• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 4
  • Tagged with
  • 29
  • 20
  • 19
  • 17
  • 11
  • 10
  • 8
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

[en] NUMERICAL STUDY OF OIL WELL PLUGGING PROCESS / [pt] ESTUDO NUMÉRICO DO PROCESSO DE TAMPONAMENTO DE POÇOS DE PETRÓLEO

RAFAEL JOSE CAVALIERI FEITAL 04 May 2016 (has links)
[pt] O tamponamento de poços de petróleo é analisado numericamente. Neste processo, um fluido mais denso (pasta de cimento) é colocado sobre outro menos denso (fluido de perfuração) em um poço vertical, resultando em uma situação de instabilidade. O escoamento resultante foi estudado de forma a avaliar se o isolamento do poço ocorreria até o momento da cura do cimento (entre 4 e 5 horas). O cimento foi modelado como fluido não-newtoniano e o fluido de perfuração foi considerado newtoniano em alguns casos e não-newtoniano nos demais casos. A solução do escoamento foi obtida numericamente, usando-se o programa ANSYS Fluent. As equações de conservação são resolvidas empregando-se o Método dos Volumes Finitos e o escoamento multifásico foi modelado utilizando-se o método Volume de Fluido. O comportamento viscoplástico não-newtoniano foi modelado empregando a equação constitutiva do fluido newtoniano generalizado, com a função de viscosidade Herschel-Bulkley. O sucesso da operação foi determinado pela combinação dos parâmetros reológicos e geométricos. O efeito dos parâmetros como a razão entre densidades e viscosidades foi investigado para uma geometria fixa (razão fixa entre o comprimento do tampão e o seu diâmetro). Além disso, a influência dessa mesma razão no processo também foi analisada enquanto outros parâmetros foram mantidos fixos. Foi demonstrado que o escoamento é muito instável e que os parâmetros estudados afetam consideravelmente a operação. / [en] The plugging process of an oil well was analyzed numerically. In this process, the denser fluid is the cement plug, which was placed above the drilling fluid in a vertical well, resulting in an unstable situation. The cement plug was modeled as non-Newtonian and the drilling fluid was considered Newtonian in some cases and non-Newtonian in other cases. The flow solution is studied using the ANSYS Fluent program. The conservation equations were solved using the Finite Volume Method, and the multiphase flow was modeled with the Volume of Fluid method. The non-Newtonian viscoplastic behavior of the cement plug was modeled with the Generalized Newtonian Fluid constitutive equation, with the Herschel-Bulkley viscosity function. The success of the operation was determined by the combination of the governing rheological and geometric parameters. The effect of the governing parameters, such as the density ratio and the viscosity ratio, were investigated for a fixed geometry and a fixed ratio between the cement plug length and diameter. Furthermore, the influence of this ratio in the process was also analyzed while others governing parameters were fixed. It was shown that the flow is highly unstable, and that the governing parameters considerably affect the operation.
22

[en] LIQUID-LIQUID DISPLACEMENT FLOWS IN A HELE-SHAW CELL INCLUDING NON-NEWTONIAN EFFECTS / [pt] DESLOCAMENTO DE LÍQUIDOS NÃO NEWTONIANOS EM CÉLULAS DE HELE-SHAW

PATRICIA EMIDIO DE AZEVEDO 14 July 2016 (has links)
[pt] A perfuração de poços de petróleo, principalmente em ambientes offshore, é uma operação que demanda um custo muito elevado, portanto a minimização de problemas e danos ao reservatório produtor é muito importante. O projeto de um fluido de perfuração que garanta a mínima invasão na rocha reservatório é um tópico fundamental, como consequência a indústria petrolífera tem investido em estudos com o intuito de evitar que este problema ocorra. Sendo assim, nesse trabalho estudou-se o escoamento de fluidos em um meio poroso ideal, a célula de Hele-Shaw. Para realizar esse trabalho foram utilizados dois fluidos não newtonianos: uma solução aquosa de um polímero flexível, a poliacrilamida; e uma solução aquosa de um polímero rígido, a goma xantana. Esses fluidos não newtonianos representaram o fluido de perfuração, já o papel do petróleo presente na rocha reservatório foi desempenhado pelo óleo mineral. A partir desse experimento é possível observar a instabilidade de Saffman-Taylor ou viscous fingers, que é um fenômeno observado quando um fluido de menor viscosidade desloca outro de maior viscosidade. Esse fenômeno é muito importante em diversas aplicações, tais como: invasão de fluido de perfuração em meios porosos (caso que será estudado), recuperação secundária e terciária de petróleo, fraturamento hidráulico, processamento de polímeros, hidrologia e filtração. O experimento consiste em analisar a evolução da interface entre os dois fluidos através de uma câmera filmadora. A partir das imagens é determinada qualitativamente a eficiência do deslocamento. Com o conjunto de imagens é possível observar também em quais parâmetros dinâmicos e reológicos ocorre a transição fingers (interface instável) para plug (interface estável), e viceversa. Também foram realizados testes reológicos nos quais foi possível conhecer o comportamento dos fluidos não newtonianos utilizados. Com base nos dados coletados observou-se que tanto para a poliacrilamida quanto para a goma xantana a transição ocorre a uma taxa de cisalhamento adimensional próxima de 3. / [en] The drilling of oil wells, particularly in offshore environments, is an operation which demands a high cost, thus, the minimization of problems and damage to the producing reservoir is very important. The design of a drilling fluid that ensures minimum invasion into the reservoir rock is a major topic, consequently the oil industry has invested in research in order to prevent this problem from occurring. Therefore, this research studied the displacement of fluids in an ideal porous medium, a Hele-Shaw cell. To accomplish this task, the following two non-Newtonian fluids were used: an aqueous solution of a flexible polymer, polyacrylamide; and the other an aqueous solution of a rigid polymer, xanthan gum. Such non-Newtonian fluids represent the drilling fluid, while the function of oil present in the reservoir rock was represented by mineral oil. From this experiment it is possible to observe the Saffman-Taylor instability or viscous fingers, which is a phenomenon observed when a low viscosity fluid displaces a higher viscosity fluid. This phenomenon is very important in many applications, such as drilling fluid invasion in porous media, secondary and tertiary oil recovery, hydraulic fracturing, polymer processing, hydrology and filtration. The experiment consists in analyzing the evolution of the interface between two fluids through a digital camera, and determining the displacement efficiency qualitatively from the imagens. With the set of images is possible to observe in which dynamic and rheological parameters the transition from fingers (unstable interface) to plug (stable interface) occurs, and vice versa. Also, rheological tests were performed in which it was possible to know the behavior of non-Newtonian fluids used in the study. From the data collected it was observed that both the polyacrylamide and for xanthan gum transition occurs near the dimensionless shear rate of 3.
23

