• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 2
  • 1
  • Tagged with
  • 17
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Hur gestaltas krafter i fysikläroböcker? : En bildanalys av två fysikläroböcker / How are forces portrayed in physics textbooks? : A picture analysis of two physics textbooks

Asklund, Hannes January 2021 (has links)
Tidigare forskning har visat på att elever i gymnasieåldern påvisar missuppfattningar inom klassisk mekanik. Detta rör sig ofta om ett aristoteliskt synsätt och ej det efterfrågade newtonska synsättet. Någonstans kommer missuppfattningarna ifrån och de behöver sedan läras bort. I denna studie som gjorts har en bildanalys av två läroböckers bilder gjorts om hur de gestaltar kraft. Kraft är ett centralt begrepp i den newtonska mekaniken och där det finns en tydlig skillnad mellan aristotelisk och newtonsk mekanik. Bildanalysen av de två läroböckerna är en kvalitativ studie som följde nio frågor som analysen gjordes utefter. Frågeställningen som undersöktes i denna studie var,   ·         Hur representeras kraft i fysikläroböckers bilder?   De båda läroböckernas bilder visar på en newtonsk mekanik men den är ofta väldigt grundläggande. Det återfanns ingen trend mellan de två undersökta böckerna och användandet av bilder skiljde sig mellan de två läroböckerna. / <p>Presenterades digitalt.</p>
12

Vardagsföreställningar om begreppet kraft hos gymnasieelever : En studie med kvantitativ och kvalitativ undersökning i gymnasieskolan

Alo, Ibrahim January 2023 (has links)
I detta examensarbete har en studie genomförts om vilka vardagsuppfattningar som finns bland gymnasieelever innan de studerar rörelselagarna, och om dessa uppfattningar kommer att försvinna efter att de studerat kraft och rörelse i skolan. En enkät bestående av 6 frågor utan lösningsalternativ genomfördes på en grupp elever i två olika skolor. Antalet elever som deltog i enkäten var 113 innan de läst fysikkursen och 102 efter att de läst fysikkursen för att få tillräcklig information om de vardagsföreställningar som kan finnas i elevernas medvetande. Intervjuer genomfördes också med 5 fysiklärare från dessa två skolor för att ta reda på vilka som är de bästa undervisningsmetoderna för att förklara rörelselagarna väl ur deras synvinkel. Enkätens resultat visade att det finns många vardagsföreställningar om kraftbegreppet i elevernas medvetande, till exempel att massa, acceleration och energi är en typ av kraft.  Eleverna tror också att det alltid finns en kraft i rörelseriktningen, vilket stämmer överens med aristoteliska idéer. Elever har en missuppfattning om Newtons första och andra lag eftersom ett antal elever tror att det finns en nettokraft större än noll som påverkar en kropp som rör sig med konstant hastighet. Det finns också en tro bland dem att kroppens kraft är proportionell mot dess hastighet och inte till hastighetsförändringen, (accelerationen). Alla lärare bekräftade att det finns vardagsföreställningar i elevernas medvetande och att de använder olika undervisningsmetoder för att hjälpa eleverna att bli av med missuppfattningar. De bästa undervisningsmetoderna som lärare sa att de använder för att förklara rörelselagarna och korrigera elevernas missuppfattningar är laborationer, demonstrationer och diskussioner med elever. Enkätens resultat, efter att eleverna studerat Newtons lagar, visar att de flesta av missuppfattningarna fortfarande finns kvar i många elevers medvetande, och att undervisningsmetoderna inte var så effektiva som de borde vara
13

Axiomata Sive Leges Motus: a mecânica racional newtoniana sob a ótica da metodologia dos programas de pesquisa científica / Axiomata Sive Leges Motus: the Newtonian rational mechanics on the views of methodology of scientific research programmes

