Spelling suggestions: "subject:"nitrure.""
11 |
Evolution de l'état de précipitation au cours de l'austénitisation d'aciers microalliés au vanadium et au niobiumAcevedo Reyes, Daniel Epicier, Thierry Perez, Michel January 2007 (has links)
Thèse doctorat : Matériaux : Villeurbanne, INSA : 2007. / Titre provenant de l'écran-titre. Bibliogr. p. 179-188.
|
12 |
Synthèse hautes pressions et propriétés mécaniques de nouveaux nitrures, M₇N₉ (M=Zr,Hf) en comparaison avec c-Zr₃N₄ et ƞ-Ta₂N₃ / High-pressures synthesis and mechanical properties of novel nitrides, M₇N₉ (M=Zr,Hf) compared to c-Zr₃N₄ et ƞ-Ta₂N₃Bourguille, Judith 11 December 2015 (has links)
Les nitrures binaires des métaux de transition synthétisés à hautes pressions et hautes températures sont de nouveaux matériaux dont le principal intéret réside dans leur multifonctionalité. Dans cette thèse, nous avons synthétisé de nouveaux nitrures de zirconium et d’hafnium, à une pression inférieure à celle de formation des composés cubiques c-M₃N₄ (M=Zr, Hf), mais supérieure à la pression de formation des mononitrures δ-MN. Les mesures par diffraction de rayons X, ont montré que la structure cristalline de ces composés est monoclinique de type Ca₃Tl₄O₉. La composition chimique M₇N₉ (avec une substitution mineure de l’azote par l’oxygène) vérifiée par une analyse quantitative par microsonde électronique suggère la présence de cations métalliques dans des états d’oxydation +3 et +4. Cette observation indique, pour les autres métaux de transition, la possibilité de former à hautes pressions divers nitrures thermodynamiquement stable avec un large éventail de valeur pour le rapport N:M. Les valeurs des modules élastiques pour les échantillons poreux de Zr₇ N₉ et Hf₇N₉ ont été obtenus par mesures laser ultrasonique (LU) et par nanoindentation. Les résultats pour les matériaux denses ont été dérivés en appliquant l’approche d’Hashin- Shtrickman précédemment développée. Nous obtenons ainsi G₀ = 95(9) GPa et B₀ = 130(10) GPa pour Zr₇N₉ et G₀ = 105(10) GPa et B₀ = 161(10) GPa pour Hf₇N₉. La mesure de la nanodureté donne Hn = 8.0(8) GPa et Hn = 9.1(7) GPa pour Zr₇N₉ et Hf₇N₉ respectivement. Finalement, pour Zr₇N₉ , la dureté de Vickers a été déterminée, Hv = 6.5 GPa et est en accord avec la mesure par nanoindentation. Nous avons dérivé la ténacité soit KIc-if = 3.7(4) MPa.m½ pour Zr₇N₉ . La propriété de self-healing a été partiellement observée pour le nouveau nitrure de zirconium. Pour Hf₇N₉, nous obtenons une valeur moyenne Hv = 6.4(1.0) GPa et une ténacité de 2.3-2.9 MPa.m½. Denses, ces matériaux sont supposés avoir une dureté de l’ordre de 10 GPa et la ténacité de Zr₇N₉ similaire à celle de c-Zr₃N₄, matériau poreux. Pour vérifier la méthode de nanoindentation appliquée dans cette thèse, nous avons réalisé une série de tests sur l’échantillon c-Zr₃N₄ précédemment étudié par LU et nanoindentations mais à de plus faibles profondeurs. Nous avons mesuré le module d’Young réduit, Er, pour le matériau poreux c-Zr₃N₄ et en utilisant la valeur du module d’élasticité isostatique B₀ (mesurée indépendamment par LU ou par l’équation d’état) nous avons déterminé les autres modules élastiques d’un matériau polycristallin, qui sont en accord avec les études LU précédemment présentées. La raison pour laquelle nous avons une moins bonne concordance avec les précédentes données de nanoindenation a été découverte. Pour vérifier d’avantage l’application des mesures par nanoindentation, étendre notre connaissance des propriétés de η-Ta₂N₃ et comparer ce matériaux avec M₇N₉, nous avons examiné un échantillon poreux de η-Ta₂N₃ plus en détail : Er et Hn ont été obtenus à la fois pour l’échantillon poli mécaniquement et pour l’échantillon non modifié et ont montré une différence de comportement sur les 400 premiers nanomètres de la mesure, ce