• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 695
  • 81
  • 78
  • 68
  • 41
  • 25
  • 14
  • 14
  • 6
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 1203
  • 408
  • 269
  • 191
  • 159
  • 154
  • 130
  • 126
  • 119
  • 100
  • 98
  • 95
  • 93
  • 91
  • 89
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
891

Yttrium, Gadolinium, and Lutetium Based Endohedral Metallofullerenes: From Synthesis to Application

Zhang, Jianyuan 03 February 2014 (has links)
Endohedral metalofullerenes (EMFs) have emerged as an important class of nanomaterials with vast promise in applications of molecular devices and nanomedicines. This dissertation addresses the EMF research span from synthesis to application, with an emphasis of work on trimetallic nitride template (TNT) EMF and carbide clusterfullerenes (CCFs). As a general introduction, chapter 1 reviews the main literature in TNT EMF studies. Also key works in CCF area are highlighted to show the common feature and uniqueness of this class of EMF in comparison with other EMFs. In the last part of the chapter a list of milestone progress in EMF area has been summarized. Chapter 2 is devoted to the synthetic work on EMFs. Especially, for isotopic modification, the trial and actual EMF syntheses in efforts to introduce 13C, 89Y and 177Lu are described. The next three chapters address the structural characterization of EMFs. Chapter 3 focuses on structural studies of CCFs. With detailed interpretation of 13C NMR and DFT computational results for selected members of the Y2C2@C2n family, the influence of fullerene cage on the size and shape of the yttrium carbide cluster (Y2C2)4+ is investigated. It has also been established that the carbide cluster prefers a linear shape in sufficiently large fullerene cages but adopts a compressed butterfly shape in smaller cages where space is constrained. Chapter 4 presents a systemic examination of dipole moments in TNT EMFs. The first 13C NMR study of M3N@C2(22010)-C78 is achieved on Y3N@C2(22010)-C78. In addition, dipole moments of the M3N@C2n (n=39-44) family are probed by interpretation of chromatographic retention behavior, DFT computational results and single-crystal data. It has been found that TNT EMFs with pentalene motifs exhibit enhanced dipole moments due to the cluster-cage interplay. Chapter 5 provides full characterization of the M2C2@C1(51383)-C84 (M=Y, Gd) molecule, which contains the first example of an asymmetric fullerene cage with fused pentagons. Furthermore, it is suggested that the C1(51383)-C84 cage is capable of a cascade of rearrangements into high symmetry and stable fullerene cages via well-established mechanistic steps, namely, extrusion of C2 units from pentalene or indene motifs and Stone-Wales transformations. As an important intermediate in the formation of high symmetry fullerene cages, the C1(51383)-C84 represents a missing link that implies the "top-down" fullerene formation mechanism. Chapter 6 describes the endeavor to functionalize two exotic EMFs, the room-temperature radical heterometallofullerene Gd2@C79N, and the egg-shaped TNT EMF Gd3N@C84. The reactivity of Gd2@C79N is directly compared to Y2@C79N, Gd3N@C80 and Sc3N@C80 in two reactions and the paramagnetic Gd2@C79N is proven to be very inert toward many known common fullerene cage reactions. Eventually both EMFs have been successfully functionalized via the Bingel reaction, and the derivatives are characterized with HPLC and mass-spectrometry. Chapter 7 compares the effective magnetic moment of Gd3N@C80 and Gd3N@C84, together with the previously reported Gd@C82. The magnetic moment has a second-order contribution to the T1 relaxivity and thereby is an important factor to evaluate an EMF's value in application as MRI contrast agents. Furthermore the influence of cluster motion to magnetic behavior in TNT EMF is discussed. / Ph. D.
892