Assis, Emerson Ferreira de 11 December 2008 (has links)
O objetivo deste trabalho é investigar o desenvolvimento da mecânica racional newtoniana, particularmente acompanhar sua inauguração com os Philosophiae Naturalis Principia Mathematica e a subseqüente recepção do programa pela filosofia continental, no século XVIII, por alguns intelectuais e cientistas. Utiliza-se a metodologia dos programas de pesquisa científica como referencial epistemológico na caracterização e descrição do programa, e também a abordagem historiográfica que ela implica. Epistemologicamente, procura-se escrutinar e precisar o sentido da noção de núcleo duro, em particular sua aplicação ao programa newtoniano de mecânica racional, mediante a análise detida do que Lakatos concebeu como o núcleo duro do mencionado programa, as leis dinâmicas e da gravitação apresentadas nos livros I e III dos Principia. O núcleo do programa da mecânica racional newtoniana é pensado por Newton como axiomas ou leis do movimento (Axiomata sive leges motus). Essa caracterização das hipóteses fundamentais da mecânica newtoniana aponta para sua centralidade, o que aparentemente confirma a idéia fundamental de Lakatos de que um programa de pesquisa é caracterizado pelo seu núcleo duro. A questão que motiva este ensaio pode ser formulada nos seguintes termos: dado que, segundo Lakatos, o núcleo duro é o componente conceitual (caracterizado metodologicamente) que define os contornos da prática científica em determinado campo, primeiro, não seria o núcleo duro estruturado através da correlação com outros componentes da teoria de racionalidade de Lakatos, em particular da heurística positiva? Segundo, as suposições compartilhadas pelos partidários de um programa de pesquisa possuirão alguma característica distintiva (epistemológica) que legitime sua proteção em relação à refutação? Por fim, aplicada à história da ciência, esta noção metodológica resiste a um escrutínio historiográfico? / The aim of this paper was to investigate the development of Newtonian rational mechanics, in special to analyze our rise with the publication of Philosophiae Naturalis Principia Mathematica and the consequent program reception by the continental philosophy. Was used the methodology of scientific research programs like epistemological framework in the programs characterization and description, and too the historiography approach entangled by it. Epistemologically the aim is to scrutiny and to particularize the notion of hard core, specially in your application to Newtonian rational mechanics program, through the analyze of Lakatos conception of referred programs hard core: the dynamics laws of motion and the law of gravitation , presented in books I and III of Principia. To summarize, the question which motive this paper can be formulated in the following way: accepted the supposition that the hard core is the conceptual component which define the demarcation of the scientific practice in a established scope stability, first, the hard core will be not reducible to the others components of Lakatos´ theory of scientific rationality, like a face of positive heuristics? Second, will have the shared suppositions in a scientific program any distinctive characters (epistemological) which legitimate the protection of them face the refutation? At last, applied to the History of Science, this epistemological notion resist against a historic scrutiny?
14

Axiomata Sive Leges Motus: a mecânica racional newtoniana sob a ótica da metodologia dos programas de pesquisa científica / Axiomata Sive Leges Motus: the Newtonian rational mechanics on the views of methodology of scientific research programmes

Emerson Ferreira de Assis 11 December 2008 (has links)
O objetivo deste trabalho é investigar o desenvolvimento da mecânica racional newtoniana, particularmente acompanhar sua inauguração com os Philosophiae Naturalis Principia Mathematica e a subseqüente recepção do programa pela filosofia continental, no século XVIII, por alguns intelectuais e cientistas. Utiliza-se a metodologia dos programas de pesquisa científica como referencial epistemológico na caracterização e descrição do programa, e também a abordagem historiográfica que ela implica. Epistemologicamente, procura-se escrutinar e precisar o sentido da noção de núcleo duro, em particular sua aplicação ao programa newtoniano de mecânica racional, mediante a análise detida do que Lakatos concebeu como o núcleo duro do mencionado programa, as leis dinâmicas e da gravitação apresentadas nos livros I e III dos Principia. O núcleo do programa da mecânica racional newtoniana é pensado por Newton como axiomas ou leis do movimento (Axiomata sive leges motus). Essa caracterização das hipóteses fundamentais da mecânica newtoniana aponta para sua centralidade, o que aparentemente confirma a idéia fundamental de Lakatos de que um programa de pesquisa é caracterizado pelo seu núcleo duro. A questão que motiva este ensaio pode ser formulada nos seguintes termos: dado que, segundo Lakatos, o núcleo duro é o componente conceitual (caracterizado metodologicamente) que define os contornos da prática científica em determinado campo, primeiro, não seria o núcleo duro estruturado através da correlação com outros componentes da teoria de racionalidade de Lakatos, em particular da heurística positiva? Segundo, as suposições compartilhadas pelos partidários de um programa de pesquisa possuirão alguma característica distintiva (epistemológica) que legitime sua proteção em relação à refutação? Por fim, aplicada à história da ciência, esta noção metodológica resiste a um escrutínio historiográfico? / The aim of this paper was to investigate the development of Newtonian rational mechanics, in special to analyze our rise with the publication of Philosophiae Naturalis Principia Mathematica and the consequent program reception by the continental philosophy. Was used the methodology of scientific research programs like epistemological framework in the programs characterization and description, and too the historiography approach entangled by it. Epistemologically the aim is to scrutiny and to particularize the notion of hard core, specially in your application to Newtonian rational mechanics program, through the analyze of Lakatos conception of referred programs hard core: the dynamics laws of motion and the law of gravitation , presented in books I and III of Principia. To summarize, the question which motive this paper can be formulated in the following way: accepted the supposition that the hard core is the conceptual component which define the demarcation of the scientific practice in a established scope stability, first, the hard core will be not reducible to the others components of Lakatos´ theory of scientific rationality, like a face of positive heuristics? Second, will have the shared suppositions in a scientific program any distinctive characters (epistemological) which legitimate the protection of them face the refutation? At last, applied to the History of Science, this epistemological notion resist against a historic scrutiny?
15