qui a confirmé l’effet de “self-healing”, soit une densification de la surface d’une épaisseur similaire à la taille des grains de polissage. A partir des mesures aux plus grandes profondeurs, nous obtenons E₀= 329-369 GPa et n₀ 0.28-0.33, après calcul à partir de la valeur de la porosité (14%), de B₀ précédemment mesuré et en utilisant l’approche d’Hashin-Shtrickman. La valeur mesurée de la nanodureté s’est révélée être Hn = 18.3 GPa. Enfin, la mesure par dureté de Vickers, Hv, a confirmé les mesures par nanoindentation et montré l’existence d’un effet de la taille de l’indentation pour ce matériau. Pour le matériau dense, nous estimons que Hv > 24 GPa [...] / ₀ ₁ ₂ ₃ ₄ ₅ ₆ ₇ ₈ ₉ ₀
Binary nitrides of transition metals synthetized at high pressures and high temperatures are new materials which are of interest due to their multifunctionality : They can have combinations of advanced properties, among them elevated elastic moduli, high hardness, high fracture toughness, chemical stability and some of them were found to be suitable for optoelectronic applications. Since the first synthesis of c-Zr₃N₄ in 2003 the studies on such materials extended. For example, c-Zr₃N₄ was found to have a high hardness and an exceptional wear resistance by milling of ferric alloys. ƞ-Ta₂N₃ having orthorhombic structure has a higher B₀ than c-Zr₃N₄ and a similar shear modulus G₀. Moreover, a self-healing effect upon mechanical polishing of a porous ƞ-Ta₂N₃ sample was recognised. There are also reports about synthesis of noble metal nitrides at high pressures and temperatures but these compounds are not recoverable to ambient conditions. In this work we synthetized new nitrides of zirconium and hafnium at pressures below those where c-M₃N₄ (M=Zr, Hf) form but above the pressures of formation of mononitrides δ-MN. X-ray diffraction measurements showed that their crystal structure is monoclinic of the type Ca₃Tl₄O₉. The chemical composition M₇N₉ (with a minor substitution of nitrogen by oxygen), verified by quantitative microprobe analysis, suggests presence of metal cations in the oxidation states +3 and + 4. This observation suggests for other transition metals the possibility to form at high pressures thermodynamically stable nitrides with the N:M ratio varying in a broad range. Elastic moduli of the porous samples of Zr₇N₉ and Hf₇N₉ were measured using laser ultrasonics (LU) and nanoindentation. Values for the dense samples were derived by applying the earlier developed Hashin-Shtrickman approach. We obtained G₀ = 95(9) GPa and B₀ = 130(10) GPa for Zr₇N₉ and G₀ = 105(10) GPa and B₀ = 161(10) GPa for Hf₇N₉. The nanohardness was measured to be Hn = 8.0(8) GPa and Hn = 9.1(7) GPa for Zr₇N₉ and Hf₇N₉, respectively. Vickers hardness of Zr₇N₉ was determined to be Hv = 6.5 GPa which is in agreement with our nanoindentation measurements. We derived its fracture toughness to be KIc-if = 3.7(4) MPa.m½, similar to that of c-Zr₃N₄, and recognised a weak self-healing behaviour. For Hf₇N₉, we obtained an average value of Hv = 6.4(1.0) GPa and KIc-if = 2.3-2.9 MPa.m½. Hardness of dense samples of Zr₇N₉ and Hf₇N₉ was estimated to be ~10 GPa. In order to verify the nanoindentation method we applied in this work, we performed tests on the c-Zr₃N₄ sample studied previously by LU and nanoindentation but at much shallower depths. We measured the reduced Young's modulus, Er, for the porous sample, and, applying the known B₀ (form laser ultrasonic- or equation of state measurements), we determined other elastic moduli for the porous and dense polycrystalline sample, which were in agreement with the earlier LU studies. Reasons for a less good agreement with the earlier nanoindentation data were disclosed. In order to further verify the applied nanoindentation method and extend our knowledge about properties