Electrical Characterization of Gallium Nitride Drift Layers and Schottky Diodes

Allen, Noah P. 09 October 2019 (has links)
Interest in wide bandgap semiconductors such as silicon carbide (SiC), gallium nitride (GaN), gallium oxide (Ga 2 O 3 ) and diamond has increased due to their ability to deliver high power, high switching frequency and low loss electronic devices for power conversion applications. To meet these requirements, semiconductor material defects, introduced during growth and fabrication, must be minimized. Otherwise, theoretical limits of operation cannot be achieved. In this dissertation, the non-ideal current- voltage (IV) behavior of GaN-based Schottky diodes is discussed first. Here, a new model is developed to explain better the temperature dependent performance typically associated with a multi-Gaussian distribution of barrier heights at the metal-semiconductor interface [Section 3.1]. Application of this model gives researches a means of understanding not only the effective barrier distribution at the MS interface but also its voltage dependence. With this information, the consequence that material growth and device fabrication methods have on the electrical characteristics can be better understood. To show its applicability, the new model is applied to Ru/GaN Schottky diodes annealed at increasing temperature under normal laboratory air, revealing that the origin of excess reverse leakage current is attributed to the low-side inhomogeneous barrier distribution tail [Section 3.2]. Secondly, challenges encountered during MOCVD growth of low-doped GaN drift layers for high-voltage operation are discussed with focus given to ongoing research characterizing deep-level defect incorporation by deep level transient spectroscopy (DLTS) and deep level optical spectroscopy (DLOS) [Section 3.3 and 3.4]. It is shown that simply increasing TMGa so that high growth rates (>4 µm/hr) can be achieved will cause the free carrier concentration and the electron mobilities in grown drift layers to decrease. Upon examination of the deep-level defect concentrations, it is found that this is likely caused by an increase in 4 deep level defects states located at E C - 2.30, 2.70, 2.90 and 3.20 eV. Finally, samples where the ammonia molar flow rate is increased while ensuring growth rate is kept at 2 µm/hr, the concentrations of the deep levels located at 0.62, 2.60, and 2.82 eV below the conduction band can be effectively lowered. This accomplishment marks an exciting new means by which the intrinsic impurity concentration in MOCVD-grown GaN films can be reduced so that >20 kV capable devices could be achieved. / Doctor of Philosophy / We constantly rely on electronics to help assist us in our everyday lives. However, to ensure functionality we require that they minimize the amount of energy lost through heat during operation. One contribution to this inefficiency is incurred during electrical power conversion. Examples of power conversion include converting from the 120 V wall outlet to the 5 V charging voltage used by cellphones or converting the fluctuating voltage from a solar panel (due to varying sun exposure) to the 120 V AC power found in a typical household. Electrical circuits can be simply designed to accomplish these conversions; however, consideration to every component must be given to ensure high efficiency. A popular example of an electrical power conversion circuit is one that switches the input voltage on and off at high rates and smooths the output with an inductor/capacitor network. A good analogy of this process is trying to create a small stream of water from a fire hydrant which can either be off or on at full power. Here we can use a small cup but turning the fire hydrant on and trying to fill the cup will destroy it. However, if the fire hydrant is pulsed on and off at very short intervals (1 µs), its possible to fill the cup without damaging it or having it overflow. Now, under ideal circumstances if a small hole is poked in the bottom of the cup and the interval of the fire hydrant is timed correctly, a small low power stream of water is created without overflowing the cup and wasting water. In this analogy, a devices capable of switching the stream of water on and off very fast would need to be implemented. In electrical power conversion circuits this device is typically a transistor and diode network created from a semiconducting material. Here, similar to the fire hydrant analogy, a switch would need to be capable of holding off the immense power when in the off position and not impeding the powerful flow when in the on position. The theoretical limit of these two characteristics is dependent on the material properties of the switch where typically used semiconductors include silicon (Si), silicon carbide (SiC), or gallium nitride (GaN). Currently, GaN is considered to be a superior option over Si or SiC to make the power semiconductor switching device, however research is still required to remove non-ideal behavior that ultimately effects power conversion efficiency. In this work, we first examine the spurious behavior in GaN-based Schottky diodes and effectively create a new model to describe the observed behavior. Next, we fabricated Ru/GaN Schottky diodes annealed at different temperatures and applied the model to explain the room-temperature electrical characteristics. Finally, we grew GaN under different conditions (varying TMGa and ammonia) so that quantum characteristics, which have been shown to affect the overall ability of the device, could be measured.
893

GaN-Based High-Efficiency, High-Density, High-Frequency Battery Charger for Plug-in Hybrid Electric Vehicle

Xue, Lingxiao 24 September 2015 (has links)
This work explores how GaN devices and advanced control can improve the power density of battery chargers for the plug-in hybrid electric vehicle. Gallium nitride (GaN) devices are used to increase switching frequency and shrink passive components. An innovative DC link reduction technique is proposed and several practical design issues are solved. A multi-chip-module (MCM) approach is used to integrate multiple GaN transistors into a package that enables fast, reliable, and efficient switching. The on-resistance and output charge are characterized. In a double pulse test, GaN devices show fast switching speed. The loss estimation based on the characterization results shows a good match with the measurement results of a 500 kHz GaN-based boost converter. Topology selection is conducted to identify candidates for the PHEV charger application. Popular topologies are reviewed, including non-isolated and isolated solutions, and single-stage and two-stage solutions. Since the isolated two-stage solution is more promising, the topologies consisting of an AC/DC front-end converter and an isolated DC/DC converters are reviewed. The identified candidate topologies are evaluated quantitatively. Finally, the topology of a full bridge AC/DC plus dual active bridge DC/DC is selected to build the battery charger prototype for fixed switching-frequency, low loss, and low realization complexity. The DC link capacitor is one of the major power density barriers of the charger, as its size cannot be reduced by increasing the switching frequency. This work proposed a charging scheme to reduce the DC link capacitance by balancing the ripple power from input and output given that the double-line-frequency current causes minor impact to the battery pack in terms of capacity and temperature rise. An in-depth analysis of ripple power balance, with converter loss considered, unveils the conditions of eliminating the low-frequency DC link capacitors. PWM-zero-off charging where the battery is charged by a current at double-line-frequency and DC/DC stage is turned off at the zero level of the waveform, is also proposed to achieve a better tradeoff between the DC link capacitor size and the charger efficiency. The practical design issues are outlined and the solutions are given at different levels of implementations, including the full bridge building block, the AC/DC stage, and the DC/DC stage. The full bridge section focuses on the solution of a reliable driving and sensing circuitry design. The AC/DC stage portion stresses the modulator improvement, which solves the often-reported issues of the current spike at the zero-crossing of the line voltage for the high frequency totem-pole bridgeless converter. In the DAB section, analytical expressions are given to model the converter operation at various operating conditions, which match well with the measurement results. The overall charging-system operation including the seamless transition of bi-directional power flow and the charging-profile control is verified on a laboratory GaN charger prototype at 500 kHz and 1.8 kW with an efficiency of 92.4%. To push the power density, some bulky components including the control board, the cooling system, and the chassis are redesigned. Together with other already-verified building blocks including full bridges, magnetics, and capacitors, a high-density mock-up prototype with 125 W/in3 power density is assembled. / Ph. D.
894

