661 |
Device-Circuit Co-Design Employing Phase Transition Materials for Low Power ElectronicsAhmedullah Aziz (7025126) 12 August 2019 (has links)
<div>
<div>
<p>Phase
transition materials (PTM) have garnered immense interest in concurrent
post-CMOS electronics, due to their unique properties such as - electrically
driven abrupt resistance switching, hysteresis, and high selectivity. The phase
transitions can be attributed to diverse material-specific phenomena, including-
correlated electrons, filamentary ion diffusion, and dimerization. In this
research, we explore the application space for these materials through
extensive device-circuit co-design and propose new ideas harnessing their unique
electrical properties. The abrupt transitions and high selectivity of PTMs
enable steep (< 60 mV/decade) switching characteristics in Hyper-FET, a
promising post-CMOS transistor. We explore device-circuit co-design methodology
for Hyper-FET and identify the criterion for material down-selection. We evaluate
the achievable voltage swing, energy-delay trade-off, and noise response for
this novel device. In addition to the application in low power logic device,
PTMs can actively facilitate non-volatile memory design. We propose a PTM
augmented Spin Transfer Torque (STT) MRAM that utilizes selective phase
transitions to boost the sense margin and stability of stored data,
simultaneously. We show that such selective transitions can also be used to
improve other MRAM designs with separate read/write paths, avoiding the possibility
of read-write conflicts. Further, we analyze the application of PTMs as
selectors in cross-point memories. We establish a general simulation framework for
cross-point memory array with PTM based <i>selector</i>.
We explore the biasing constraints, develop detailed design methodology, and
deduce figures of merit for PTM selectors. We also develop a computationally
efficient compact model to estimate the leakage through the sneak paths in a
cross-point array. Subsequently, we present a new sense amplifier design utilizing
PTM, which offers built-in tunable reference with low power and area demand.
Finally, we show that the hysteretic characteristics of unipolar PTMs can be
utilized to achieve highly efficient rectification. We validate the idea by demonstrating
significant design improvements in a <i>Cockcroft-Walton
Multiplier, </i>implemented with TS
based rectifiers. We emphasize the need to explore other PTMs with high
endurance, thermal stability, and faster switching to enable many more
innovative applications in the future.</p></div></div>
|
662 |
Evolution and Environmental Degradation of Superhydrophobic Aspen and Black Locust Leaf SurfacesTranquada, George Christopher 17 July 2013 (has links)
The current study is focused on the characterization of four natural leaf species (quaking, bigtooth and columnar european aspen as well as black locust) possessing a unique dual-scale cuticle structure composed of micro- and nano-scale asperities, which are able to effectively resist wetting (superhydrophobic), characteristic of The Lotus Effect. Scanning Electron Microscopy (SEM) was used to track the growth and evolution of their distinctive nano-scale epicuticular wax (ECW) morphologies over one full growing season. In addition, the stability of their superhydrophobic property was tested in various environments. It was determined that the long-term stability of these surfaces is tentatively linked to various environmental stress factors. Specifically, a combination of high temperature and humidity caused the degradation of nano-scale asperities and loss of the superhydrophobic property. The dual-scale surface structure was found to provide a suitable template for the design of future superhydrophobic engineering materials.
|
663 |
Evolution and Environmental Degradation of Superhydrophobic Aspen and Black Locust Leaf SurfacesTranquada, George Christopher 17 July 2013 (has links)
The current study is focused on the characterization of four natural leaf species (quaking, bigtooth and columnar european aspen as well as black locust) possessing a unique dual-scale cuticle structure composed of micro- and nano-scale asperities, which are able to effectively resist wetting (superhydrophobic), characteristic of The Lotus Effect. Scanning Electron Microscopy (SEM) was used to track the growth and evolution of their distinctive nano-scale epicuticular wax (ECW) morphologies over one full growing season. In addition, the stability of their superhydrophobic property was tested in various environments. It was determined that the long-term stability of these surfaces is tentatively linked to various environmental stress factors. Specifically, a combination of high temperature and humidity caused the degradation of nano-scale asperities and loss of the superhydrophobic property. The dual-scale surface structure was found to provide a suitable template for the design of future superhydrophobic engineering materials.
