Spelling suggestions: "subject:"neuen."" "subject:"neuer.""
321 |
Contribution à la Surveillance des Systèmes de Production en Utilisant l'Intelligence ArtificielleRacoceanu, Daniel 19 January 2006 (has links) (PDF)
En suivant les principales tendances d'évolution des systèmes automatisés et de la productique, nos travaux de recherche se positionnent dans l'optique des mutations induites par l'intégration des Sciences et Technologies de l'Information et de la Communication dans ces disciplines. Dans ce contexte, la décentralisation de l'intelligence et sa migration vers les niveaux bas, génèrent une évolution vers des services nouveaux, à même de permette non seulement de garder des positions privilégiées en terme de parts de marché, mais aussi d'en gagner de nouvelles. <br />Nos contributions se sont orientées précisément vers la mise au point de systèmes de surveillance dynamiques intelligents, en abordant des problématiques liées à la détection dynamique et au diagnostic curatif et préventif. Les techniques de l'intelligence artificielle ont ainsi constituées la colonne vertébrale de nos études, avec des travaux allant de la conception théorique et le test de nouveaux outils de surveillance dynamique, jusqu'à la validation, le prototypage et l'exploitation industrielle des concepts développés.<br />Dans le domaine de la surveillance dynamique, une de nos contributions majeures correspond à l'introduction d'un réseau de neurones dynamique innovant, le Réseau Récurrent à base de Fonctions radiales (RRFR). En faisant appel aux propriétés dynamiques des architectures localement récurrentes, le RRFR se caractérise par une approche de reconnaissance locale – essentielle en surveillance industrielle –, tout en permettant – de part ses caractéristiques dynamiques intrinsèques – une détection précoce des paliers de dégradation et une robustesse vis-à-vis des fausses alarmes. L'existence d'une mémoire statique et d'une mémoire dynamique facilement paramétrables au sein de la même structure, confère au réseau une souplesse d'utilisation très intéressante, ainsi qu'un accès à des techniques d'apprentissage allégées. Par ailleurs, dans le but d'augmenter la rapidité et l'efficacité de l'apprentissage, une version améliorée de l'algorithme des k-moyennes, permet d'améliorer la robustesse des algorithmes et de se situer dans la zone optimale de « bonne généralisation ».<br />La prise en compte de l'incertain fait l'objet d'une deuxième partie de nos travaux, située dans la continuité de la première. Dans ce sens, l'utilisation de la logique floue en surveillance dynamique se montre très intéressante de part la proximité par rapport au raisonnement et à l'expérience des opérateurs et ingénieurs, ainsi que de part la possibilité d'assurer une traçabilité essentielle pour le retour d'expérience en maintenance. Un outil de type réseau de Petri flou dédié à la surveillance (RdPFS) des systèmes de production a ainsi constitué l'objet de cette étude. Cet outil, basé essentiellement sur la modélisation floue de la variable "instant d'apparition" de l'événement discret, est muni d'un mécanisme d'interfaçage intégré, inspiré des réseaux de Petri à synchronisations internes, permettant la communication entre les outils de modélisation, de surveillance et de reprise. Dans un tel système, l'utilisation de la logique floue offre une souplesse d'utilisation et une dimension prédictive très intéressante. Basé sur un modèle RdPFS construit à partir des règles logiques induites par l'arbre de défaillance du système surveillé, nous avons montré sa capacité d'analyse dynamique des défauts, en utilisant une approche temporelle floue. <br />Dans nos travaux les plus récents, les avantages des outils neuronaux dynamiques et de la logique floue ont été mis à l'œuvre conjointement dans le cadre de systèmes hybrides neuro-flous d'aide à la surveillance. L'outil hybride ainsi proposé comporte deux parties, une première pour la détection dynamique – utilisant le RRFR amélioré essentiellement au niveau des algorithmes d'apprentissage dynamiques – et une deuxième pour le diagnostic curatif et prédictif, utilisant un réseau neuro-flou construit à partir de l'arbre de défaillance et de l'AMDEC du système / sous-système surveillé. Il est à noter que ce type de système de surveillance dynamique utilise l'approche abductive de recherche de cause – élément indispensable pour un diagnostic efficace. Par ailleurs, l'apprentissage dynamique permet de commencer l'activité de surveillance dynamique même en l'absence de données très consistantes, en enrichissant et affinant les symptômes et les causes associées (respectivement les degrés de crédibilité de celles-ci) au fur et à mesure du fonctionnement du