructured into nanopillars and then annealed then a single<br>photon emitter forms over 65% of the time within the nanopillar! Due to the lithography<br>defined nature of this process for creating the single photon emitters the first multi-mask<br>integration process was also developed and demonstrated. This fabrication process was used<br>to demonstrate the integration of several thousand single photon emitters with complex<br>integrated photonic structures such as topology optimized couplers. These developments<br>has generated a great deal of excitement due to the inherent scalability of the approach and<br>it’s obvious applications for the development of very large scale integrated (VLSI) on-chip<br>quantum photonic systems.</p>
650

<b>Pushing the Limit of High-Temperature Thermal Metamaterials</b>

Ali R Jishi (19190992) 22 July 2024 (has links)
<p dir="ltr">Thermal Barrier Coatings (TBC) represent the key technology enabling greater efficiency and performance in jet engines and gas turbines. In modern engines, TBCs allow gas temperatures to exceed 1700°C, well above the point at which the structural alloys lose their strength. By insulating the underlying nickel-alloy components from the extreme heat generated during combustion, TBCs support a larger temperature gradient. </p><p dir="ltr">As operating temperatures are further increased to improve performance, thermal radiation becomes a more substantial carrier of heat. However, conventional TBCs are designed to provide a single barrier against only the phonon-mediated conductive heat flux, leaving the photonic radiative heat transfer largely unmitigated. We propose a Thermal Dual Barrier Coating (TDBC) to simultaneously suppress the phononic and photonic heat transfer by integrating a reflective thermal metamaterial into an independent phonon-optimized TBC.</p><p dir="ltr">The main obstacle to achieving the TDBC is in the selection of adequate reflective materials in the metamaterial. Conventional refractory metals that demonstrate the greatest stability and functionality in thermal metamaterials show instability under harsher environments. In our work, we identified and studied the key ideas, metrics, and challenges in metamaterials based on alternating layers of refractory metals and oxides for TDBC applications.</p><p dir="ltr">Our work emphasizes oxidation as a crucial degradation factor that is unavoidable in our assessment of the metamaterials. In formulating this problem, we bring the concept of oxidation-resistance through passivation to the forefront of material selection. We emphasize the passivative and oxidative properties of the metallic layer as a critical determinant in overall stability. In our work, we assess the enhancements in stability brought via passivation through the Pilling-Bedworth Ratio. We then propose the use of metal silicides in metamaterials as an overlooked class of oxidation-resistant IR reflective materials that operate through a more complex passivation method. We demonstrate strong stability in the structural integrity as well as the infrared responses of the metamaterials at up to 1200°C in atmospheric and oxidative environments.</p><p dir="ltr">After establishing the viability of metal silicides in wide-area thin films, we explore their viability in more complex thermal structures. We fabricate metal silicide metasurfaces for directional thermal emission. We demonstrate a grating structure that exhibits enhanced structural stability and maintains directional modes in the mid-IR after annealing at 1000°C.</p>

Page generated in 0.0603 seconds