|
664 |
Modulation of Nanostructures in the Solid and Solution States and under an Electron BeamSanyal, Udishnu January 2013 (has links) (PDF)
Among various nanomaterials, metal nanoparticles are the widely studied ones because of their pronounced distinct properties arising in the nanometer size regime, which can be tailored easily by tuning predominantly their size and shape. During the past few decades, scientists are engaged in developing new synthetic methodologies for the synthesis of metal nanoparticles which can be divided into two broad categories: i) top-down approach, utilizing physical methods and ii) bottom-up approach, employing chemical methods. As the chemical methods offer better control over particle size, numerous chemical methods have been developed to obtain metal nanoparticles with narrow size distribution. However, these two approaches have their own merits and demerits; they are not complementary to each other and also not sustainable for real time applications. Recent focus on the synthesis of metal nanoparticles is towards the development of green and sustainable synthetic methodologies. A solid state route is an exciting prospect in this direction because it eliminates usage of organic solvents thus, makes the overall process green and at the same time leads to the realization of large quantity of the materials, which is required for many applications. However, the major obstacle associated with the development of a solid state synthetic route is the lack of fundamental understanding regarding the formation mechanism of the nanoparticles in the solid state. Additionally, due to the heterogeneity present in the solid mixture, it is very difficult to ensure the proximity between the capping agent and nuclei which plays the most decisive role in the growth process. Recently, employment of amine–borane compounds as reducing agents emerged as a better prospect towards the development of sustainable synthetic routes for metal nanoparticles because they offer a variety of advantages over the traditional borohydrides. Being soluble in organic medium, amine– borane allows the reaction to be carried out in a single phase and due to its mild reducing ability a much better control over the nucleation and growth processes is realized. However, the most exciting feature of these compounds is that their reducing ability is not only limited to the solution state, they can also bring out the reduction of metal ions in the solid state.
With the availability of a variety of amine–boranes of varying reducing ability, it opens up a possibility to modulate the nanostructure in both solid and solution states by a judicious choice of reducing agent. Although our current understanding regarding the growth behavior of nanoparticles has advanced remarkably, however, most often it is some classical model which is invoked to understand these processes. With the recent developments in in situ transmission electron microscopy techniques, it is now possible to unravel more complex growth trajectories of nanoparticles. These studies not only expand the scope of the present knowledge but also opens up possibilities for many future developments. Objectives
• To develop an atom economy solid state synthetic methodology for the synthesis of metal nanoparticles employing amine–boranes as reducing agents.
• To gain a mechanistic insight into the formation mechanisms of nanoparticles in the solid state by using amine–boranes with differing reducing ability.
• Synthesis of bimetallic nanoparticles as well as supported metal nanoparticles in the solid state using ammonia borane as the reducing agent.
• To develop a new in situ seeding growth methodology for the synthesis of core@shell nanoparticles composed of noble metals by employing a very weak reducing agent, trimethylamine borane and their transformation to their thermodynamically stable alloy counterparts.
• Synthesis of highly monodisperse ultra-small colloidal calcium nanoparticles with different capping agents such as hexadecylamine, octadecylamine, poly(vinylpyrrolidone) and a combination of hexadecylamine/poly(vinylpyrrolidone) using the solvated metal atom dispersion (SMAD) method. To study the coalescence behavior of a pair of calcium nanoparticles under an electron beam by employing in situ TEM technique.