système, grâce aux algorithmes neuronaux incorporés. <br />Parmi les verrous technologiques abordés lors de nos contributions, une place importante est accordée à la surveillance dynamique par apprentissage en ligne, en traitant des problèmes liés à la rapidité et la flexibilité de l'apprentissage, au temps de réponse, au traitement de grands flux de données, ainsi qu'aux méthodes de validation utilisant le test sur des benchmarks et le prototypage industriel. <br />Dans ce sens, l'exploitation industrielle du réseau récurrent à fonctions de base radiales a représenté une étape importante de nos travaux. Elle nous a permis la mise en œuvre d'une application de surveillance dynamique en temps réel d'un système, en utilisant l'apprentissage dynamique distant via le web. Mettant en évidence l'intérêt des techniques développées dans la réorganisation de l'activité de surveillance grâce aux nouvelles technologies, cette exploitation industrielle a donné lieu à un brevet d'invention, déposé en collaboration avec une SSII bisontine. <br />La conception de l'outil de surveillance neuro-flou a été menée en utilisant des spécifications UML. Cette approche a été initiée (étude, normalisation, spécification) dans le cadre du projet Européen PROTEUS/ITEA et finalisée (prototypage) dans le cadre d'un projet financé par l'ANVAR. Essentiels pour l'industrialisation des systèmes proposés, l'information de départ est considérée sous un format industriel classique (ADD, AMDEC, ...) et la mise à jour est assurée par une réelle ouverture du système traduite par des liens permanents avec les systèmes d'acquisition (capteurs, SCADA, ...) et les systèmes de gestion (GMAO, ...). <br />Dans le domaine de la e-maintenance, un défi considérable est constitué par le besoin de normalisation des plates-formes de e-maintenance, dans l'objectif d'arriver à terme à une génération automatique de ces plateformes, et à un standard qui pourra constituer un guide pour tous les constructeurs d'équipement soucieux d'intégrer leur produit dans une plate-forme de ce type. Du point de vue scientifique, il s'agit d'arriver à une génération automatique ou interactive d'une telle plate-forme, en fonction des services participants et du contexte d'utilisation. L'objectif est très ambitieux, car générateur de nouveaux services et de nouvelles opportunités commerciales. Il constitue l'objectif principal du projet européen SHIVA, dans lequel se retrouvent les partenaires les plus actifs de PROTEUS, avec – mise a part des partenaires déjà existants comme Cegelec et Schneider – des partenaires industriels nouveaux, tout aussi prestigieux, comme la Division des Constructions Navales et Airbus. <br />Concernant les perspectives de nos travaux, s'inscrivant dans le cadre des mêmes tendances de décentralisation et de migration de l'intelligence vers les niveaux opérationnels, une direction d'étude intéressante est constituée par le domaine des réseaux de capteurs intelligents. Cette perspective pourra ainsi intégrer des tendances technologiques liées aux connecteurs intelligents (« smart connectors ») basés sur le multiplexage et sur les courants porteurs, afin de réduire le volume de câblage, des points de connexion et afin de mieux prendre en considération les contraintes de sûreté de fonctionnement de ce type de réseaux, contraintes qui – dans un avenir très proche – seront vraisemblablement déterminantes.<br />Par ailleurs, dans un contexte régional, lié à la création du pôle de compétitivité « microtechniques », la problématique de la fabrication des microsystèmes est une problématique présentant un intérêt croissant. En effet, de nombreux prototypes de microsystèmes sont proposés en phase de prototype, avec une création liée à une manière plutôt artisanale, tout à fait compréhensible – vu les technologies innovantes utilisées -, mais qui ne se prête pas à une commercialisation de ces produits. De ce fait, l'étude des microsystèmes de production semble être un domaine porteur et permettant de garder des emplois européens – souvent menacés par la délocalisation.<br />Enfin, le diagnostic à partir de l'imagerie médicale en utilisant les techniques de l'intelligence artificielle me semble un domaine où mes compétences en recherche (surveillance par IA) et en enseignement (traitement de l'image) peuvent se donner la main pour aborder une thématique nouvelle, présentant un grand intérêt dans le domaine des biotechnologies, dans lequel la France est bien engagée depuis un certain nombre d'années. Cette perspective correspond au projet de recherche propose dans le cadre de ma délégation CNRS au laboratoire IPAL – Image Perception, Access and Learning (actuellement FRE, UMI-CNRS a partir de 2006) de Singapour.
