631 |
Synthesis and Characterization of Ferroelectric NanomaterialsDu, Hongchu 02 July 2008 (has links)
In this dissertation, BaTiO3 nanocrystals, Bi4Ti3O12 nanostructured microspheres, and cosubstituted Bi4Ti3O12 nanoparticles and ceramics were prepared using solvothermal, hydrothermal and citrate-gel methods. The ferroelectric properties of the prepared cosubstituted Bi4Ti3O12 ceramics were studied using P–E hysteresis loop, leakage, and polarization fatigue measurements. A two-phase solvothermal synthesis approach for the preparation of hydrophobic BaTiO3 nanocrystals was developed. The two-phase method is based on the growth of nanocrystals at the oil/water interface by the reaction between metal surfactant complexes in the oil phase and a mineralizer in the water phase. Three kind of organic solvents, hexadecene, toluene, and heptane were used as the oil phase and compared to each other with respect to the product quality. The BaTiO3 particles are crystalline with a mean size of 3.7 nm and can be dispersed in a variety of organic solvents forming highly transparent dispersions. A hydrothermal method was developed for the synthesis of Bi4Ti3O12 nanostructured microspheres consisting of granular nanoparticles and nano-platelets. The precursor powder was prepared using a diethylene glycol mediated coprecipitation method. Tailoring of the morphology was achieved by changing the precursor quantity, sodium hydroxide concentration, and reaction time. The formation mechanism of the nanostructured microspheres probably involves aggregation, followed by dissolution and recrystallization. Bi3.25Pr0.75Ti2.97V0.03O12 (BPTV) and Bi3.25La0.75Ti3-xMxO12, (BLTMx, M = Mo, W, Nb, V, x = 0.0–0.12) ferroelectric nanoparticles and ceramics were synthesized using a modified citrate-gel method that has a crystallization temperature as low as 450 °C. The synthesized nanoparticles were spherical ranging from 30 to 100 nm. Except Nb5+, other donor cations were introduced using the corresponding oxides that have advantages in terms of high purity, low cost, and availability. The Bi3.25Pr0.75Ti2.97V0.03O12 ceramic is orthorhombic and its 2Pr and 2Ec values measured at 300 kV/cm were 35 μC/cm2 and 148 kV/cm respectively. The texture, microstructure, and ferroelectric properties of the prepared Bi3.25La0.75Ti3-xMxO12, (BLTMx, M = Mo, W, Nb, V, x = 0.0–0.12) ceramics depend on x. The maximum 2Pr (30–32 μC cm−2) was achieved at an optimum cosubstitution level (x = 0.025 for M6+, x = 0.03 for M5+). The high remanent polarization, low leakage current, and low polarization fatigue render the prepared ceramics promising for practical applications.
|
632 |
METHOD DEVELOPMENT IN THE NEGF FRAMEWORK: MAXIMALLY LOCALIZED WANNIER FUNCTION AND BÜTTIKER PROBE FOR MULTI-PARTICLE INTERACTIONKuang-Chung Wang (8082827) 06 December 2019 (has links)
<div>The work involves two new method implementation and application in the Quantum transport community for nano-scale electronic devices. </div><div><br></div><div>First method: Ab-initio Tight-Binding(TB)</div><div> </div><div>As the surfacing of novel 2D materials, layers can be stacked freely on top of each other bound by Van der Waals force with atomic precision. New devices created with unique characteristics will need the theoretical guidance. The empirical tight-binding method is known to have difficulty accurately representing Hamiltonian of the 2D materials. Maximally localized Wannier function(MLWF) constructed directly from ab-initio calculation is an efficient and accurate method for basis construction. Together with NEGF, device calculation can be conducted. The implementation of MLWF in NEMO5 and the application on 2D MOS structure to demystify interlayer coupling are addressed. </div><div> </div><div>Second method: Büttiker-probe Recombination/Generation(RG) method:</div><div><br></div><div>The non-equilibrium Green function (NEGF) method is capable of nanodevice performance predictions including coherent and incoherent effects. To treat incoherent scattering, carrier generation and recombination is computationally very expensive. In this work, the numerically efficient Büttiker-probe model is expanded to cover recombination and generation effects in addition to various incoherent scattering processes. The capability of the new method to predict nanodevices is exemplified with quantum well III-N light-emitting diodes and photo-detector. Comparison is made with the state of art drift-diffusion method. Agreements are found to justify the method and disagreements are identified attributing to quantum effects. </div><div><br></div><div>The two menthod are individually developed and utilized together to study BP/MoS2 interface. In this vertical 2D device, anti-ambipolar(AAP) IV curve has been identified experimentally with different explanation in the current literature. An atomistic simulation is performed with basis generated from density functional theory. Recombination process is included and is able to explain the experiment findings and to provide insights into 2D interface devices.</div><div><br></div><div> </div>