[en] NON NEWTONIAN FLOW IN ECCENTRIC ANNULAR SPACE WITH ROTATING INNER CYLINDER / [pt] ESCOAMENTO DE FLUIDO NÃO NEWTONIANO EM ESPAÇO ANULAR EXCÊNTRICO COM ROTAÇÃO DO CILINDRO INTERNO

INAE RODRIGUES DE ALMEIDA 09 April 2014 (has links)
[pt] O presente trabalho apresenta um modelo simplificado baseado na teoria de lubrificação e conceito de viscosidade equivalente para estudar o escoamento dos fluidos de perfuração através de um espaço anular excêntrico com rotação da coluna de perfuração. Em razão do comportamento não Newtoniano destes fluidos, é significativa a influência da rotação da coluna na perda de carga, já que a viscosidade dos fluidos varia com a taxa de deformação imposta. Uma completa análise deste problema requer uma solução tridimensional da equação de conservação de quantidade de movimento de fluidos não Newtonianos, cuja solução é extremamente cara computacionalmente, tornando necessário o desenvolvimento de modelos simplificados que descrevam bem os principais fenômenos observados nestes escoamentos. No modelo proposto, as equações que governam o escoamento são simplificadas pela teoria da lubrificação em coordenadas cilíndricas. Desta forma, o escoamento tridimensional é descrito por uma única equação diferencial bidimensional para o campo de pressão. O comportamento mecânico do fluido é avaliado através do método da Viscosidade Newtoniana Equivalente. O modelo proposto foi validado a partir de soluções numéricas para o modelo completo, disponíveis na literatura, avaliando a precisão das simplificações adotadas. Os resultados mostram o intervalo no qual o modelo simplificado é preciso e apresentam o efeito das propriedades dos fluidos, da geometria do poço e da rotação da coluna na perda de carga do escoamento.O presente trabalho apresenta um modelo simplificado baseado na teoria de lubrificação e conceito de viscosidade equivalente para estudar o escoamento dos fluidos de perfuração através de um espaço anular excêntrico com rotação da coluna de perfuração. Em razão do comportamento não Newtoniano destes fluidos, é significativa a influência da rotação da coluna na perda de carga, já que a viscosidade dos fluidos varia com a taxa de deformação imposta. Uma completa análise deste problema requer uma solução tridimensional da equação de conservação de quantidade de movimento de fluidos não Newtonianos, cuja solução é extremamente cara computacionalmente, tornando necessário o desenvolvimento de modelos simplificados que descrevam bem os principais fenômenos observados nestes escoamentos. No modelo proposto, as equações que governam o escoamento são simplificadas pela teoria da lubrificação em coordenadas cilíndricas. Desta forma, o escoamento tridimensional é descrito por uma única equação diferencial bidimensional para o campo de pressão. O comportamento mecânico do fluido é avaliado através do método da Viscosidade Newtoniana Equivalente. O modelo proposto foi validado a partir de soluções numéricas para o modelo completo, disponíveis na literatura, avaliando a precisão das simplificações adotadas. Os resultados mostram o intervalo no qual o modelo simplificado é preciso e apresentam o efeito das propriedades dos fluidos, da geometria do poço e da rotação da coluna na perda de carga do escoamento.O presente trabalho apresenta um modelo simplificado baseado na teoria de lubrificação e conceito de viscosidade equivalente para estudar o escoamento dos fluidos de perfuração através de um espaço anular excêntrico com rotação da coluna de perfuração. Em razão do comportamento não Newtoniano destes fluidos, é significativa a influência da rotação da coluna na perda de carga, já que a viscosidade dos fluidos varia com a taxa de deformação imposta. Uma completa análise deste problema requer uma solução tridimensional da equação de conservação de quantidade de movimento de fluidos não Newtonianos, cuja solução é extremamente cara computacionalmente, tornando necessário o desenvolvimento de modelos simplificados que descrevam bem os principais fenômenos observados nestes escoamentos. No modelo proposto, as equações que governam o escoamento são simplificadas pela teoria da lubrificação em coordenadas cilíndricas. Desta forma, o escoamento tridimensional é descrito por uma única equação diferencial bidimensional para o campo de pressão. O comportamento mecânico do fluido é avaliado através do método da Viscosidade Newtoniana Equivalente. O modelo proposto foi validado a partir de soluções numéricas para o modelo completo, disponíveis na literatura, avaliando a precisão das simplificações adotadas. Os resultados mostram o intervalo no qual o modelo simplificado é preciso e apresentam o efeito das propriedades dos fluidos, da geometria do poço e da rotação da coluna na perda de carga do escoamento. / [en] In this work a simplified model based on the Lubrication Theory and on the equivalent viscosity is presented to study the drilling fluid flow dynamics through an eccentric annular space with rotation of the drilling column. As a result of the non-Newtonian behavior of the fluid, the rotation of the column has a significant impact on the pressure drop since the viscosity of the fluids is a function of the strain rate applied. A complete analysis of this problem requires a tridimensional solution of the equation of momentum conservation, which makes the solution computationally expensive. For such, simplified accurate models that describe the main phenomena observed have to be developed. On the proposed model, the flow dynamics equations are simplified by the Lubrication Theory in cylindrical coordinates. Therefore, the tridimensional flow is described by one single two dimensional equation for the pressure field. The mechanical behaviour of the fluid is evaluated through the Equivalent Newtonian Viscosity method. The proposed model, as well as the accuracy of the simplifications used, was validated by comparison with numerical solutions of the complete set of equations available on the literature. The results show the range in which the proposed simplified model is accurate and presents the effects of the fluids properties, well geometry and column rotation on the pressure loss.
24