of ƞ-Ta₂N₃ and compare this material with M₇N₉, we examined a porous sample of ƞ-Ta₂N₃ in more detail : Er and Hn obtained for the mechanically polished sample and for the non modified sample showed a distinct behaviour in the first 400 nm of indentation thus confirming the "self-healing" effect at the thickness similar to the size of the polishing grains. From Er measured at larger depths we derived E₀= 329-369 GPa and v₀= 0.28-0.33 using the porosity value (14%), the earlier measured B₀ and applying the Hashin-Shtrickman approach. The nanohardness was measured to be Hn = 18.3 GPa. Measurements of Vickers hardness confirmed our nanoindentation results and revealed the indentation size. For the dense ƞ-Ta₂N₃ we estimate Hv > 24 GPa.
|
13 |
Etude par épitaxie en phase vapeur aux organométalliques de la croissance sélective de nano-hétéro-structures de matériaux à base de GaN / GaN based materials nano-hetero-structures selective area growth study by metalorganic vapor phase epitaxyMartin, Jérôme 24 September 2009 (has links)
La nano-structuration de matériaux semiconducteurs à grand gap à base de GaN fait l'objet d'un très grand intérêt de par son potentiel pour l'élaboration de composants optoélectroniques innovants émettant dans la gamme spectrale de l’ultraviolet. Le contrôle de la croissance à l'échelle nanométrique doit être ainsi démontré. L'épitaxie sélective ou SAG (Selective Area Growth) étendue au domaine nanométrique (NSAG pour NanoSAG) est un excellent choix pour l'élaboration de nanostructures de semiconducteur. Cette technique consiste en la croissance localisée du matériau sur un substrat partiellement recouvert d'un masque en diélectrique. La NSAG permet l'élaboration d'hétéro-structures en fort désaccord de maille grâce aux mécanismes singuliers de relaxation des contraintes à l'intérieur des nanostructures qui réduisent considérablement la densité de dislocations créées. La première partie de la thèse porte sur la mise en œuvre de l'épitaxie sélective du GaN sur pseudo-substrat de GaN à l'échelle micrométrique puis nanométrique par la technique d'épitaxie en phase vapeur aux organométalliques. Dans un deuxième temps, la NSAG est utilisée pour l'épitaxie de nanostructures de GaN sur substrats de SiC-6H et pseudo-substrat d'AlN. L'influence des conditions de croissance et des motifs définis dans le masque sur la forme des nanostructures est étudiée par la microscopie électronique à balayage et la microscopie à force atomique. Finallement la microscopie électronique en transmission et la nano-diffraction des rayons X par rayonnement synchrotron sont utilisées pour l'analyse structurale approfondie des nanostructures / GaN based wide bandgap semiconductor materials nanostructures have a tremendous potential of applications for innovative optoelectronic devices emitting in the UV region (190-340nm). Thus, the feasibility of the nanoscale growth must be demonstrated. Selective Area Growth (SAG) extended to the nanoscale (NSAG for NanoSAG) is an excellent approach for growing semiconductor nanostructures. This technique is based on localized growth of the material on substrates partially covered by dielectric masks. NSAG technique allows the growth of highly mismatched materials because the density of dislocation is reduced thanks to singular stress relief mechanisms that occur at nanoscale. The first part of the work consists in the implementation of the GaN selective epitaxy on GaN template substrate at the micrometer and nanometer scales by Metal Organic Vapor Phase Epitaxy. In a second time, the NSAG technique is used for the growth of GaN nanostructures on SiC-6H substrate and AlN template substrate. The influence of the growth conditions and the mask pattern on the nanostructures shape is demonstrated using Scattering Electronic Microscopy and Atomic Force Microscopy. Fine structural analysis of the nanostructures is finally investigated using advanced characterization tools such as Transmission Electron Microscopy and X-rays nano-diffraction by synchrotron radiation