|
633 |
Adheze, růst a diferenciace osteoblastů a kmenových stromálních buněk na povrchu biokompatibilních nanomateriálů / Adhesion, growth and differentiation of osteoblasts and mesenchymal stromal cells on biocompatible nanomaterial surfacesBrož, Antonín January 2017 (has links)
The thesis is based on articles describing the fundamental research of carbon based nanomaterials for their possible utilization in biomedicine. The aim of this thesis was to describe the way how human osteoblasts (SAOS-2 cell line) and primary human mesenchymal stem cells (hMSC) adhere, grow and behave on surfaces made of several carbon allotropes - nanocrystalline diamond (NCD), single walled carbon nanotubes (SWCNTs) films and graphene. The utilization of carbon as the basic material promised good biocompatibility and possibility of useful surface modifications. The NCD had modified surface nanotopography (nanoroughness and nanostructuring prepared by dry ion etching). All the materials had modified surface atomic termination with oxygen and hydrogen which changes the surface electrical conductivity, surface charge and wettability. It was hypothesized that the surface termination can also influence the cell adhesion and growth. It turned out that all the studied materials were suitable as substrates for cultivation of mentioned cell types. Various nanoroughnesses of NCD surface had different effect on the cell adhesion and cell metabolic activity. Nanostructuring of the NCD influenced the formation of focal adhesions. The surface terminations of NCD and the other studied nanomaterials in...
|
634 |
NANOMATERIALS FOR HIGH EFFICIENCY MEMBRANE DISTILLATIONHarsharaj Birendrasi Parmar (10712010) 06 May 2021 (has links)
<div>Thermal desalination of high salinity water resources is crucial for increasing freshwater supply, but efficiency enhancements are badly needed. Nanomaterial enhancements and novel condensation regimes offer enormous potential for improving promising technologies like membrane distillation (MD). In this work, we first examined nanofluids for MD, including the role of nanoscale physics, and model system-level energy efficiency enhancements. Our model included the dominant micro-mixing from Brownian motion in fine particle nanofluids (copper oxide) and the unusually high axial conduction from phonon resonance through Van der Waals interaction in carbon nanotube nanofluids. Carbon nanotubes resulted in a consistent, wide range of improvements; while copper oxide particles showcased diminishing returns after a concentration of 0.7%, where Brownian motion effects reduced. However, the enhancements at higher concentrations from liquid layering around nanoparticles were impractical in MD, since the related high surfactant levels compromised the membrane hydrophobicity and promoted fouling. Dilute solutions of metallic nanofluids can be actively integrated to enhance the performance of MD, whereas stronger nanofluid solutions should be limited to heat exchangers that supply thermal energy to MD systems. We then investigated slippery liquid infused porous surfaces (SLIPS) for enhanced condensation rates in MD. Dropwise condensation heat transfer was modelled considering the effects of the departing, minimum droplet radii and the interfacial thermal resistances. Effective droplet shedding from these surfaces led to an experimental thermal efficiency of 95%. Alternatively, porous condensers with superior wicking properties and conductive heat transfer offered a robust solution to high salinity desalination. We modelled the onset of flooding in porous condensers using Darcy’s law for porous media, including the effects of the condenser permeability and determined the optimal condenser thickness at varying system length scales. The increased active area of condensation resulted in a significant enhancement (96.5%) in permeate production and 31.7% improvement in experimental thermal efficiency. However, porous condensers were only compatible with flat plate module designs limiting their practicality.</div>
|
635 |
Synthesis and Bioactivity Studies of Nanoparticles Based on Simple Inorganic and Coordination Gallium Compounds as Cellular Delivering Vehicles of Ga(III) Ions for Potential Therapeutic ApplicationsPryor, Donald Edward 30 November 2018 (has links)
No description available.