Significant results
An atom economy solid state synthetic route has been developed for the synthesis of metal nanoparticles from simple metal salts using amine–boranes as reducing agents. Amine–borane plays a dual role here: acts as a reducing agent thus brings out the reduction of metal ions and decomposes simultaneously to generate B-N based compounds which acts as a capping agent to stabilize the particles in the nanosize regime. This essentially minimizes the
number of reagents used and hence simplifying and eliminating the purification procedures and thus, brings out an atom economy to the overall process. Additionally, as the reactions were carried out in the solid state, it eliminates use of organic solvents which have many adverse effects on the environment, thus makes the synthetic route, green. The particle size and the size distribution were tuned by employing amine–boranes with differing reducing abilities. Three different amine–boranes have been employed: ammonia borane (AB), dimethylamine borane (DMAB), and trimethylamine borane (TMAB) whose reducing ability varies as AB > DMAB >> TMAB. It was found that in case of AB, it is the polyborazylene or BNHx polymer whereas, in case of DMAB and TMAB, the complexing amines act as the stabilizing agents. Several controlled studies also showed that the rate of addition of metal salt to AB is the crucial step and has a profound effect on the particle size as well as the size distribution. It was also found that an optimum ratio of amine–borane to metal salt is important to realize the smallest possible size with narrowest size distribution. Whereas, use of AB and TMAB resulted in the smallest sized particles with best size distribution, usage of DMAB provided larger particles that are also polydisperse in nature. Based on several experiments along with available data, the formation mechanism of metal nanoparticles in the solid state has been proposed. Highly monodisperse Cu, Ag, Au, Pd, and Ir nanoparticles were realized using the solid state route described herein. The solid state route was extended to the synthesis of bimetallic nanoparticles as well as supported metal nanoparticles. Employment of metal nitrate as the metal precursor and ammonia borane as the reducing agent resulted in highly exothermic reaction. The heat evolved in this reaction was exploited successfully towards mixing of the constituent elements thus allowing the alloy formation to occur at much lower temperature (60 oC) compared to the traditional solid state metallurgical methods (temperature used in these cases are > 1000 oC). Synthesis of highly monodisperse 2-3 nm Cu/Au and 5-8 nm Cu/Ag nanoparticles were demonstrated herein. Alumina and silica supported Pt and Pd nanoparticles have also been prepared. Use of ammonia borane as the reducing agent in the solid state brought out the reduction of metal ions to metal nanoparticles and the simultaneous generation of BNHx polymer which encapsulates the metal (Pt and Pd) nanoparticles supported on support materials. Treatment of these materials with methanol resulted in the solvolysis of BNHx polymer and its complete removal to finally provide metal nanoparticles on the support materials.
An in situ seeding growth methodology for the synthesis of bimetallic nanoparticles with core@shell architecture composed of noble metals has been developed using trimethylamine borane (TMAB) as the reducing agent. The key idea of this synthetic procedure is that, TMAB being a weak reducing agent is able to differentiate the smallest possible window of reduction potential and hence reduces the metal ions sequentially. A dramatic solvent effect was noted in the preparation of Ag nanoparticles: Ag nanoparticles were obtained at room temperature when dry THF was used as the solvent whereas, reflux condition was required to realize the same using wet THF as the solvent. However, no such behavior was noted in the preparation of Au and Pd nanoparticles wherein Au and Pd nanoparticles were obtained at room temperature and reflux conditions, respectively. This difference in reduction behavior was successfully exploited to synthesize Au@Ag, Ag@Au, and Ag@Pd nanoparticles. All these core@shell nanoparticles were further transformed to their alloy counterparts under very mild conditions reported to date. Highly monodisperse, ultrasmall, colloidal Ca nanoparticles with a size regime of 2-4 nm were synthesized using solvated metal atom dispersion (SMAD) method and digestive ripening technique. Hexadecylamine (HDA) was used as the stabilizing agent in this case. Employment of capping agent with a longer chain length, octadecylamine afforded even smaller sized particles. However, when poly(vinylpyrrolidone) (PVP), a branched chain polymer was used as the capping agent, agglomerated particles were realized together with small particles of 3-6 nm. Use of a combination of PVP and HDA resulted in spherical particles of 2-3 nm size with narrow size distribution. Growth of Ca nanoparticles via colaesence mechanism was observed under an electron beam. Employing in situ transmission electron microscopy technique, real time coalescence between a pair of Ca nanoparticles were detected and details of coalescence steps were analyzed.