|
322 |
INSS : un système hybride neuro-symbolique pour l'apprentissage automatique constructifOsorio, Fernando Santos 03 February 1998 (has links) (PDF)
Plusieurs méthodes ont été développées par l'Intelligence Artificielle pour reproduire certains aspects de l'intelligence humaine. Ces méthodes permettent de simuler les processus de raisonnement en s'appuyant sur les connaissances de base disponibles. Chaque méthode comporte des points forts, mais aussi des limitations. La réalisation de systèmes hybrides est une démarche courante Qui permet de combiner les points forts de chaque approche, et d'obtenir ainsi des performances plus élevées ou un champ d'application plus large. Un autre aspect très important du développement des systèmes hybrides intelligents est leur capacité d'acquérir de nouvelles connaissances à partir de plusieurs sources différentes et de les faire évoluer. Dans cette thèse, nous avons développé des recherches sur les systèmes hybrides neuro-symboliques, et en particulier sur l'acquisition incrémentale de connaissances à partir de connaissances théoriques (règles) et empiriques (exemples). Un nouveau système hybride, nommé système INSS - Incremental Neuro-Symbolic System, a été étudié et réalisé. Ce système permet le transfert de connaissances déclaratives (règles symboliques) d'un module symbolique vers un module connexionniste (réseau de neurones artificiel - RNA) à travers un convertisseur de règles en réseau. Les connaissances du réseau ainsi obtenu sont affinées par un processus d'apprentissage à partir d'exemples. Ce raffinement se fait soit par ajout de nouvelles connaissances, soit par correction des incohérences, grâce à l'utilisation d'un réseau constructif de type Cascade-Correlation. Une méthode d'extraction incrémentale de règles a été intégrée au système INSS, ainsi que des algorithmes de validation des connaissances qui ont permis de mieux coupler les modules connexionniste et symbolique. Le système d'apprentissage automatique INSS a été conçu pour l'acquisition constructive (incrémentale) de connaissances. Le système a été testé sur plusieurs applications, en utilisant des problèmes académiques et des problèmes réels (diagnostic médical, modélisation cognitive et contrôle d'un robot autonome). Les résultats montrent que le système INSS a des performances supérieures et de nombreux avantages par rapport aux autres systèmes hybrides du même type.