|
636 |
EXPLOITING MAGNETIC CORRELATIONS IN LOW-DIMENSIONAL HYBRID QUANTUM SYSTEMS: TOWARDS NEXT-GENERATION SPINTRONIC DEVICESMohammad Mushfiqur Rahman (16792350) 07 August 2023 (has links)
<p>In recent years, correlated magnetic phenomena have emerged as a unique resource for enabling alternative computing, memory, and sensing applications. This has led to the exploration of novel magnetic hybrid platforms with the promise of improved figures of merit over the state-of-the-art. In this dissertation, we delve into several example platforms where magnets interact with various other degrees of freedom, resulting in enhanced figures of merit and/or the emergence of novel functionalities.</p><p>First, we investigate the possibility of utilizing the collective resonant mode of nanomagnets to enhance the electric field sensitivity of quantum spin defects. While quantum systems have garnered significant attention in recent years for their extraordinary potential in information processing, their potential in the field of quantum sensing remains yet to be fully explored. Quantum systems, with their inherent fragility to external signals, can be harnessed as powerful tools to develop highly efficient sensors. In this dissertation, we explore the potential of a specific type of quantum sensor, namely the quantum spin defects as an electric field sensor, when integrated with a nanomagnet/piezoelectric composite multiferroic. This integration yields at least an order of magnitude enhancement in sensitivity, presenting a promising avenue for quantum sensing applications.</p><p>Next, we shift our focus towards harnessing magnetic correlation in the emerging class of atomically thin magnets known as van der Waals magnets. These magnets provide distinctive opportunities for controlling and exploiting magnetic correlations. Specifically, these platforms allow for tunable magnetic interactions by twisting two vertically adjacent layers of the magnet, features that are unique to van der Waals materials. By capitalizing on such twist degrees of freedom, we demonstrate the creation of twist-tunable nanoscale magnetic ground states. This capability opens up avenues for applications such as high-density memories and magnon crystals.</p><p>Interestingly, the same material platform also allows for exploiting magnetic correlation by controlling the local electrical environment. We uncover the symmetry-allowed spin-charge coupling mechanisms in the heterostructures of such magnets, a prediction that has received experimental support. Utilizing such an understanding, we propose a setup for the electrical generation of magnons. Magnons—the elementary excitation of spin waves—have garnered a lot of attention these days due to their potential to couple various diverse physical systems and in the field of low dissipation computing. Our findings offer a potential pathway towards the realization of magnon-based spintronic devices.</p>
|
637 |
THE STUDY AND APPLICATIONS OF PLASMONICS WITH ORDERED AND DISORDERED METASURFACESSarah Nahar Chowdhury (9215831) 13 June 2023 (has links)
<p>Plasmonics with the capability to harness electromagnetic waves at a nanoscale can be utilized for multitude of applications in ultra-compact miniature optical devices. Plasmonic metasurfaces which are artificially designed sub-wavelength structures have gained unprecedented interest in being able to engineer and effectively modulate the amplitude and phase of the incident wave. Introducing randomness to such plasmonic metasurfaces can also advance possibilities for extraordinary wave manipulation. Hence, by exploiting the plasmonic response of the ordered and disordered metasurfaces, we can design high performance devices for nanoscale optics.</p>
<p>Aiming to provide a holistic solution to the current device limitations and bio-compatibility, my research focuses on non-toxic and environment-friendly coloration using plasmonic disordered metasurfaces. These structures generate a broad range of long-lasting colors in reflection that can be applied to real-life artistic or technological applications with a spatial resolution on the order of 0.3 mm or less. Moreover, my research also deals with the possibility of even concentrating energy in the smallest phase-space volume in optics in the form of coherent radiation through designing nanolasers. The study of carrier dynamics and photophysics of the gain media can be extremely beneficial towards the practicability of these lasers. This work elucidates the evolution of different competing mechanisms for coherent lasing. The dynamic study and experimental demonstration of these devices and respective materials can therefore provide a novel aspect to fundamental and applied research.</p>
|
638 |
NANOSTRUCTURED PRESENTATION OF CARBOHYDRATES AND PROTEINS AT HYDROGEL SURFACESAnamika Singh (16631778) 24 July 2023 (has links)