Design and Implementation of a Radiation Hardened GaN Based Isolated DC-DC Converter for Space Applications

Turriate, Victor Omar 19 November 2018 (has links)
Power converters used in high reliability radiation hardened space applications trail their commercial counterparts in terms of power density and efficiency. This is due to the additional challenges that arise in the design of space rated power converters from the harsh environment they need to operate in, to the limited availability of space qualified components and field demonstrated power converter topologies. New radiation hardened Gallium Nitride (GaN) Field Effect Transistors (FETs) with their inherent radiation tolerance and superior performance over Silicon Power Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) are a promising alternative to improve power density and performance in space power converters. This thesis presents the considerations and design of a practical implementation of the Phase Shifted Full Bridge DC-DC Isolated converter with synchronous rectification for space applications. Recently released radiation hardened GaN FETs were used in the Full Bridge and synchronous rectifier power stages. A survey outlining the benefits of new radiation hardened GaN FETs for space power applications compared to current radiation hardened power MOSFETs is included. In addition, this work presents the overall design process followed to design the DC-DC converter power stage, as well as a comprehensive power loss analysis. Furthermore, this work includes details to implement a conventional hard-switched Full Bridge DC-DC converter for this application. An efficiency and component stress comparison was performed between the hard-switched Full Bridge design and the Phase Shifted Full Bridge DC-DC converter design. This comparison highlights the benefits of phase shift modulation (PSM) and zero voltage switching (ZVS) for GaN FET applications. Furthermore, different magnetic designs were characterized and compared for efficiency in both converters. The DC-DC converters implemented in this work regulate the output to a nominal 20 V, delivering 500 W from a nominal 100 V DC Bus input. Complete fault analysis and protection circuitry required for a space-qualified implementation is not addressed by this work. / MS / Recently released radiation-hardened Gallium Nitride (GaN) Field Effect Transistors (FETs) offer the opportunity to increase efficiency and power density of space DC-DC power converters. The current state of the art for space DC-DC power conversion trails their commercial counterparts in terms of power density and efficiency. This is mainly due to two factors. The first factor is related to the additional challenges that arise in the design of space rated power converters from the harsh environment they need to operate in, to the limited availability of space qualified components and field demonstrated converter topologies. The second factor lies in producing reliable radiation hardened power Metal Oxide Semiconductor Field Effect Transistors (MOSFETs). GaN FETs not only have better electrical performance than power MOSFETs, they have also demonstrated inherent tolerance to radiation. This results in less structural device changes needed to make GaN FETs operate reliably under high radiation compared to their MOSFETs counterparts. This work outlines the design implications of using newly released radiation hardened GaN FETs to implement a fixed frequency isolated Phase Shifted Full Bridge DC-DC converter while strictly abiding to the design constraints found in space-power converter applications. In addition, a one-to-one performance comparison was made between the soft-switched Phase Shift modulated Full Bridge and the conventional hard-switched Full Bridge DC-DC converter. Finally, different magnetic designs were evaluated in the laboratory to assess their impact on converter efficiency.
895