|
323 |
Vers le sens des sons: Modélisation sonore et contrôle haut niveauYstad, Solvi 14 September 2010 (has links) (PDF)
Les travaux présentés dans ce document visent à mieux comprendre la relation entre la structure (ou morphologie) acoustique des sons et le sens communiqué par ces derniers. Ils s'appuient sur une approche pluridisciplinaire associant mathématiques, acoustique, traitement du signal, perception et cognition, dans laquelle la synthèse numérique des sons constitue le point central. Ce travail aborde les aspects fondamentaux liés à la compréhension du traitement cognitif et perceptif des sons mais aussi les aspects appliqués où le contrôle évocateur des processus de synthèse joue un rôle privilégié. Les principaux résultats obtenus ont été déclinés suivant deux axes: les sons musicaux et les sons environnementaux et industriels. Dans le cadre des sons musicaux des questions liées à la caractérisation perceptive des instruments de musique ainsi qu'au contrôle exercé par le musicien lors du jeu instrumental ont été traités. On a notamment montré que l'évaluation subjective de notes isolés de sons de piano dépend de l'expertise des sujets et permet difficilement d'évaluer la musicalité de l'instrument. La prise en compte du contexte musical nous a conduit a étudier l'influence du contrôle du musicien sur le son lors de l'interprétation musicale. On a montré que l'instrumentiste contrôle de façon systématique les variations de timbre de l'instrument et que ces variations influent notablement sur l'interprétation musicale. Dans le cadre plus général de sons environnementaux et industriels, on s'est attaché à mieux comprendre les relations entre la structure morphologique des sons et la perception qui en découle. Par une approche « neuro-acoustique » associant imagerie cérébrale et analyses acoustiques, des invariants caractéristiques de certaines catégories sonores ont été identifiés. Ces invariants sont à la base d'un modèle de contrôle « haut niveau » permettant la synthèse de sons à partir d'évocations. Ces résultats nous permettent d'envisager la construction d'un véritable langage de sons basé sur la génération de métaphores sonores.
|
324 |
Skolsituationen för barn med särskilda behov : Med utgångspunkt i de neurodidaktiska och inkluderande perspektivenSmith, Yvonne January 2011 (has links)
During the last 20 years a new category of schools, schools for children with special needs, has settled to be a growing part of the Swedish school system. This is despite the political aim in Sweden to achieve an educational inclusion. The aim of this study is to compare the school situation for children with special needs in regular schools with the situation in schools for children with special needs. To investigate the routines associated with the change of school and the role of a neuropsychological diagnosis in the process. The main research questions were if the school is adapted to the needs of the child from a neuro-didactic point of view, whether the special school provides something the public school doesn’t and if the diagnosis helps to take pedagogical measures. The method used in this study is semi-structured interviews. The theory of inclusion and the neurological function constitute the theoretical frame. The result of the study shows that the special schools which provide a supportive social and educational environment are better adapted to the children with special needs. However, the difficulties associated with changing school are huge. A neuropsychological diagnosis might be helpful when the decisions about special assistance are made, but the choice of particular assistance is made on other premises. The conclusion is that as long as the regular schools aren’t adapted for all children and the neurological knowledge isn’t taken into account, it will be crucial for a number of pupils to be taught in special schools.
|
325 |
Type-2 Neuro-Fuzzy System Modeling with Hybrid Learning AlgorithmYeh, Chi-Yuan 19 July 2011 (has links)
We propose a novel approach for building a type-2 neuro-fuzzy system from a given set of input-output training data. For an input pattern, a corresponding crisp output of the system is obtained by combining the inferred results of all the rules into a type-2 fuzzy set which is then defuzzified by applying a type reduction algorithm. Karnik and Mendel proposed an algorithm, called KM algorithm, to compute the centroid of an interval type-2 fuzzy set efficiently. Based on this algorithm, Liu developed a centroid type-reduction strategy to do type reduction for type-2 fuzzy sets. A type-2 fuzzy set is decomposed into a collection of interval type-2 fuzzy sets by £\-cuts. Then the KM algorithm is called for each interval type-2 fuzzy set iteratively. However, the initialization of the switch point in each application of the KM algorithm is not a good one. In this thesis, we present an improvement to Liu's algorithm. We employ the result previously obtained to construct the starting values in the current application of the KM algorithm. Convergence in each iteration except the first one can then speed up and type reduction for type-2 fuzzy sets can be done faster. The efficiency of the improved algorithm is analyzed mathematically and demonstrated by experimental results.