<p>Extracellular matrix (ECM) creates high-resolution chemical patterns, by assembling simple molecules with nm-scale features (e.g., carbohydrates, nucleotides, amino acids) into complex structures up to micrometers and extending to even larger scales across tissues (e.g., glycans, DNA, proteins), capable of carrying out the diverse and complex cellular functions. Mimicking the complexity of such biological systems requires precise control over the chemical patterning on substrates that exhibit physiochemical properties similar to biological systems (such as hydrogels). Although hydrogels provide tunable physiochemical properties suitable for biological applications; it is a porous material where pore sizes can range from 30 nm to greater than 1000 nm. Due to this structural heterogeneity, chemical patterning below the length scale of this heterogeneity is very challenging.</p>
<p>Here, we demonstrate a new assembly system for generating a nanostructured presentation of carbohydrates on the hydrogel surface. This approach is based on the striped phases assembly of functional alkanes where 1-nm resolution functional patterns are readily assembled on substrates such as highly ordered pyrolytic graphite (HOPG). In this assembly, molecules are stabilized by noncovalent interactions, including alkyl-pi interactions underlying the HOPG, van der Waals interaction between the adjacent alkyl chains, and hydrogen bonding between polar head groups. Topochemical polymerization converts internal diynes into conjugated polydiacetylenes (PDAs). PDAs can also be utilized to covalently attach the striped pattern to polyacrylamide hydrogels through free radical chemistry.</p>
<p>Here, we synthesize new amphiphiles with carbohydrate headgroups (N-acetyl-D-glucosamine (GlcNAc), and D-glucuronic acid (GlcA)), assembled into striped phases on HOPG and covalently transfer to polyacrylamide hydrogels. GlcNAc binds to wheat germ agglutinin (WGA), a lectin that binds specifically in a multivalent fashion (dissociation constant KD in nm range) to GlcNAc. We show that GlcNAc striped phases generate highly selective interactions with wheat germ agglutinin (WGA) but do not induce specific binding with concanavalin A (another lectin molecule that does not target GlcNAc). We further demonstrate that WGA binding affinity can be modulated by shifting the position of diacetylenes that bring the polymer backbone closer to the GlcNAc, increasing the effecting local concentration of carbohydrates.</p>
<p>We investigated the possibility of using sPDA for secondary functionalization with complex biological molecules (such as biotin and cRGD) to mimic the ECM composition closely. The unusual reactivity of the sPDA backbones during the covalent transfer of the striped phase monolayer to hydrogels illustrates the potential of sPDA reactivity azides. In this work, we show that the addition of substituted azide molecules to sPDA-functionalized hydrogels produces a decrease in the fluorescence of the sPDA monolayer. Since these reactions are occurring on porous hydrogel surfaces characterization using techniques such as IR or NMR is difficult. We carried out further solution-phase reactions using a soluble PDA where PDA UV-vis absorption spectra red-shift after the reaction between the PDA backbone and azide. These experiments support the hypothesis of sPDA and azide click reaction.</p>
|
639 |
Développement d’une méthode d’extraction et d’analyse de nanoparticules d’argent dans le boeuf haché par spectrométrie de masse à plasma à couplage inductif en mode particule uniqueChalifoux, Alexandre 05 1900 (has links)
La caractérisation de nanomatériaux dans des matrices alimentaires et animales suscite un intérêt scientifique important afin d’évaluer les risques potentiels de l’exposition liés à l’utilisation grandissante des nanomatériaux par plusieurs industries, y compris un certain nombre d’applications agroalimentaires. Un facteur limitant à l’étude et la réglementation des nanomatériaux dans des matrices complexes telle que la nourriture est l’absence de méthodes standardisées pour l’extraction et l’analyse de nanoparticules, tout en évitant l’altération de certaines caractéristiques physicochimiques des nanoparticules. Les travaux présentés dans ce mémoire abordent l’optimisation de plusieurs approches de préparation d’échantillon (hydrolyse enzymatique et alcaline) pour l’extraction de nanoparticules d’Ag préalablement équilibrées dans une matrice de boeuf haché mi-maigre. Les nanoparticules extraites ont été analysées par spectrométrie de masse à plasma à couplage inductif en mode particule unique (SP-ICP-MS) permettant la mesure de leur taille et concentration, mais aussi de la concentration en métal dissous, le tout à de très faibles concentrations (de l’ordre du ng/L). La validation de l’analyse par SP-ICP-MS a été réalisée par évaluation de la répétabilité, de la détermination des limites de détection et par une investigation de l’influence du traitement de données sur l’interprétation des résultats.