Junction Based Gallium Nitride Power Devices

Ma, Yunwei 05 September 2023 (has links)
Power electronics plays an important role in many energy conversion applications in modern society including consumer electronics, data centers, electric vehicles, and power grids, etc. The key components of power electronic circuits are power semiconductor devices including diodes and transistors, which determine the performance of power electronics circuits. Traditional power devices are based on the semiconductor silicon (Si), which have already reached the silicon's material limit. Gallium nitride (GaN) is a wide bandgap semiconductor with high electron mobility and high critical electric field. GaN-based power devices promise superior device performance over the Si-based counterpart. The primary design target of a unipolar power device is to achieve low on-resistance and high breakdown voltage. Although GaN high electron mobility transistor (HEMT) is commercially available in a voltage class from 15 V to 900 V, the performance of GaN devices is still far below the GaN material limit, due to several reasons: 1) To achieve the normally-off operation in a GaN HEMT, the density of two-dimensional electron gas (2DEG) channel cannot be too high; this limits the on-resistance reduction in the access region. 2) The gate capacitance of GaN HEMT is usually low so that the carrier concentration in the channel underneath the gate is relatively low, limiting the on-resistance reduction in the gated channel region. 3) The electric-field distribution in the drift region is not uniform, resulting in a limited breakdown voltage. We proposed to use the junction-based structure in GaN power devices to address the above problems and fully exploit GaN's material properties. The first part of this dissertation characterizes nickel oxide (NiO) as a p-type material to construct the junction-based GaN power devices. Although the homogenous p-GaN/n-GaN junction is preferred in many devices, the selective-area, p-GaN regrowth can lead to excessive leakage current; in comparison, the p-NiO/n-GaN junction is stable without leakage. This section describes the optimization of NiO deposition as well as the NiO characterization. Although acceptor in NiO is not generated by impurity doping, the acceptor concentration modulation is realized by tuning the O2 partial pressure during the sputtering process. Practical breakdown electric field is also characterized and confirmed to be higher than GaN. These results provide the design guidelines for NiO-GaN junction-based power devices. The second part of this dissertation demonstrates the 3D NiO-GaN junction gate to improve the GaN HEMT's on-resistance. The 3D junction gate structure enables a high carrier concentration under the gate region in the device on-state. Meanwhile, the strong depletion effect of the junction-based gate allows for a robust normally-off operation; as a result, the GaN wafer with a higher 2DEG concentration can be used to achieve both normally-off and low on-state resistance in HEMT devices. Simulation is also performed to project the performance space of trigate GaN junction HEMTs using the p-GaN instead of NiO. The third part of this dissertation presents the application of the p-GaN/n-GaN junction in the drift region of the multi-channel lateral devices to achieve the high breakdown voltage. Here p-GaN is grown in-situ with the multi-channel AlGaN/GaN structure, and there is no leakage problem. The structure is designed to achieve charge balance between the acceptor in p-GaN and the net donor in the multichannel AlGaN/GaN. This design enables a uniform electric field distribution and breakdown voltage over 10 kV. The fourth part of this dissertation presents the application of the p-NiO/n-GaN junction in vertical superjunction (SJ) devices. We show the design and simulation of this heterojunction structure in a SJ and confirm the uniform electric field and high breakdown voltage under the charge balance. Then the device fabrication is presented in detail, which mainly comprises the deep GaN trench etch, NiO self-aligned lift off, and photoresist trench planarization. The optimized device shows a trade-off between its drift region specific on-resistance versus breakdown that exceeds the 1D GaN's limit. The last part of this dissertation is exploring the design and fabrication of p-GaN/n-GaN based SJ devices. First, the challenges in p-GaN regrowth especially the introduction of interface impurities are discussed, followed by device simulation and modeling to optimize the SJ performance considering these interface impurities. The activation of regrown p-GaN in deep trenches is more difficult than planar p-GaN, and we present the characterization and physical model for the activation of the deep buried p-GaN. Last, the results of p-GaN filling regrowth and the acceptor concentration calibration in the lightly doped p-GaN are presented and discussed. In summary, our work combines experimental device fabrication and characterization, TCAD simulation, and device modeling to demonstrate the benefit of multi-dimensional, junction-based GaN power devices as compared to the traditional GaN power devices. The junction-based structure at gate region can provides stable normally-off operation and low on-resistance. When being applied to the drift region, the multidimensional junction structure can push the device specific on-resistance versus breakdown voltage trade-off near or even exceeding the material limit. These results will advance the performance and application spaces of GaN power devices. / Doctor of Philosophy / Power electronics plays an important role in many energy conversion applications in modern society including consumer electronics, data centers, electric vehicles, and power grids, etc. The key components of power electronic circuits are power semiconductor devices including diodes and transistors, which determine the performance of power electronics circuits. Traditional power devices are based on the semiconductor silicon (Si), which have already reached the silicon's material limit. Gallium nitride (GaN) is a wide bandgap semiconductor with high electron mobility and high critical electric field. GaN-based power devices promise superior device performance over the Si-based counterpart. Currently, GaN power devices performance is still far below its material limit due to several reasons: 1) To achieve normally-off operation, the carriers at gate region need to be fully depleted at zero bias. Due to a relatively limited depletion capability of the planar gate, the normally-off operation poses an upper limit on the channel carrier density, which increases the device on-resistance. 2) The electric field distribution is not uniform when the device is blocking off-state voltage, and the crowded electric field will cause the device premature breakdown. This work proposed to use multi-dimensional, p-n junction-based device structure to overcome the above challenges. The devices with diverse structures are fabricated, characterized, and compared with the commercially available devices. The multi-dimensional, junction-based gate structure provides strong electrostatic control to realize normally-off operation and allow for higher carrier concentration and lower on-resistance. The devices with multi-dimensional, junction-based drift region enables the uniform electric field distribution at the device off-state, allowing devices to block high voltage without compromising the on-state resistance. Examples of such devices investigated in this dissertation include the tri-gate junction transistors, reduced-surface-field (RESURF) diodes, and superjunction diodes. In summary, this work demonstrates the multi-dimensional, junction-based device structure to overcome the performance limitations of planar devices and fully exploit GaN's material benefits for power devices. The multi-dimensional, junction-based devices are experimentally fabricated and characterized, manifesting the superior performance over traditional GaN devices. This work will significantly boost the performance and application space of GaN power devices.
896