Constructing a type-2 neuro-fuzzy system involves two major phases, structure identification and parameter identification. We propose a method which incorporates self-constructing fuzzy clustering algorithm and a SVD-based least squares estimator for structure identification of type-2 neuro-fuzzy modeling. The self-constructing fuzzy clustering method is used to partition the training data set into clusters through input-similarity and output-similarity tests. The membership function associated with each cluster is defined with the mean and deviation of the data points included in the cluster. Then applying SVD-based least squares estimator, a type-2 fuzzy TSK IF-THEN rule is derived from each cluster to form a fuzzy rule base. After that a fuzzy neural network is constructed. In the parameter identification phase, the parameters associated with the rules are then refined through learning. We propose a hybrid learning algorithm which incorporates particle swarm optimization and a SVD-based least squares estimator to refine the antecedent parameters and the consequent parameters, respectively. We demonstrate the effectiveness of our proposed approach in constructing type-2 neuro-fuzzy systems by showing the results for two nonlinear functions and two real-world benchmark datasets. Besides, we use the proposed approach to construct a type-2 neuro-fuzzy system to forecast the daily Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX). Experimental results show that our forecasting system performs better than other methods.
|
326 |
Neuro-Fuzzy System Modeling with Self-Constructed Rules and Hybrid LearningOuyang, Chen-Sen 09 November 2004 (has links)
Neuro-fuzzy modeling is an efficient computing paradigm for system modeling problems. It mainly integrates two well-known approaches, neural networks and fuzzy systems, and therefore possesses advantages of them, i.e., learning capability, robustness, human-like reasoning, and high understandability. Up to now, many approaches have been proposed for neuro-fuzzy modeling. However, it still exists many problems need to be solved.
We propose in this thesis two self-constructing rule generation methods, i.e., similarity-based rule generation (SRG) and similarity-and-merge-based rule generation (SMRG), and one hybrid learning algorithm (HLA) for structure identification and parameter identification, respectively, of neuro-fuzzy modeling. SRG and SMRG group the input-output training data into a set of fuzzy clusters incrementally based on similarity tests on the input and output spaces. Membership functions associated with each cluster are defined according to statistical means and deviations of the data points included in the cluster. Additionally, SMRG employs a merging mechanism to merge similar clusters dynamically. Then a zero-order or first-order TSK-type fuzzy IF-THEN rule is extracted from each cluster to form an initial fuzzy rule-base which can be directly employed for fuzzy reasoning or be further refined in the next phase of parameter identification. Compared with other methods, both our SRG and SMRG have advantages of generating fuzzy rules quickly, matching membership functions closely with the real distribution of the training data points, and avoiding the generation of the whole set of clusters from the scratch when new training data are considered. Besides, SMRG supports a more reasonable and quick mechanism for cluster merging to alleviate the problems of data-input-order bias and redundant clusters, which are encountered in SRG and other incremental clustering approaches.
To refine the fuzzy rules obtained in the structure identification phase, a zero-order or first-order TSK-type fuzzy neural network is constructed accordingly in the parameter identification phase. Then, we develop a HLA composed by a recursive SVD-based least squares estimator and the gradient descent method to train the network. Our HLA has the advantage of alleviating the local minimal problem. Besides, it learns faster, consumes less memory, and produces lower approximation errors than other methods.
To verify the practicability of our approaches, we apply them to the applications of function approximation and classification. For function approximation, we apply our approaches to model several nonlinear functions and real cases from measured input-output datasets. For classification, our approaches are applied to a problem of human object segmentation. A fuzzy self-clustering algorithm is used to divide the base frame of a video stream into a set of segments which are then categorized as foreground or background based on a combination of multiple criteria. Then, human objects in the base frame and the remaining frames of the video stream are precisely located by a fuzzy neural network which is constructed with the fuzzy rules previously obtained and is trained by our proposed HLA. Experimental results show that our approaches can improve the accuracy of human object identification in video streams and work well even when the human object presents no significant motion in an image sequence.
|
327 |
Mobile Ad Hoc Molecular NanonetworksGuney, Aydin 01 June 2010 (has links) (PDF)
Recent developments in nanotechnology have enabled the fabrication of nanomachines with very limited sensing, computation, communication, and action capabilities. The network of communicating nanomachines is envisaged as nanonetworks that are designed to accomplish complex tasks such as drug delivery and health monitoring. For the realization of future nanonetworks, it is essential to develop novel and efficient communication and networking paradigms. In this thesis, the first step towards designing a mobile ad hoc molecular nanonetwork (MAMNET) with electrochemical communication is taken. MAMNET consists of mobile nanomachines and infostations that share nanoscale information using electrochemical communication whenever they have a physical contact with each other. In MAMNET, the intermittent connectivity introduced by the mobility of nanomachines and infostations is a critical issue to be addressed. In this thesis, an analytical framework that incorporates the effect of mobility into the performance of electrochemical communication among nanomachines is presented. Using the analytical model, numerical analysis for the performance evaluation of MAMNET is obtained. Results reveal that MAMNET achieves adequately high throughput performance to enable frontier nanonetwork applications with sufficiently low communication delay.