Simulação computacional adaptativa de escoamentos bifásicos viscoelásticos / Adaptive computational simulation of two-phase viscoelastic flows

Catalina Maria Rua Alvarez 28 May 2013 (has links)
A simulação computacional de escoamentos incompressíveis multifásicos tem avançado continuamente e é uma área extremamente importante em Dinâmica de Fluidos Computacional (DFC) por suas várias aplicações na indústria, em medicina e em biologia, apenas para citar alguns exemplos. Apresentamos modelos matemáticos e métodos numéricos tendo em vista simulações computacionais de fluidos bifásicos newtonianos e viscoelásticos (não newtonianos), em seus regimes transiente e estacionário de escoamento. Os ingredientes principais requeridos são o Modelo de Um Fluido e o Método da Fronteira Imersa em malhas adaptativas, usados em conjunto com os métodos da Projeção de Chorin-Temam e de Uzawa. Tais metodologias são obtidas a partir de equações a derivadas parciais simples as quais, naturalmente, são resolvidas em malhas adaptativas empregando métodos multinível-multigrid. Em certas ocasiões, entretanto, para escoamentos modelados pelas equações de Navier-Stokes (e.g. em problemas onde temos altos saltos de massa específica), tem-se problemas de convergência no escopo destes métodos. Além disso, no caso de escoamentos estacionários, resolver as equações de Stokes em sua forma discreta por tais métodos não é uma tarefa fácil. Verificamos que zeros na diagonal do sistema linear resultante impedem que métodos de relaxação usuais sejam empregados. As dificuldades mencionadas acima motivaram-nos a pesquisar por, a propor e a desenvolver alternativas à metodologia multinível-multigrid. No presente trabalho, propomos métodos para obter explicitamente as matrizes que representam os sistemas lineares oriundos da discretização daquelas equações a derivadas parciais simples que são a base dos métodos de Projeção e de Uzawa. Ter em mãos estas representações matriciais é vantajoso pois com elas podemos caracterizar tais sistemas lineares em termos das propriedades de seus raios espectrais, suas definições e simetria. Muito pouco (ou nada) se sabe efetivamente sobre estes sistemas lineares associados a discretizações em malhas compostas bloco-estruturadas. É importante salientarmos que, além disso, ganhamos acesso ao uso de bibliotecas numéricas externas, como o PETSc, com seus pré-condicionadores e métodos numéricos, seriais e paralelos, para resolver sistemas lineares. Infraestrutura para nossos desenvolvimentos foi propiciada pelo código denominado ``AMR2D\'\', um código doméstico para problemas em DFC que vem sendo cuidado ao longo dos anos pelos grupos de pesquisa em DFC do IME-USP e da FEMEC-UFU. Estendemos este código, adicionando módulos para escoamentos viscoelásticos e para escoamentos estacionários modelados pelas equações de Stokes. Além disso, melhoramos de maneira notável as rotinas de cálculo de valores fantasmas. Tais melhorias permitiram a implementação do Método dos Gradientes Bi-Conjugados, baseada em visitas retalho-a-retalho e varreduras da estrutura hierárquica nível-a-nível, essencial à implementação do Método de Uzawa. / Numerical simulation of incompressible multiphase flows has continuously of advanced and is an extremely important area in Computational Fluid Dynamics (CFD) because its several applications in industry, in medicine, and in biology, just to mention a few of them. We present mathematical models and numerical methods having in sight the computational simulation of two-phase Newtonian and viscoelastic fluids (non-Newtonian fluids), in the transient and stationary flow regimes. The main ingredients required are the One-fluid Model and the Immersed Boundary Method on dynamic, adaptive meshes, in concert with Chorin-Temam Projection and the Uzawa methods. These methodologies are built from simple linear partial differential equations which, most naturally, are solved on adaptive grids employing mutilevel-multigrid methods. On certain occasions, however, for transient flows modeled by the Navier-Stokes equations (e.g. in problems where we have high density jumps), one has convergence problems within the scope of these methods. Also, in the case of stationary flows, solving the discrete Stokes equations by those methods represents no straight forward task. It turns out that zeros in the diagonal of the resulting linear systems coming from the discrete equations prevent the usual relaxation methods from being used. Those difficulties, mentioned above, motivated us to search for, to propose, and to develop alternatives to the multilevel-multigrid methodology. In the present work, we propose methods to explicitly obtain the matrices that represent the linear systems arising from the discretization of those simple linear partial differential equations which form the basis of the Projection and Uzawa methods. Possessing these matrix representations is on our advantage to perform a characterization of those linear systems in terms of their spectral, definition, and symmetry properties. Very little is known about those for adaptive mesh discretizations. We highlight also that we gain access to the use of external numerical libraries, such as PETSc, with their preconditioners and numerical methods, both in serial and parallel versions, to solve linear systems. Infrastructure for our developments was offered by the code named ``AMR2D\'\' - an in-house CFD code, nurtured through the years by IME-USP and FEMEC-UFU CFD research groups. We were able to extend that code by adding a viscoelastic and a stationary Stokes solver modules, and improving remarkably the patchwise-based algorithm for computing ghost values. Those improvements proved to be essential to allow for the implementation of a patchwise Bi-Conjugate Gradient Method which ``powers\'\' Uzawa Method.
25