A High-Throughput Study of the Tribological Properties of MoN-Cu Coatings in Low Viscosity Fuels

Caldwell, Slater Leigh 07 1900 (has links)
The aim of this thesis is to develop a tribocatalytically active solid coating that exhibits strong wear resistance, while also inducing the formation of carbon-based tribofilms when used in a hydrocarbon environment. By using tribocatalytic MoN-Cu synthesized through combinatorial DC reactive magnetron co-sputtering, a gradient between MoN and Cu is deposited and used to determine an ideal Cu composition exhibiting high wear resistance and the formation of a carbon-based tribofilm. To determine the properties of the thin film, various characterization methods were used before and after wear tests from an Anton-Paar pin-on-disk tribometer in a decane or ethanol bath. XRD, SEM, and EDS determined the phase structures and compositions. Nanoindentations and optical profilometry found hardness, Young's modulus, and wear rates. Raman analysis saw carbon presence on the surface of the wear tracks, confirming the formation of carbon tribofilms. For the wear rates, it was found that each fuel had different reactions to the changing Cu at%. From the Raman data, carbon presence, wear rates, and Cu at% did not reveal a strong correlation between the three sets of information. Specifically for the ethanol tracks, the was a connection between a high carbon amount and lower wear rate. It was inconclusive if there was one Cu at% that afforded the most ideal conditions. The information found here has developed the knowledge of MoN-Cu as a solid protective coating, and for using combinatorial DC reactive magnetron co-sputtering as an aid for materials development.
897

[en] CHEMICAL, STRUCTURAL, TRIBOLOGICAL, AND OPTICAL PROPERTIES OF HEXAGONAL BORON NITRIDE FILMS SYNTHESIZED BY CHEMICAL VAPOR DEPOSITION / [pt] PROPRIEDADES QUÍMICAS, ESTRUTURAIS, TRIBOLÓGICAS E ÓPTICAS DE FILMES DE NITRETO DE BORO HEXAGONAL SINTETIZADOS POR DEPOSIÇÃO QUÍMICA NA FASE V