|
665 |
Elaboration et propriétés de matériaux hybrides polymères-systèmes auto-assemblés / Elaboration and properties of hybride nanomaterials polymers-self-assembled systemsBoulaoued, Athmane 29 September 2015 (has links)
Ce travail de thèse a porté sur l’élaboration de nanomatériaux hybrides de type nano-câbles fonctionnels, composés de polymères covalents et de molécules auto-assemblées. L’approche «bottom-up» adoptée repose sur des processus uniquement physiques, à savoir la nucléation hétérogène, la cristallisation et la gélification thermo réversible. Deux systèmes hybrides ont été élaborés et étudiés: le premier est composé de molécules de tetra-2-éthylhexanoate de bicuivre (CuS8) auto-assemblées en filaments, lesquels sont encapsulés au sein des fibrilles de polystyrène isotactique (iPS). Nous avons montré au travers de différentes études (DSC, DNPA,SQUID, EXAFS et IR-TF) que leur encapsulation permet non seulement de les stabiliser mais également de modifier leur comportement antiferromagnétique. Le deuxième système a consisté à des fibrilles de poly(alkylthiophène)s (P3AT), emmaillotées au moyen de molécules diamides (BHPB-10) capables de s'assembler en nanotubes. En plus des études de la morphologie et de la structuration par TEM et UV-Vis,nous avons étudié les propriétés de conductivité du système hybride P3BT/BHPB-10 en C-AFM. Nous avons montré qu’il est effectivement possible de réaliser des nano-câbles semi-conducteur gainés. / This thesis deals with new hybrid nanomaterials of functional nanocable-like structures, consisting of covalent polymers and self-assembled molecules. The «bottom-up» approach adopted for the elaboration is based only on physical processes such as heterogeneous nucleation, crystallization and thermoreversible gelation. This original approach allowed us to easily prepare two functional nanocables: the first consisted of bicopper tetra-2-ethylhexanoate (CuS8) molecules self-assembled on filaments which are encapsulated within isotactic polystyrene (iPS) fibrils. We proved throughout different studies (DSC, SANS, SQUID, EXAFS and FT-IR) that the encapsulation allows one to get stable filaments, and particularly to modify their antiferromagnetic behavior as well. The second system constituted of poly(alkylthiophene)s fibrilles (P3AT), sheathed by diamides molecules (BHPB-10) self-assembled on nanotubes. Besides the morphological and the structuration studies (TEM and UV-Vis), we investigated the conductivity of the hybrid system P3BT/BHPB-10 by C-AFM. Results showed the possibility to obtain sheathed semi-conducting nano-cables.
|
666 |
Fusion de données hyperspectrales, polarimétriques et angulaires de diffusion : application au diagnostic optique de milieux denses et complexes / Data fusion system for hyperspectral, polarimetric, and angular scattering : application to optical diagnostic of dense and complex mediaCeolato, Romain 08 November 2013 (has links)
Ces travaux de recherche portent sur le développement d'un système original de fusion de données de diffusion électromagnétique et optique par des milieux denses et complexes. La méthode, à la fois théorique, numérique et expérimentale, permet la fusion des signatures de diffusion hyperspectrales, polarimétriques et angulaires d'un milieu d'étude. Un système expérimental multi-capteurs comprenant une source laser supercontinuum est présenté pour mesurer les signatures de diffusion de différentes cibles. Des modèles directs de simulation physique ont aussi été développés via : (i) une approche dite « top-down » qui modélise les signatures à partir de paramètres macroscopiques (ex. rugosité, indices optiques effectifs) ou (ii) une approche dite « bottom-up » qui modélise les signatures à partir de paramètres microscopiques (ex. distribution en taille, géométrie, concentration, indices optiques et structuration des diffuseurs) en résolvant soit l'équation de transfert radiatif ou directement les équations de Maxwell. Des méthodes inverses appliquées sur les signatures mesurées sont développées pour retrouver simultanément les paramètres d’intérêt du milieu analysé. Les avancées de ces travaux permettent une amélioration de la compréhension des phénomènes de diffusion électromagnétiques et optiques par des milieux denses et complexes tels que les surfaces rugueuses, les revêtements, les nanomatériaux, les suspensions colloïdales ou les agrégats fractals d'aérosols ultrafins. Les domaines d'applications de ces travaux sont l'aéronautique (ex. peintures d'aéronefs), l'imagerie aéroportée ou satellite (ex. imagerie active hyperspectrale ou polarimétrique), la sécurité et la défense (ex. matériaux pour la furtivité) ou bien les sciences de l'atmosphère (ex. systèmes LiDAR, suivi de pollution, suies), l'industrie chimique (ex. suspensions colloïdales) ou le biomédical (ex. diagnostic de tumeurs et mélanomes). / This work reports the development of an original data fusion system dedicated to electromagnetic and light scattering by dense and complex media. The dissertation encompasses the theoretical, numerical and experimental studies. The output of the data fusion system is a fused hyperspectral, polarimetric and angular scattering signature. An experimental multi-sensor and supercontinuum laser-based system is presented to measure the scattering signatures for various targets. Direct physical simulation models were developed using a two-level modelling scheme: (i) a top-down approach is used to model signatures from macro-physical parameters, e.g. the surface roughness or the effective refractive index and, (ii) a bottom-up approach is used to model signatures from microphysical parameters, e.g. the size distribution, the geometry, the concentration, the refractive index and the structuration of the scatterers, by solving the radiative transfer equation or directly the Maxwell's equations. Inversion schemes are deployed to retrieve these parameters by inverting the experimental signatures. The advancements described throughout this dissertation will serve to improve understanding of electromagnetic and light scattering by dense and complex media such as rough surfaces, coatings, nanomaterials, colloidal suspension and fractal aggregates of ultrafine aerosols. This study has relevant applications in fields as diverse as aeronautics (e.g. aircraft paint coatings), remote-sensing (e.g. hyperspectral, polarimetric, active or passive imaging), security and defense (e.g. furtive materials), atmospheric science (e.g. black carbon or soot characterization, LiDAR systems), chemical engineering (e.g. colloidal suspensions), or biomedical (e.g. tumor and melanoma diagnostic).
|
667 |
Hydrogen electrochemistry in room temperature ionic liquidsMeng, Yao January 2012 (has links)
This thesis primarily focuses on the electrochemical properties of the H<sub>2</sub>/H<sup>+</sup> redox couple, at various metallic electrodes in room temperature ionic liquids. Initially, a comprehensive overview of room temperature ionic liquids, RTILs, compared to conventional organic solvents is presented which identifies their favourable properties and applications, followed by a second chapter describing the basic theory of electrochemistry. A third chapter presents the general experimental reagents, instruments and measurements used in this thesis. The results presented in this thesis are summarized in six further chapters and shown as follows. (1) Hydrogenolysis, hydrogen loaded palladium electrodes by electrolysis of H[NTf<sub>2</sub>] in a RTIL [C<sub>2</sub>mim][NTf<sub>2</sub>]. (2) Palladium nanoparticle-modified carbon nanotubes for electrochemical hydrogenolysis in RTILs. (3) Electrochemistry of hydrogen in the RTIL [C<sub>2</sub>mim][NTf<sub>2</sub>]: dissolved hydrogen lubricates diffusional transport. (4) The hydrogen evolution reaction in a room temperature ionic liquid: mechanism and electrocatalyst trends. (5) The formal potentials and electrode kinetics of the proton_hydrogen couple in various room temperature ionic liquids. (6) The electroreduction of benzoic acid: voltammetric observation of adsorbed hydrogen at a Platinum microelectrode in room temperature ionic liquids. The first two studies show electrochemically formed adsorbed H atoms at a metallic Pt or Pd surface can be used for clean, efficient, safe electrochemical hydrogenolysis of organic compounds in RTIL media. The next study shows the physicochemical changes of RTIL properties, arising from dissolved hydrogen gas. The last three studies looked at the electrochemical properties of H<sub>2</sub>/H<sup>+</sup> redox couple at various metallic electrodes over a range of RTILs vs a stable Ag/Ag<sup>+</sup> reference couple, using H[NTf<sub>2</sub>] and benzoic acid as proton sources. The kinetic and thermodynamic mechanisms of some reactions or processes are the same in RTILs as in conventional organic or aqueous solvents, but other remarkably different behaviours are presented. Most importantly significant constants are seen for platinum, gold and molybdenum electrodes in term of the mechanism of proton reduction to form hydrogen.