Simulação computacional adaptativa de escoamentos bifásicos viscoelásticos / Adaptive computational simulation of two-phase viscoelastic flows

Alvarez, Catalina Maria Rua 28 May 2013 (has links)
A simulação computacional de escoamentos incompressíveis multifásicos tem avançado continuamente e é uma área extremamente importante em Dinâmica de Fluidos Computacional (DFC) por suas várias aplicações na indústria, em medicina e em biologia, apenas para citar alguns exemplos. Apresentamos modelos matemáticos e métodos numéricos tendo em vista simulações computacionais de fluidos bifásicos newtonianos e viscoelásticos (não newtonianos), em seus regimes transiente e estacionário de escoamento. Os ingredientes principais requeridos são o Modelo de Um Fluido e o Método da Fronteira Imersa em malhas adaptativas, usados em conjunto com os métodos da Projeção de Chorin-Temam e de Uzawa. Tais metodologias são obtidas a partir de equações a derivadas parciais simples as quais, naturalmente, são resolvidas em malhas adaptativas empregando métodos multinível-multigrid. Em certas ocasiões, entretanto, para escoamentos modelados pelas equações de Navier-Stokes (e.g. em problemas onde temos altos saltos de massa específica), tem-se problemas de convergência no escopo destes métodos. Além disso, no caso de escoamentos estacionários, resolver as equações de Stokes em sua forma discreta por tais métodos não é uma tarefa fácil. Verificamos que zeros na diagonal do sistema linear resultante impedem que métodos de relaxação usuais sejam empregados. As dificuldades mencionadas acima motivaram-nos a pesquisar por, a propor e a desenvolver alternativas à metodologia multinível-multigrid. No presente trabalho, propomos métodos para obter explicitamente as matrizes que representam os sistemas lineares oriundos da discretização daquelas equações a derivadas parciais simples que são a base dos métodos de Projeção e de Uzawa. Ter em mãos estas representações matriciais é vantajoso pois com elas podemos caracterizar tais sistemas lineares em termos das propriedades de seus raios espectrais, suas definições e simetria. Muito pouco (ou nada) se sabe efetivamente sobre estes sistemas lineares associados a discretizações em malhas compostas bloco-estruturadas. É importante salientarmos que, além disso, ganhamos acesso ao uso de bibliotecas numéricas externas, como o PETSc, com seus pré-condicionadores e métodos numéricos, seriais e paralelos, para resolver sistemas lineares. Infraestrutura para nossos desenvolvimentos foi propiciada pelo código denominado ``AMR2D\'\', um código doméstico para problemas em DFC que vem sendo cuidado ao longo dos anos pelos grupos de pesquisa em DFC do IME-USP e da FEMEC-UFU. Estendemos este código, adicionando módulos para escoamentos viscoelásticos e para escoamentos estacionários modelados pelas equações de Stokes. Além disso, melhoramos de maneira notável as rotinas de cálculo de valores fantasmas. Tais melhorias permitiram a implementação do Método dos Gradientes Bi-Conjugados, baseada em visitas retalho-a-retalho e varreduras da estrutura hierárquica nível-a-nível, essencial à implementação do Método de Uzawa. / Numerical simulation of incompressible multiphase flows has continuously of advanced and is an extremely important area in Computational Fluid Dynamics (CFD) because its several applications in industry, in medicine, and in biology, just to mention a few of them. We present mathematical models and numerical methods having in sight the computational simulation of two-phase Newtonian and viscoelastic fluids (non-Newtonian fluids), in the transient and stationary flow regimes. The main ingredients required are the One-fluid Model and the Immersed Boundary Method on dynamic, adaptive meshes, in concert with Chorin-Temam Projection and the Uzawa methods. These methodologies are built from simple linear partial differential equations which, most naturally, are solved on adaptive grids employing mutilevel-multigrid methods. On certain occasions, however, for transient flows modeled by the Navier-Stokes equations (e.g. in problems where we have high density jumps), one has convergence problems within the scope of these methods. Also, in the case of stationary flows, solving the discrete Stokes equations by those methods represents no straight forward task. It turns out that zeros in the diagonal of the resulting linear systems coming from the discrete equations prevent the usual relaxation methods from being used. Those difficulties, mentioned above, motivated us to search for, to propose, and to develop alternatives to the multilevel-multigrid methodology. In the present work, we propose methods to explicitly obtain the matrices that represent the linear systems arising from the discretization of those simple linear partial differential equations which form the basis of the Projection and Uzawa methods. Possessing these matrix representations is on our advantage to perform a characterization of those linear systems in terms of their spectral, definition, and symmetry properties. Very little is known about those for adaptive mesh discretizations. We highlight also that we gain access to the use of external numerical libraries, such as PETSc, with their preconditioners and numerical methods, both in serial and parallel versions, to solve linear systems. Infrastructure for our developments was offered by the code named ``AMR2D\'\' - an in-house CFD code, nurtured through the years by IME-USP and FEMEC-UFU CFD research groups. We were able to extend that code by adding a viscoelastic and a stationary Stokes solver modules, and improving remarkably the patchwise-based algorithm for computing ghost values. Those improvements proved to be essential to allow for the implementation of a patchwise Bi-Conjugate Gradient Method which ``powers\'\' Uzawa Method.
26