|
328 |
A Physical Channel Model And Analysis Of Nanoscale Neuro-spike CommunicationBalevi, Eren 01 August 2010 (has links) (PDF)
Nanoscale communication is appealing domain in nanotechnology. There are many
existing nanoscale communication methods. In addition to these, novel techniques
can be derived depending on the naturally existing phenomena such as molecular
communication. It uses molecules as an information carrier such as molecular motors,
pheromones and neurotransmitters for neuro-spike communication. Among them,
neuro-spike communication is a vastly unexplored area. The ultimate goal of this
thesis is to accurately investigate it by obtaining a realistic physical channel model.
This model can be exploited in different disciplines. Furthermore, the model can help
designing novel artificial nanoscale communication paradigms. The modeled channel
is analyzed regarding the error probability of detecting spikes depending on channel
parameters. Moreover, channel delay is characterized and information theoretical
analysis of packet release mechanism in the channel is performed.
The modeled channel is extended to multi-input single output terminal. In this case,
input neurons can simultaneously send information through the same synapse leading to interference. However, there is an interference repressing technique in these
synapses called automatic gain control. It decreases the interference level observed
on weaker signal. The first aim for this case is to define the interference channel at
synapse having automatic gain control. The second aim is to analyze the achievable
rate region of this channel. The analysis shows that gain control mechanism prevents
the decrease in achievable rate region because of the weaker signal. Moreover, power,
firing rate and number of stronger inputs do not affect the achievable rate region.
|
329 |
In-process sensing of weld penetration depth using non-contact laser ultrasound systemRogge, Matthew Douglas 16 November 2009 (has links)
Gas Metal Arc Welding (GMAW) is one of the main methods used to join structural members. One of the largest challenges involved in production of welds is ensuring the quality of the weld. One of the main factors attributing to weld quality is penetration depth. Automatic control of the welding process requires non-contact, non-destructive sensors that can operate in the presence of high temperatures and electrical noise found in the welding environment. Inspection using laser generation and electromagnetic acoustic transducer (EMAT) reception of ultrasound was found to satisfy these conditions. Using this technique, the time of flight of the ultrasonic wave is measured and used to calculate penetration depth. Previous works have shown that penetration depth measurement performance is drastically reduced when performed during welding.
This work seeks to realize in-process penetration depth measurement by compensating for errors caused by elevated temperature. Neuro-fuzzy models are developed that predict penetration depth based on in-process time of flight measurements and the welding process input. Two scenarios are considered in which destructive penetration depth measurements are or are not available for model training. Results show the two scenarios are successful. When destructive measurements are unavailable, model error is comparable to that of offline ultrasonic measurements. When destructive measurements are available, measurement error is reduced by 50% compared to offline ultrasonic measurements.
The two models can be effectively applied to permit in-process penetration depth measurements for the purpose of real-time monitoring and control. This will reduce material, production time, and labor costs and increase the quality of welded parts.
|
330 |
Neural-Symbolic Integration / Neuro-Symbolische IntegrationBader, Sebastian 15 December 2009 (has links) (PDF)
In this thesis, we discuss different techniques to bridge the gap between two different approaches to artificial intelligence: the symbolic and the connectionist paradigm. Both approaches have quite contrasting advantages and disadvantages. Research in the area of neural-symbolic integration aims at bridging the gap between them.
Starting from a human readable logic program, we construct connectionist systems, which behave equivalently. Afterwards, those systems can be trained, and later the refined knowledge be extracted.
|
Page generated in 0.0273 seconds