THAIS CRISTINA VIANA DE CARVALHO 22 August 2024 (has links)
[pt] O Nitreto de Boro Hexagonal (h-BN) é um material composto por átomosalternados de Boro (B) e Nitrogênio (N) com um aspecto hexagonal. Os filmesfinos de h-BN desempenham um papel crucial no desenvolvimento de aplicações como em dispositivos 2D baseados em heteroestruturas de Van der Waals,revestimentos protetivos, tribológicos, entre outros. A síntese de h-BN aindarepresenta um desafio significativo. Nesta tese, investigou-se a síntese do h-BNutilizando o método de low pressure chemical vapour deposition (LPCVD),empregando amônia borane (AB) como fonte precursora de B e N. O estudofocou-se no crescimento direto sobre o substrato de silício <100>, eliminando,assim, a necessidade de transferência do filme para posterior caracterizaçãoe evitando a degradação e contaminações associadas ao processo de transferência. A primeira parte deste estudo concentrou-se no crescimento por CVD,controlando os parâmetros de quantidade de material precursor, temperaturade evaporação do precursor e do forno, fluxo de gases nas etapas de reduçãoe de síntese, temperatura, tempo de redução, síntese e resfriamento. Foramsintetizadas duas séries: uma em função da temperatura de crescimento entre1173 e 1373 K, e uma segunda em função do tempo de síntese a uma temperatura de 1373 K. Os filmes foram caracterizados por espectroscopias Raman,infravermelho por transformada de Fourier (FTIR), UV-visível (UV-Vis), de fotoelétrons excitados por raios X (XPS), microscopia de força atômica (AFM),ângulo de contato, microscopia eletrônica de varredura (SEM), microscopiaeletrônica de varredura por transmissão (STEM) e tribologia. Inicialmente,foi estudado o efeito da temperatura de crescimento na qualidade dos filmescrescidos por 10 minutos. Os resultados de espectroscopia Raman confirmamo crescimento de h-BN, evidenciado pelo pico E2g em aproximadamente 1375cm−1. Estudos morfológicos mostraram que variações de temperatura levam àformação de diferentes estruturas na superfície do Si. O crescimento é observado a partir de 1273 K, enquanto amostras crescidas abaixo de 1223 K nãoapresentam sinais de crescimento. Observamos a formação de folhas bidimensionais (2D) com dimensões laterais variando de 80 a 500 nm, assim como ocrescimento contínuo de filmes com nanocristais de tamanhos variados. A razão B:N determinada por XPS foi de aproximadamente 1:1 e o gap óptico dosfilmes de h-BN foi determinado em 5,75 eV. O estudo de tribologia demonstrouum coeficiente de atrito de 0,1 e não houve delaminação após 3000 ciclos deida e volta lineares no teste esfera no disco percorrendo 10 mm em cada ciclono filme, enquanto o do Si foi de 0,6. Para os filmes sintetizados em função dotempo, a caracterização por espectroscopia Raman revelou um pico de modode vibração E2g em 1374 cm−1com intensidade correlacionada à espessura dofilme. A espectroscopia FTIR confirmou a presença de ligações B-N, e a bandaóptica foi determinada em 5,65 eV. O ângulo de contato mostrou filmes hidrofóbicos. Os dados de XPS indicaram uma relação estequiométrica 1:1 entre Be N, e a espessura foi analisada pela medida de seção transversal por STEM,sendo da ordem de 20 nm para filmes crescidos por 10 minutos a 1373 K. / [en] Hexagonal Boron Nitride (h-BN) is a material composed of alternating Boron (B) and Nitrogen (N) atoms with a hexagonal aspect. Thin films of h-BN play a crucial role in the development of applications such as 2D devices based on Van der Waals heterostructures, protective coatings, tribological applications, among others. The synthesis of h-BN still represents a significant challenge. In this thesis, the synthesis of h-BN was investigated using the low-pressure chemical vapor deposition (LPCVD) method, employing ammonia borane (AB) as a precursor source of B and N. The study focused on direct growth on the silicon <100> substrate, thus eliminating the need for film transfer for subsequent characterization and avoiding degradation and contamination associated with the transfer process. The first part of this study focused on CVD growth, controlling parameters such as the amount of precursor material, precursor and furnace evaporation temperature, gas flow rates during the reduction and synthesis stages, temperature, reduction time, synthesis, and cooling. Two series were synthesized: one as a function of growth temperature between 1173 and 1373 K, and a second as a function of synthesis time at a temperature of 1373 K. The films were characterized by spectroscopy, Raman, Fourier-transform infrared (FTIR), UV-visible (UV-Vis), X-ray photoelectron (XPS), atomic force microscopy (AFM), contact angle measurements, scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), and tribology. Initially, the effect of growth temperature on the quality of films grown for 10 minutes was studied. Raman spectroscopy results confirmed the growth of h-BN, evidenced by the E2g peak at approximately 1375 cm−1 . Morphological studies showed that temperature variations lead to the formation of different structures on the Si surface. Growth is observed from 1273 K, while samples grown below 1223 K show no signs of growth. We observed the formation of two-dimensional (2D) nanosheets with lateral dimensions ranging from 80 to 500 nm, as well as the continuous growth of films with nanocrystals of varying sizes. The B:N ratio determined by XPS was approximately 1:1, and the optical gap of the h-BN films was determined to be 5.75 eV. Tribology studies demonstrated a friction coefficient of 0.1, and there was no delamination after 3000 linear reciprocating cycles in the ball-on-disk test, covering 10 mm in each cycle on the film, while for Si it was 0.6. For films synthesized as a function of time, Raman spectroscopy characterization revealed an E2g vibration mode peak at 1374 cm−1 with intensity correlated to the film thickness. FTIR spectroscopy confirmed the presence of B-N bonds, and the optical band was determined to be 5.65 eV. Contact angle measurements showed hydrophobic films. XPS data indicated a stoichiometric 1:1 ratio between B and N, and the thickness was analyzed by cross-sectional STEM measurements, being around 20 nm for films grown for 10 minutes at 1373 K.
898

Nano-structural Engineering of Hexagonal Boron Nitride by Direct Optical Phonon Driving