[en] BREAKUP OF TWO-LAYER LIQUID FILMS / [pt] QUEBRA DE UM FILME DE LÍQUIDO COMPOSTO POR DUAS CAMADAS

PEDRO HENRIQUE SOUZA CALDERANO 23 August 2021 (has links)
[pt] Filmes finos de líquido estão presentes em uma variedade de sistemas e aplicações. Estamos interessados em filmes compostos por duas camadas, que são comuns no processo de revestimento por cortina. No revestimento por cortina, o líquido cai de uma matriz formando uma cortina formada por um filme fino antes de molhar o substrato em movimento. Um dos limites mais importantes do processo é a ruptura da cortina, que define um limite inferior para a vazão do líquido de revestimento. Consequentemente, este limite inferior da vazão define a espessura mínima viável do filme depositado. Evidências experimentais mostraram que o uso de uma cortina compostas por duas camadas, com uma das camadas sendo mais fina e viscoelástica, pode atrasar a ruptura da cortina para taxas de fluxo mais baixas. A quebra de filmes líquidos de duas camadas, compostas por um líquido newtoniano e um viscoelástico, é estudado por meio da resolução das equações diferenciais que descrevem a evolução da configuração do filme até seu rompimento. O efeito de diferentes parâmetros no tempo de ruptura é determinado. Os resultados mostram o mesmo comportamento observado experimentalmente, a fina camada de líquido viscoelástico retarda o rompimento, estabilizando o filme líquido. / [en] Thin liquid sheets are present in a variety of systems and applications. Here, we are interested in double-layered sheets, which are common in the curtain coating process. In curtain coating, the liquid falls from a die forming a thin curtain before wetting the moving substrate. One of the most important process limits is the curtain breakup, which sets a lower limit for the coating liquid flow rate. Consequently, this flow rate lower limit defines the feasible minimum deposited film thickness. Experimental evidence have shown that using a two-layer curtain, with a viscoelastic thin layer, may delay the curtain breakup to lower flow ratios. The breakup of two-layer liquid sheets, composed of a Newtonian and a viscoelastic liquid, is studied by solving the differential equations that describe the evolution of the liquid sheet configuration until breakup. The effect of different parameters on the breakup time is determined. The results show the same behavior observed experimentally, thin viscoelastic liquid layer delays the breakup, stabilizing the liquid sheet.
27