Les pertes de nanoparticules lors de la préparation des échantillons ont été minimisées par l’identification et l’optimisation de paramètres clés tels que la composition du médium d’extraction, l’utilisation d’ultrasons et de la manipulation de l’échantillon après dégradation de la matrice. Les meilleurs recouvrements ont été obtenus par hydrolyse alcaline de la matrice en utilisant de l’hydroxyde de tetramethylammonium (TMAH), mais les échantillons obtenus étaient moins stables et plus susceptibles aux altérations des propriétés physicochimiques des nanoparticules que pour la dégradation par hydrolyse enzymatique utilisant lipase et pancréatine de porc. / The regulation and characterization of nanomaterials in foods and animal matrices are of great interest due to the potential risks associated with their exposure and the increasing number of instances where they are used within the food industry. One factor limiting the scientifically rigorous regulation of nanoparticles in foods is the lack of standardized procedures for the extraction of nanoparticles (NP) from complex matrices, without alteration of their physico-chemical properties. To this end, two sample preparation approaches (enzymatic- and alkaline-based hydrolyses) were tested and optimized in order to extract 40 nm Ag NP, following their equilibration with a fatty ground beef matrix. Extracted NP were characterized using single particle inductively coupled plasma mass spectrometry (SP-ICP-MS), allowing the determination of NP size and concentrations and also dissolved metal concentrations at trace levels. Validation of the SP-ICP-MS analysis was achieved by an evaluation of the repeatability and accuracy and by a determination of the various detection limits. Finally, we also looked into the influence of data treatment on interpretation of the results.
NP losses during the sample preparation were minimized by identifying and optimizing key parameters such as the composition of the extraction media, usage of ultrasonication or the handling of the sample after separation from the undigested matter, among other points. The alkaline approach using TMAH (tetramethylammonium hydroxide) was found to have the highest recoveries, however processed samples were found to be less stable and more prone to alteration of the Ag NP physicochemical characteristics than samples processed using an enzymatic digestion based upon pork pancreatin and lipase.
|
640 |
MORPHOLOGY TUNING OF OXIDE-METAL VERTICALLY ALIGNED NANOCOMPOSITES FOR HYBRID METAMATERIALSJuanjuan Lu (17658789) 19 December 2023 (has links)
<p dir="ltr">Metamaterials are artificially engineered nanoscale systems with a three-dimensional repetitive arrangement of certain components, and present exceptional optical properties for applications in nanophotonics, solar cells, plasmonic devices, and more. Self-assembled oxide-metal vertically aligned nanocomposites (VANs), with metallic phase as nanopillars embedded in the matrix oxide, have been recently proposed as a promising candidate for metamaterial applications. However, precise microstructural control and the structure-property relationships in VANs are still in high demand. Thus, by employing multiple approaches for structural design, this dissertation attempts to investigate the mechanisms of nanostructure evolutions and the corresponding optical responses.</p><p dir="ltr">In this dissertation, the precise control over the nanostructures has been demonstrated through morphology tuning, nanopillar orderings, and strain engineering. Firstly, Au, a well-known plasmonic mediator, has been selected as the metallic phase that forms nanopillars. Based on the previously proposed strain compensation model which describes the basic formation mechanism of VAN morphology, two oxides were then considered: La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3 </sub>(LSMO) and CeO<sub>2</sub>. In the first two chapters of this dissertation, LSMO was considered due to its similar lattice (a<sub>LSMO </sub>= 3.87 Å, a<sub>Au </sub>= 4.08 Å) and its enormous potential in nanoelectronics and spintronics. Deposited on SrTiO<sub>3</sub> (001) substrate through pulsed laser deposition (PLD), LSMO-Au nanocomposites exhibit ideal VAN morphology as well as promising hyperbolic dispersions in response to the incident illuminations. By substrate surface treatment of annealing at 1000°C, and variation of STO substate orientations from (001), to (111) and (110), the improved and tunable in-plan orderings of Au nanopillars have been successfully achieved. In the third chapter, a new oxide-metal VAN system of <a href="" target="_blank">CeO<sub>2</sub></a>-Au (a<sub>CeO2 </sub>= 5.411 Å, and a<sub> CeO2</sub>/= 3.83 Å) has been deposited. The intriguing 45° rotated in-plan epitaxy presents an unexpected update to the strain compensation model, and tuning of Au morphology from nanopillars, nanoantennas, to nanoparticles also shows an effective modulation of the LSPR responses. COMSOL simulations have been exploited to reveal the relationships between Au morphologies and optical responses. In the last chapter, the two VAN systems of LSMO-Au and CeO<sub>2</sub>-Au have been combined to form a complex layered VAN thin film. Investigations into the strain states, the nature of complex interfaces, and the according hybrid properties, show dramatic possibilities for further strain engineering. In summary, this dissertation has provided multiple routes for highly tailorable oxide-metal nanocomposite designs. And the two proposed material systems present great potential in optical metamaterial applications including biosensors, photovoltaics, super lenses, and more.</p>
|
Page generated in 0.1094 seconds