|
668 |
Cycle de vie de systèmes photovoltaïques organiques 3ème génération : élaboration d'un cadre pour étudier les avantages et les risques des technologies émergentes / Life-cycle assessment of 3rd-generation organic photovoltaic systems : developing a framework for studying the benefits and risks of emerging technologiesTsang, Michael 07 December 2016 (has links)
Les systèmes photovoltaïques organiques sont des technologies émergentes présentant de forts potentiels d’économie de ressources et de réduction des impacts sur l'environnement et la santé humaine par rapport aux dispositifs photovoltaïques conventionnels. La méthode de l’analyse du cycle de vie est appliquée afin d'évaluer la façon dont les différents procédés de fabrication, les caractéristiques des dispositifs, la phase d’utilisation et les scénarios de fin de vie des cellules photovoltaïques organiques influent sur ces avantages potentiels. Les impacts de cette technologie émergente sont comparés aux technologies conventionnelles à base de silicium pour établir un référentiel de performance des technologies photovoltaïques.En outre, les effets potentiels sur la santé humaine de l'utilisation de nanomatériaux dans les cellules photovoltaïques organiques ont été spécifiquement étudiés ; et la pertinence de l’analyse du cycle de vie pour évaluer cette catégorie d’impact a été examinée. Ainsi, un nouveau modèle d'évaluation de l'impact sur le cycle de vie est présenté afin de quantifier les dangers potentiels posés par les nanomatériaux. Enfin,ces impacts potentiels sont comparés aux avantages des cellules photovoltaïques organiques sur les cellules à base de silicium. / Organic photovoltaics present an emerging technology with significant potential for increasing the resource efficiencies and reducing the environmental and human health hazards of photovoltaic devices. The discipline of life-cycle assessment is applied to assess how various prospective manufacturing routes, device characteristics, uses and disposal options of organic photovoltaics influences these potential advantages. The results of this assessment are further compared to silicon based photovoltaics as a benchmark for performance. A deeper look is given to the potential human health impacts of the use of engineered nanomaterials in organic photovoltaics and the appropriateness of life-cycle assessment to evaluate this impact criteria. A newly developed life-cycle impact assessment model is presented to demonstrate whether the use of and potential hazards posed by engineered nanomaterials outweighs any of the resource efficiencies and advantages organic photovoltaics possess over silicon photovoltaics.
|
669 |
Etude des propriétés structurales, morphologiques et électrochimiques de couches minces de nanocomposites hybrides de type hydroxyde double lamellaire (HDL) / biomolécules : application aux biocapteurs de polyphénols / Study of the structural, morphological and electrochemical properties of thin films of hybrid nanocomposites made of layered double hydroxide (LDH) / biomolecules : application to the design of polyphenols biosensorsSoussou, Asma 02 December 2016 (has links)
Les polyphénols sont des bioproduits générés par le métabolisme des végétaux. Récemment, ils ont attiré l’attention par leur impact potentiellement positif sur la santé, en grande partie lié à leur capacité antioxydante. Ils interviennent également dans les arômes de vin, café, thé… et intéressent donc l’industrie agroalimentaire. Le développement de biocapteurs adaptés à ces molécules est donc nécessaire, tout en respectant certains critères (simplicité d’utilisation, rapidité de la mesure, faible coût). Dans le cas des biocapteurs enzymatiques, l’étape déterminante est l'immobilisation de l’enzyme sur la surface du transducteur sans affecter ses performances.Dans cette thèse nous avons utilisé des matériaux de type « hydroxyde double lamellaires » (HDLs) comme matrice d’immobilisation de la tyrosinase, enzyme reconnaissant spécifiquement les polyphénols, afin de fonctionnaliser la surface d’électrodes d’or sérigraphiées. L’objectif était d’élaborer des microbiocapteurs pour détecter les polyphénols extraits du thé vert.Les HDLs ont été synthétisés par la méthode de coprécipitation directe, puis caractérisés par différentes méthodes physiques (spectroscopies Raman et infrarouge, diffraction des RX) afin de confirmer leur composition et de définir leur structure cristalline. Puis, des films minces bidimensionnels de HDL de différentes compositions ont été réalisés en faisant varier différents paramètres comme la nature du substrat, la concentration de la solution initiale de HDL et la méthode de dépôt (auto-assemblage « SAM » ou spin coating). L’étude morphologique de ces films a été réalisée par microscopie de force atomique (AFM) afin d’optimiser l’état de surface avant l’immobilisation de la