Chen, Cecilia January 2024 (has links)
The structure of a material, whether at the atomic scale or patterned at the nanoscale, is the basis of many of its physical properties—color, emission wavelength, optical nonlinearity, electrical conductivity, thermal conductivity, brittleness, and more. Therefore, one of the most important developments in photonics, electronics, and magnetics is the ability to manipulate the nanostructure of materials as a way to augment their natural qualities and adapt them to greater applications. The cleanroom debuted in the mid-20th century, alongside and followed by an assortment of precision nanofabrication instruments performing photolithography, electron-beam lithography, ion implantation, femtosecond laser machining, etc. While these techniques have demonstrated breakthroughs such as fabricating ever-smaller transistors keeping pace with the famous Moore’s Law, they require cleanroom facilities, multi-step processing, or leave behind debris or residue. Such impurities have an outsize effect on a burgeoning class of materials with desirable optical and electronic properties—two-dimensional (2D) layered van der Waals materials—as their dimensions approach the single-atom limit, leading a desire for additional approaches to material nanostructuring. In this thesis, we describe a novel approach to generating atomically sharp linear nanostructures in hexagonal boron nitride (hBN) via resonant optical phonon pumping with a pulsed mid-infrared laser and detail its development from discovery to a useful technique that complements established approaches to nanopatterning. The femtosecond laser is tuned to the material’s infrared-active transverse optical TO (E1u) phonon, located at ? = 7.3 ?? or 1367 cm-1, and its polarization aligned parallel to the crystal zigzag axis, in the direction of the phonon’s characteristic atomic motion. The optical field coherently drives and amplifies the intrinsic ionic motion toward bond breakage, resulting in a gentle tearing of the hBN flake along the crystal axis at the material damage threshold. All processing is performed in situ at room temperature under ambient conditions, free from cryogenics and vacuum setups, unlike in the conventional nanofabrication methods confined to the cleanroom. This phenomenon is termed “unzipping” to depict the rapid formation and emanation of a crack tens of nanometers wide from a point within the laser-excited area. The generation of these fea- tures is ascribed to the large atomic displacements and localized bond strain produced by strongly driving the crystal at an intrinsic resonance, which is absent under non-resonant irradiation and is greatly sensitive to the relative angle between the crystal orientation and the linear laser polarization. We perform detailed characterization of the unzipped features and their host hBN flakes us- ing atomic force microscopy (AFM) topographic imaging, scanning electron microscopy (SEM), atomic-scale lateral force microscopy (LFM), nanoindentation in the plastic deformation regime, and near-field optical probing (scattering-type scanning near-field optical microscopy, s-SNOM) to reveal their atomically sharp, six-fold symmetric, orientation-selective, defect-seeded nature. Then, we fabricated several nanostructures—gratings, Fabry-Perot resonators, and cleaved and shaped flakes—to demonstrate the technique in useful nanophotonics applications. The preliminary Fabry-Perot resonator, examined in the near-field with nanoscale Fourier-transform infrared spectroscopy (nano-FTIR), exhibited performance that is competitive with similar structures fabricated by cleanroom etching. Our initial approach achieved a quality factor of ? ≈ 70, already on par with ? = 50 to 100 achieved by conventional nanofabrication methods. The cleanliness, sharpness, and directionality of nanostructures fabricated in situ via unzipping, along with the ability to deterministically seed the location of its constituent line defects using nanoindentation, enable vast future applications in patterning hBN and other polar crystals that possess optically-addressable, high-energy optical phonon modes in the mid-infrared.
899

High-frequency Quasi-square-wave Flyback Regulator

Zhang, Zhemin 02 December 2016 (has links)
Motivated by the recent commercialization of gallium-nitride (GaN) switches, an effort was initiated to determine whether it was feasible to switch the flyback converter at 5 MHz in order to improve the power density of this versatile isolated topology. Soft switching techniques have to be utilized to eliminate the switching loss to maintain high efficiency at multi-megahertz. Compared to the traditional modeling of zero-voltage-switching quasi-square-wave converters, a numerical methodology of parameters design is proposed based on the steady-state model of zero-voltage switching quasi-square-wave flyback converter. The magnetizing inductance is selected to guarantee zero-voltage switching for the entire input and load range with the trade-off design for conduction loss and turn-off loss. A design methodology is introduced to select a minimum core volume for an inductor or coupled inductors experiencing appreciable core loss. The geometric constant Kgac = MLT/(Ac2WA) is shown to be a power function of the core volume Ve, where Ac is the effective core area, WA is the area of the winding window, and MLT is the mean length per turn for commercial toroidal, ER, and PQ cores, permitting the total loss to be expressed as a direct function of the core volume. The inductor is designed to meet specific loss or thermal constraints. An iterative procedure is described in which two- or three-dimensional proximity effects are first neglected and then subsequently incorporated via finite-element simulation. Interleaved and non-interleaved planar PCB winding structures were also evaluated to minimize leakage inductance, self-capacitance and winding loss. The analysis on the trade-off between magnetic size, frequency, loss and temperature indicated the potential for a higher density flyback converter. A small-signal equivalent circuit of QSW converter was proposed to design the control loop and to understand the small-signal behavior. By adding a simple damping resistor on the traditional small-signal CCM model, it can predict the pole splitting phenomenon observed in QSW converter. With the analytical expressions of the transfer functions of QSW converters, the impact of key parameters including magnetizing inductance, dead time, input voltage and output power on the small-signal behavior can be analyzed. The closed-loop bandwidth can be pushed much higher with this modified model, and the transient performance is significantly improved. With the traditional fix dead-time control, a large amount of loss during dead time occurred, especially for the eGaN FETs with high reverse voltage drop. An adaptive dead time control scheme was implemented with simple combinational logic circuitries to adjust the turn on time of the power switches. A variable deadtime control was proposed to further improve the performance of adaptive dead-time control with simplified sensing circuit, and the extra conduction loss caused by propagation delay in adaptive dead-time control can be minimized at multi-megahertz frequency. / Ph. D. / With the fast development of telecom, computer and network systems, high efficient and small volume power supplies are highly desired. A typical method for achieving high power density involves increasing the frequency and implement soft-switching techniques to minimize loss. Thanks to the recent commercialization of the advanced semiconductor gallium-nitride (GaN) switches, it is feasible to design high density power supplies and cost effective power system. Several challenges including optimization of power converter, high frequency magnetics and implementation of control architecture have been addressed in this dissertation which helps to realize this compact power system. With the implementation of proposed circuit model and seminumerical design procedures for magnetics, a 30W high-frequency isolated DC/DC converter with planar inductor is fabricated to verify the theoretical analysis, which also demonstrates much improved performances.
900