Correções de origem quântica para a ação do vácuo e suas aplicações

Paula Netto, Tibério de 22 February 2017 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-05-15T19:23:47Z No. of bitstreams: 1 tiberiodepaulanetto.pdf: 1926871 bytes, checksum: 17bceffda5c85de37a0d50a14f4f3f04 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-05-22T14:37:09Z (GMT) No. of bitstreams: 1 tiberiodepaulanetto.pdf: 1926871 bytes, checksum: 17bceffda5c85de37a0d50a14f4f3f04 (MD5) / Made available in DSpace on 2018-05-22T14:37:09Z (GMT). No. of bitstreams: 1 tiberiodepaulanetto.pdf: 1926871 bytes, checksum: 17bceffda5c85de37a0d50a14f4f3f04 (MD5) Previous issue date: 2017-02-22 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Nesta tese, exploram-se diferentes aspectos e aplicações das teorias gravitacionais com correções quânticas. O texto é dividido em três partes principais. Na primeira parte, são consideradas as soluções linearizadas em diferentes teorias de gravitação com derivadas superiores. O potencial Newtoniano é calculado nos modelos locais, super-renormalizáveis no nível quântico, e mostra-se que a singularidade Newtoniana é cancelada devido a contribuição dos modos massivos extras. Logo depois, o colapso gravitacional de uma pequena massa é estudado na gravitação não-local livre de fantasmas, sendo o principal resultado a ausência da singularidade na solução do campo gravitacional e a possibilidade da não formação do miniburaco negro como resultado do colapso. Na segunda parte, algumas questões sobre a inflação induzida pela anomalia conforme são estudadas. É discutida a possibilidade da transição entre os períodos de inflação estável para instável. É mostrado que esta transição é automática se as correções quânticas nesse período forem desprezadas. Em seguida, considera-se o efeito de termos que violam as simetrias de CPT e Lorentz na inflação induzida pela anomalia conforme. É demonstrado que os novos termos responsáveis por violar essas simetrias não afetam a dinâmica do fator de escala da métrica. Por fim, na terceira parte as correções quânticas para o modelo dos Galileons e para as teorias dos campos massivos tensoriais antissimétricos são obtidas. É mostrado que o propagador da teoria dos Galileons recebe correções quânticas com derivadas superiores e que o teorema de não-renormalização do modelo dos Galileons permanece, de uma maneira generalizada, válido na região das baixas energias. Depois, por meio de cálculos explícitos das correções quânticas semiclássicas não-locais é confirmada a equivalência quântica entre os modelos dos campos tensoriais antissimétricos massivos com a teoria de Proca e com o modelo do campo escalar massivo mínimo. / In this thesis, different aspects and applications of gravitational theories with quan-tum corrections are explored. The text is divided into three main parts. In the first part, the linearized solutions in different gravity theories with higher derivatives are considered. The Newtonian potential is calculated in the local models, super-renormalizable at the quantum level, and it is shown that the Newtonian singularity is cancelled due to the contributions of the extra massive modes. Then the gravitational collapse of a small mass is studied in non-local ghost-free gravity, being the main result the absence of singularity in the gravitational field solution and the possibility of non-mini black hole formation as the collapse result. In the second part, some issues about anomaly-induced inflation are studied. It is discussed the possibility of the transition between stable to unstable periods of inflation. It is shown that this transition is automatic if the quantum corrections in this period are neglected. In the following, we consider the effect of CPT and Lorentz-violating terms in the conformal anomaly-induced inflation. It is shown the new terms responsible to violate these symmetries do not affect the dynamics of the metric scale factor. Finally, in the third part, the quantum corrections for the Galileon model and for the theory of the massive antisymmetric tensor fields are obtained. It is shown that the propaga-tor of Galilean theory receives quantum corrections with higher derivatives and that the non-renormalization theorem for Galileon models remains, in a generalized way, valid in the low-energy region. Then, by means of explicit calculations of non-local semiclassical quantum corrections, the quantum equivalence between the massive antisymmetric tensor field models with the Proca theory and minimal massive scalar field model is confirmed.
28