tyrosinase. Le greffage de cette dernière a également été étudié par AFM. Enfin, une étude électrochimique (par voltammétrie cyclique et chronoampérométrie) nous a permis de déterminer les caractéristiques analytiques des microbiocapteurs ampérométriques ainsi élaborés. Les résultats ont montré que nos systèmes présentent une grande sensibilité aux polyphénols et sont capables de détecter ces molécules grâce à leur oxydation et aussi à la réduction des composés enzymatiquement générés par la réaction catalytique. Ils sont dynamiques dans une large gamme linéaire de détection (jusqu'à 1000 ng.mL-1) et peuvent également détecter des traces de polyphénols (de m’ordre de quelques pg.mL-1). / Polyphenols are in abundance in diet, being present in various fruits or vegetables, but also in tea or wine. Their antioxidant properties attracted an increasing interest of different researchers in the field of medicine and food manufacturers. Consequently, very intensive studies have been conducted to develop efficient polyphenols biosensors, while respecting certain criteria (simplicity of use, speed of measurement, low cost). In the case of enzymatic biosensors, the decisive step is the immobilization of the enzyme on the transducer surface without affecting its performances.In this thesis, we used layered double hydroxides (LDHs) as a host matrix to immobilize tyrosinase, an enzyme recognizing specifically polyphenols, at the surface of screen printed gold electrodes. Polyphenols used to study the biosensors were extracted from green tea.LDHs nanosheets were prepared by the co-precipitation method. In a first step, their structural properties were characterized by X-ray powder diffraction, Raman and Infra-Red spectroscopies, confirming crystalline phase and chemical composition of LDHs. In a second step, LDHs-thin films were prepared by self-assembly and spin coating deposition under various experimental conditions (nature and concentration of LDHs …), and studied by Atomic Force Microscopy (AFM) to obtain information about the surface morphology of the host matrix before enzyme immobilization. The presence of tyrosinase after the immobilization step was also confirmed by AFM. Electrochemical characteristics of the amperometric biosensors, whose design is based on this study, were determined by cyclic voltammetry and chronoamperometry. This study showed that these systems are highly sensitive to polyphenols, detecting them by their oxidation but also by the reduction of compounds enzymatically generated. They exhibit also other very attractive characteristics for the detection of complex mixture of polyphenols: a large dynamic range (up to 1000 ng.mL-1)and a very low detection limit (few pg.mL-1).
|
670 |
A Study on Digestive Ripening Mediated Size and Structure Control in Nanoparticles Prepared by Solvated Metal Atom Dispersion MethodBhaskar, Srilakshmi P January 2016 (has links) (PDF)
Recent advancements in nanotechnology and emerging applications of nanomaterials in various fields have stimulated interest in fundamental scientific research dealing with the size and structure controlled synthesis of nanoparticles. The unique properties of nanoparticles are largely size dependent which could be tuned further by varying shape, structure, and surface properties, etc. The preparation of monodisperse nanoparticles is desirable for many applications due to better control over properties and higher performance compared to polydispersity nanoparticles. There are several methods for the synthesis of nanoparticles based on top-down and bottom-up approaches. The main disadvantage of top-down approach is the difficulty in achieving size control. Whereas, uniform nanoparticles with controllable size could be obtained by chemical methods but most of them are difficult to scale up. Moreover, a separate step of size separation is necessary in order to achieve monodispersed which may lead to material loss. In this context, a post-synthetic size modification process known as digestive ripening is highly significant. In this process, addition of a capping agent to poly disperse colloid renders it highly monodisperse either under ambient or thermal conditions. In addition to size control, digestive ripening is also effective in controlling the structure of nanoparticles in colloidal solution comprising two different elements. Use of co-digestive ripening strategy in conjunction with solvated metal atom dispersion (SMAD) method of synthesis resulted in hetero structures such as core–shell,
alloy, and composite nanoparticles. Despite the versatility of digestive ripening process, the underlying mechanism in controlling size and structure of nanoparticles are not understood to date. The aim of this thesis is to gain mechanistic insight into size control of digestive ripening as well as to investigate structure control in various binary systems.