Microstructural characterisation of novel nitride nanostructures using electron microscopy

Severs, John January 2014 (has links)
Novel semiconductor nanostructures possess a range of notable properties that have the potential to be harnessed in the next generation of optical devices. Electron microscopy is uniquely suited to characterising the complex microstructure, the results of which may be related to the growth conditions and optical properties. This thesis investigates three such novel materials: (1) GaN/InGaN core/shell nanowires, (2) n-GaN/InGaN/p-GaN core/multi-shell microrods and (3) Zn<sub>3</sub>N<sub>2</sub> nanoparticles, all of which were grown at Sharp Laboratories of Europe. GaN nanowires were grown by a Ni-catalysed VLS process and were characterised by various techniques before and after InGaN shells were deposited by MOCVD. The majority of the core wires were found to have the expected wurtzite structure and completely defect free – reflected in the strong strain-free photoluminescence peak –with a- and m- axis orientations identified with shadow imaging. A small component, <5%, were found to have the cubic zinc-blende phase and a high density of planar faults running the length of the wires. The deposited shells were highly polycrystalline, partially attributed to a layer of silicon at the core shell interface identified through FIB lift-out of cross section samples, and accordingly the PL was very broad likely due to recombination at defects and grain boundaries. A high throughput method of identifying the core size indirectly via the catalyst particle EDX signal is described which may be used to link the shell microstructure to core size in further studies. An n-GaN/InGaN/p-GaN shell structure was deposited by MOCVD on the side walls of microrods etched from c-axis GaN film on sapphire, which offers the possibility of achieving non-polar junctions without the issues due to non-uniformity found in nanowires. Threading dislocations within the core related to the initial growth on sapphire were shown to be confined to this region, therefore avoiding any harmful effect on the junction microstructure. The shell defect density showed a surprising relationship to core size with the smaller diameter rods having a high density of unusual 'flag' defects in the junction region whereas the larger diameter sample shells appeared largely defect free, suggesting the geometry of the etched core has an impact on the strain in the shell layers. The structure of unusual 'flag' defects in the m-plane junctions was characterised via diffraction contrast TEM, weak beam and atomic resolution ADF STEM and were shown to consist of a basal plane stacking faults meeting a perfect or partial dislocation loop on a pyramidal plane, the latter likely gliding in to resolve residual strain due to the fault formed during growth. Zn<sub>3</sub>N<sub>2</sub> has the required bandgap energy to be utilised as a phosphor with the additional advantage over conventional materials of its constituent elements not being toxic or scarce. The first successful synthesis of Zn<sub>3</sub>N<sub>2</sub> nanoparticles appropriate to this application was confirmed via SAD, EDX and HRTEM, with software developed to fit experimental polycrystalline diffraction patterns to simulated components suggesting a maximum Zn<sub>3</sub>N<sub>2</sub> composition of ~30%. There was an apparent decrease in crystallinity with decreasing particle size evidenced in radial distribution function studies with the smallest particles appearing completely amorphous in 80kV HRTEM images. A rapid change in the particles under the electron beam was observed, characterised by growth of large grains of Zn<sub>3</sub>N<sub>2</sub> and ZnO which increased with increasing acceleration voltage suggesting knock-on effects driving the change. PL data was consistent with the bandgap of Zn<sub>3</sub>N<sub>2</sub> blue shifted from 1.1eV to around 1.8eV, confirming the potential of the material for application as a phosphor.

Page generated in 0.2696 seconds