Study of heat transfer and flow pattern in a multiphase fuel oil circular tank

Sancet, Aitor January 2009 (has links)
<p>This is a thesis work proposed by Sweco System in order to carry out a study related to the heating system of a circular fuel oil storage tank or cistern. The study tank is a 23m diameter and 18m height with a storage capacity of around 7500m3 of Eo5 heavy fuel oil. The content ought to be at a minimum storage temperature of 50ºC so that the fuel oil is fluid enough and operation labors can be adequately performed. In fact, these types of heavy fuel oils have fairly high viscosities at lower temperatures and the heating and pumping system can be compromised at temperatures below the pour point. For this purpose a heating system is installed to maintain the fluid warm. So far the system was operated by an oil burner but there are plans to its replacement by a District Heating-heat exchanger combo. Thereby, tank heating needs, flow and thermal patterns and heat transfer within it are principally studied.</p><p> </p><p>Tank boundaries are studied and their thermal resistances are calculated in order to dimension heat supply capacity. The study implies Finite Elements (Comsol Multiphysics) and Finite Volume (Fluent) analysis to work out some stationary heat transfer by conduction cases on some parts and thermal bridges present on these boundaries. Afterwards both cooling and heating processes of the fuel oil are studied using several strategies: basic models and Computational Fluid Dynamics (CFD). CFD work with Fluent is focused on optimizing inlet and outlet topologies. Understanding the cooling process is sought as well; Fluent CFD transient models are simulated in this way as well. Additionally the effect of filling levels is taken into account leading to a multiphase (fuel oil and air) flow cases where especially heating coupling of both phases is analyzed.</p><p> </p><p>Results show that maximum heat supply needs are around 80kW when the tank temperature is around 60ºC and 70kW when it is around 50ºC. Expectedly the main characteristic of the flow turns out to be the buoyancy driven convective pattern. K-ε turbulence viscous models are applied to both heating and cooling processes showing thermal stratification, especially at the bottom of the tank. Hotter fluid above follows very complex flow patterns. During the heating processes models used predict fairly well mixed and homogenous temperature distribution regardless small stratification at the bottom of the tank. In this way no concrete inlet-outlet configuration shows clear advantages over the rest. Due to the insulation of the tank, low thermal conductivity of the fluid and vast amount of mass present in the tank, the cooling process is slow (fluid average temperature drops around 5.7 ºC from 60ºC in 15 days when the tank is full and ambient temperature is considered to be at -20ºC) and lies somewhere in the middle between the solid rigid and perfect mixture cooling processes. However, due to stratification some parts of the fluid reach minimum admissible temperatures much faster than average temperature does. On the other hand, as expected, air phase acts as an additional thermal resistance; anyhow the cooling process is still faster for lower filling levels than the full one.</p> / <p>El presente proyecto fue propuesto por Sweco Systems para llevar a cabo un estudio relacionado con el sistema de calefacción de una cisterna o tanque de almacenamiento de fuel oil circular. Dicho tanque tiene 23 m de diámetro  y 18 m de altura con una capacidad de almacenamiento de alrededor de 7500 m<sup>3</sup> de Eo5 fuel oil pesado. El contenido mantenerse a una temperatura mínima de 50 ºC de manera que el fuel oil es suficientemente fluido para que las labores de operación puedan ser ejecutadas adecuadamente. De hecho, estos tipos de fuel oil pesado tienen altas viscosidades a bajas temperaturas y, por tanto, tanto los sistemas de calefacción y como el de bombeo pueden verse comprometidosr a temperaturas por debajo del pour point. Con este fin un sistema de calefacción es instalado para mantener el fluido suficientemente caliente. Hasta el momento, el sistema era operado por un quemador de fuel, sin embargo, hay planes que éste sea sustituido por un combo intercambiador de calor-District Heating. Por lo tanto, principalmente son estudiadas las necesidades de calefacción así como los flujos térmicos y fluidos.</p><p>Se estudian las fronteras del tanque, y sus respectivas resistencias térmicas son calculadas con el fin de dimensionar la capacidad necesaria de suministro de calor. El estudio implica Elementos Finitos (Comsol Multiphysics) y Volúmenes Finitos (Fluent) para elaborar análisis estacionarios de transferencia de calor por conducción en algunos casos. Existen puentes térmicos en las paredes y su importancia es también anallizada. Posteriormente se estudian tanto los procesos de calentamiento y enfriamiento del fuel oil utilizando diversas estrategias: modelos básicos y Dinámica de Fluidos Computacional (CFD). El trabajo con CFD se centra en la optimización de topologías de entradas y salidas del sistema. También es solicitado entender el proceso de enfriamiento; En este sentido, se simulan modelos CFD transitorios de Fluent. Además, el efecto de los niveles de llenado se tiene en cuenta dando lugar a estudios de flujo multifase (fuel oil y aire), haciendo hincapié en el análisis de acoplamiento de transferencia de calor entre las dos fases.</p><p>Los resultados muestran que las necesidades de calefacción máximas son de alrededor de 80kW cuando la temperatura del tanque es de alrededor de 60 º C y 70kW cuando está alrededor de 50 ºC. Como era de esperar, la principal característica de este tipo de flujos es la convección natural resultante de las fuerzas de flotabilidad. Se aplican modelos turbulentos k-ε a los procesos de calentamiento y enfriamiento, mostrando estratificación térmica, sobre todo en la parte inferior de la cisterna. El líquido más caliente que se sitúa encima muestra complejos patrones de flujo. Durante los procesos de calentamiento, los modelos utilizados predicen un buen mezclado y distribución homogénea de la temperatura independientemente de esta pequeña estratificación en la parte inferior de la cisterna. De esta manera, ninguna concreta configuración de entradas-salidas simuladas muestra claras ventajas sobre el resto. Debido al aislamiento de la cisterna, la baja conductividad térmica del fluido y la gran cantidad de masa presente en el tanque el proceso de enfriamiento es lento (la temperatura media del fluido desciende 5.7 º C desde 60 º C en 15 días cuando el tanque está lleno y la temperatura ambiente es de -20 º C) y se encuentra en algún lugar en medio de los procesos de enfriamiento del sólido rígido y perfecta mezcla. Sin embargo, debido a la estratificación, algunas partes el líquido alcanzan la temperatura mínima admisible mucho más rápido que la media de temperatura. Por otra parte, como se esperaba, la fase de aire actúa como una resistencia térmica adicional, de todos modos, el proceso de enfriamiento es aún más rápido para niveles de llenado más bajos que el lleno.</p>
29