Objectives
Study digestive ripening of Au nanoparticles using various alkyl amines to probe the mechanism
Study co-digestive ripening of binary colloids consisting of two metals, Pd and Cu prepared separately by SMAD method
Study co-digestive ripening of binary colloids consisting of a metal (Au) and a semiconductor (CdS) prepared separately by SMAD method
Study vaporization of bulk brass in SMAD reactor and analyse phase, structure, and morphology of various Cu/Zn bimetallic nanoparticles obtained from bulk brass under various experimental conditions
Significant results
In chapter 1, fundamental processes of nanoparticle formation and common synthetic techniques for the preparation of monodisperse nanoparticles are briefly discussed. Chapter 2 presents a mechanistic study of digestive ripening process with regard to size control using Au nanoparticles as a model system. Three long chain alkyl amine molecules having different chain length were used as digestive ripening agents. The course of digestive ripening process was analysed by UV-visible spectroscopy and transmission electron microscopy. The experimental conditions such as concentration of digestive ripening agent, time, and temperature were found to influence the size distribution of nanoparticles. The average particle size was found to be characteristic of metal-digestive ripening agent combination which is considered as the optimum size preferred during digestive ripening under a given set of experimental conditions. This study discusses stabilization of optimum sized particles, surface etching, and reversibility in digestive ripening.
Chapter 3 describes the synthesis and characterization of PdCu alloy nanoparticles by co-digestive ripening method. Syntheses of individual Pd and Cu colloids were carried out by SMAD method. Pd nanoparticles obtained using THF as solvent and in the absence of any capping agent resulted in an extended small Pd nanowire network assembly. Morphological evolution of spherical Pd nanoparticles from Pd nanowire network structure was observed with the use of capping agent, hexadecyl amine (HDA) in SMAD method. Co-digestive ripening of Pd and Cu colloids was studied at various temperatures. This study revealed temperature dependent diffusion of Cu atoms into Pd lattice forming PdCu alloy nanoparticles.
Next, co-digestive ripening of a colloidal system comprising a metal and a semiconductor was explored. Au-CdS combination was chosen for this study owing to its interesting photocatalytic properties. Chapter 4 deals with the synthesis of Au and CdS nanoparticles by SMAD method and Au/CdS nanocomposite by co-digestive ripening. CdS nanoparticles of size 4.0 + 1.2 nm and Au nanoparticles of size 5.6 + 1.1 nm were obtained as a result of digestive ripening process. Au/CdS nanocomposite obtained by co-digestive ripening was characterized by a matrix-like structure made up of CdS nanoparticles in which Au nanoparticles were embedded. CdS nanoparticles were found to establish an intimate surface contact with Au nanoparticles and the matrix of CdS surrounding Au was developed via aggregation during digestive ripening.
Chapter 5 describes a comprehensive study on various Cu/Zn bimetallic nanoparticles obtained from bulk brass. Vaporization of bulk brass in SMAD reactor led to a deploying
process and further growth of nanoparticles from phase separated Cu and Zn atoms formed a composite structure. The characterization of Cu/Zn nanocomposite revealed covering of composite surface with Cu resulting in a core-shell structure, Cu/Zn@Cu. Post-synthetic digestive ripening of these core-shell composite particles showed diffusion of Zn atoms to the composite surface in addition to size and shape modification. Annealing of Cu/Zn nanocomposites prepared in THF resulted in α-CuZn alloy nanoparticles via sequential transformation through η-CuZn5, γ-Cu5Zn8, and β-CuZn (observed as marten site) phases.
|
Page generated in 0.0962 seconds