Random Iterations of Subhyperbolic Relaxed Newton's Methods / Zufällige Iterationen subhyperbolischer Eulerscher Verfahren

Arghanoun, Ghazaleh 14 April 2004 (has links)
No description available.
16

Development And Performance Study Of Ion Thrust Measurement System Using Strain Gauge Sensors

Stephen, R John 01 1900 (has links) (PDF)
No description available.
17

Anisotropic Viscoelasticity at Large Strain Deformations

Schmidt, Hansjörg 14 August 2018 (has links)
The aim of this thesis is the fast and exact simulation of modern materials like fibre reinforced thermoplastics and fibre reinforced elastomers. These simulations are in the scope of large strain deformations and contain anisotropic and viscoelastic behaviour. The chapter Differential geometry outlines the necessary tensor analysis and differential geometry. We present the weak formulation in the undeformed domain and use Newton’s method to approximate the solution of this formulation, cf. Section 3.1 and Chapter 4, respectively. For the viscoelasticity we use a special ansatz for the internal variable. Next, we compute all necessary derivations for the Newton system, cf. Sections 4.2 and 4.3. We also investigate the symmetry of the material tensors in Section 4.4. Further, we present three methods to improve the convergence of Newton’s method, cf. Section 4.5. With these three methods we are able to consider more problems, compute them faster and in a more robust way. In Chapter 5 we concisely discuss the FEM and show the appearing matrices in detail. The aim of Chapter 6 is the application of the a posteriori error estimator to this complex material behaviour. We present some numerical examples in Chapter 7. In Chapter 8 the problems that arise in the simulation of fibre-reinforced elastomers are analysed and tackled with help of mixed formulations. We derive a symmetric mixed formulation from a reduced form of the energy density. Also, we reformulate the mixed variable for inextensibility to avoid the numerical cancellation in Section 8.3. The Section 8.4 is about a joined mixed formulation to solve problems with inextensible fibres in an incompressible matrix, like fibre-reinforced rubber. The succeeding section Section 8.5 deals with the arising indefinite block matrix system.:Contents Glossary 5 1 Introduction – motivation 13 2 Differential geometry 15 2.1 From parametrisations to the Lagrangian strain 15 2.2 Derivatives of tensors 20 3 Physical foundations 25 3.1 Large Deformation 25 3.1.1 Balance of forces 25 3.1.2 Energy minimisation 28 3.2 Anisotropic energy density 29 3.3 Viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4 Newton’s method 37 4.1 Newton system 37 4.2 Anisotropic material tensor 40 4.3 Viscoelastic material tensor 41 4.4 Symmetry of the material tensor 44 4.5 Load steps and line-search 47 4.5.1 Load steps – time steps 47 4.5.2 Backtracking for det ℱ > 0 48 4.5.3 Line search for energy minimisation 49 5 Implementation 53 5.1 Numerical Integration 53 5.2 Finite element discretisation 54 5.3 Voigt notation 56 6 Mesh control 65 7 Numerical results 69 7.1 Semi-analytical example 69 7.2 Cook’s membrane 71 7.2.1 Viscoelastic example 72 7.3 Chemnitz hook – Chemnitzer Haken 72 8 Mixed formulation 75 8.1 Motivation 75 8.2 General considerations 78 8.3 Smooth square root 81 8.4 Joined mixed formulation 84 8.5 Matrix representation 86 9 Conclusion 91 10 Theses 93 11 Appendix 95 11.1 Derivatives of the distortion-invariants with respect to the pseudo invariants 95 Bibliography 101

Page generated in 0.0307 seconds