Study of heat transfer and flow pattern in a multiphase fuel oil circular tank

Sancet, Aitor January 2009 (has links)
This is a thesis work proposed by Sweco System in order to carry out a study related to the heating system of a circular fuel oil storage tank or cistern. The study tank is a 23m diameter and 18m height with a storage capacity of around 7500m3 of Eo5 heavy fuel oil. The content ought to be at a minimum storage temperature of 50ºC so that the fuel oil is fluid enough and operation labors can be adequately performed. In fact, these types of heavy fuel oils have fairly high viscosities at lower temperatures and the heating and pumping system can be compromised at temperatures below the pour point. For this purpose a heating system is installed to maintain the fluid warm. So far the system was operated by an oil burner but there are plans to its replacement by a District Heating-heat exchanger combo. Thereby, tank heating needs, flow and thermal patterns and heat transfer within it are principally studied.   Tank boundaries are studied and their thermal resistances are calculated in order to dimension heat supply capacity. The study implies Finite Elements (Comsol Multiphysics) and Finite Volume (Fluent) analysis to work out some stationary heat transfer by conduction cases on some parts and thermal bridges present on these boundaries. Afterwards both cooling and heating processes of the fuel oil are studied using several strategies: basic models and Computational Fluid Dynamics (CFD). CFD work with Fluent is focused on optimizing inlet and outlet topologies. Understanding the cooling process is sought as well; Fluent CFD transient models are simulated in this way as well. Additionally the effect of filling levels is taken into account leading to a multiphase (fuel oil and air) flow cases where especially heating coupling of both phases is analyzed.   Results show that maximum heat supply needs are around 80kW when the tank temperature is around 60ºC and 70kW when it is around 50ºC. Expectedly the main characteristic of the flow turns out to be the buoyancy driven convective pattern. K-ε turbulence viscous models are applied to both heating and cooling processes showing thermal stratification, especially at the bottom of the tank. Hotter fluid above follows very complex flow patterns. During the heating processes models used predict fairly well mixed and homogenous temperature distribution regardless small stratification at the bottom of the tank. In this way no concrete inlet-outlet configuration shows clear advantages over the rest. Due to the insulation of the tank, low thermal conductivity of the fluid and vast amount of mass present in the tank, the cooling process is slow (fluid average temperature drops around 5.7 ºC from 60ºC in 15 days when the tank is full and ambient temperature is considered to be at -20ºC) and lies somewhere in the middle between the solid rigid and perfect mixture cooling processes. However, due to stratification some parts of the fluid reach minimum admissible temperatures much faster than average temperature does. On the other hand, as expected, air phase acts as an additional thermal resistance; anyhow the cooling process is still faster for lower filling levels than the full one. / El presente proyecto fue propuesto por Sweco Systems para llevar a cabo un estudio relacionado con el sistema de calefacción de una cisterna o tanque de almacenamiento de fuel oil circular. Dicho tanque tiene 23 m de diámetro  y 18 m de altura con una capacidad de almacenamiento de alrededor de 7500 m3 de Eo5 fuel oil pesado. El contenido mantenerse a una temperatura mínima de 50 ºC de manera que el fuel oil es suficientemente fluido para que las labores de operación puedan ser ejecutadas adecuadamente. De hecho, estos tipos de fuel oil pesado tienen altas viscosidades a bajas temperaturas y, por tanto, tanto los sistemas de calefacción y como el de bombeo pueden verse comprometidosr a temperaturas por debajo del pour point. Con este fin un sistema de calefacción es instalado para mantener el fluido suficientemente caliente. Hasta el momento, el sistema era operado por un quemador de fuel, sin embargo, hay planes que éste sea sustituido por un combo intercambiador de calor-District Heating. Por lo tanto, principalmente son estudiadas las necesidades de calefacción así como los flujos térmicos y fluidos. Se estudian las fronteras del tanque, y sus respectivas resistencias térmicas son calculadas con el fin de dimensionar la capacidad necesaria de suministro de calor. El estudio implica Elementos Finitos (Comsol Multiphysics) y Volúmenes Finitos (Fluent) para elaborar análisis estacionarios de transferencia de calor por conducción en algunos casos. Existen puentes térmicos en las paredes y su importancia es también anallizada. Posteriormente se estudian tanto los procesos de calentamiento y enfriamiento del fuel oil utilizando diversas estrategias: modelos básicos y Dinámica de Fluidos Computacional (CFD). El trabajo con CFD se centra en la optimización de topologías de entradas y salidas del sistema. También es solicitado entender el proceso de enfriamiento; En este sentido, se simulan modelos CFD transitorios de Fluent. Además, el efecto de los niveles de llenado se tiene en cuenta dando lugar a estudios de flujo multifase (fuel oil y aire), haciendo hincapié en el análisis de acoplamiento de transferencia de calor entre las dos fases. Los resultados muestran que las necesidades de calefacción máximas son de alrededor de 80kW cuando la temperatura del tanque es de alrededor de 60 º C y 70kW cuando está alrededor de 50 ºC. Como era de esperar, la principal característica de este tipo de flujos es la convección natural resultante de las fuerzas de flotabilidad. Se aplican modelos turbulentos k-ε a los procesos de calentamiento y enfriamiento, mostrando estratificación térmica, sobre todo en la parte inferior de la cisterna. El líquido más caliente que se sitúa encima muestra complejos patrones de flujo. Durante los procesos de calentamiento, los modelos utilizados predicen un buen mezclado y distribución homogénea de la temperatura independientemente de esta pequeña estratificación en la parte inferior de la cisterna. De esta manera, ninguna concreta configuración de entradas-salidas simuladas muestra claras ventajas sobre el resto. Debido al aislamiento de la cisterna, la baja conductividad térmica del fluido y la gran cantidad de masa presente en el tanque el proceso de enfriamiento es lento (la temperatura media del fluido desciende 5.7 º C desde 60 º C en 15 días cuando el tanque está lleno y la temperatura ambiente es de -20 º C) y se encuentra en algún lugar en medio de los procesos de enfriamiento del sólido rígido y perfecta mezcla. Sin embargo, debido a la estratificación, algunas partes el líquido alcanzan la temperatura mínima admisible mucho más rápido que la media de temperatura. Por otra parte, como se esperaba, la fase de aire actúa como una resistencia térmica adicional, de todos modos, el proceso de enfriamiento es aún más rápido para niveles de llenado más bajos que el lleno.

Page generated in 0.0359 seconds