|
14 |
Novel strategies to develop efficient titanium dioxide and graphitic carbon nitride-based photocatalystsNguyen, Chinh Chien 17 July 2018 (has links)
Afin de résoudre les problèmes environnementaux et énergétiques modernes, ces dernières années ont vu le développement de catalyseurs photocataytiques capables d’utiliser la lumière solaire. En effet, les possibles applications des semiconducteurs présentant des propriétés photocatalytiques dans les domaines de la production d’hydrogène ou la dégradation de polluants organiques ont généré un grand intérêt de la part de la communauté scientifique. Actuellement, les photocatalyseurs à base de dioxyde de titane (TiO₂) et de nitrure de carbone graphitique (g-C₃N₄) sont considérés comme les matériaux les plus étudiés pour leurs faibles coûts et leurs propriétés physico-chimiques exceptionnelles. Cependant, la performance photocatalytique de ces matériaux reste encore limitée, à cause de la recombinaison rapide des porteurs de charge et et d'une absorption limitée de la lumière. En générale, malgré des caractéristiques exceptionnelles, ces matériaux ne contribuent pas significativement à la séparation de charge et l’absorption de la lumière lorsqu’ils sont produits par des méthodes conventionnelles. L'objectif de cette thèse est de développer de nouvelles voies pour la production de matériaux efficaces basés sur TiO₂ et g-C₃N₄). Nous avons d'abord préparé de la triazine (CxNy) qui fonctionne comme un co-catalyseur d'oxydation ce qui facilite la séparation des paires «électron-trou» dans le système du photocatalyseur creux de type Pt-TiO₂-CxNy. La présence simultanée de Pt et de CxNy, qui servent comme co-catalyseurs de réduction et d'oxydation, respectivement, a permis une amélioration remarquable des performances photocatalytiques du TiO₂. De plus, nous avons développé une nouvelle approche, en utilisant un procédé de combustion de sphère de carbone assisté par l’air, pour préparer du C/Pt/TiO₂ . Ce matériau possède de nombreuses propriétés uniques qui contribuent de manière significative à augmenter la séparation « électron-trou », et en conséquence, à améliorer la performance photocatalytique. Dans le but de développer un matériau qui soit capable de fonctionner sous les rayons du soleil et dans l'obscurité, nous avons développé un photocatalyseur creux à double enveloppes : le Pt-WO₃/TiO₂-Au. Ce matériau a montré non seulement une forte absorption de la lumière solaire, mais aussi une séparation des charges élevée et une haute capacité de stockage d'électrons. Par conséquent, ce type de photocatalyseurs a montré une dégradation efficace des polluants organiques, à la fois sous la lumière visible (λ ≥ 420 nm) et dans l'obscurité. En ce qui concerne le g-C₃N₄, nous avons exploité la relation entre les lacunes d’azote et les propriétés plasmoniques des nanoparticules d’or (Au). Ce type de photocatalyseur du Au/g-C₃N₄ a été préparé en présence d’alcali suivi par une post calcination. En effet, les lacunes d’azote ainsi produites permettent le renforcement des interactions entre l’or et le g-C₃N₄ et des propriétés plasmoniques de l’or. Ces caractéristiques exceptionnelles renforcent l'utilisation efficace de l’énergie solaire ainsi que la séparation des paires « électron-trou », ce qui contribuent à la performance photocatalytique pour la production d'hydrogène du photocatalyseur. Afin d’améliorer la capacité d’absorption de la lumière visible de g-C₃N₄, une nouvelle voie de synthèse dénommée « poly-alcaline » a été développée. La possibilité d’ajouter du polyéthylèneimine (PEI) et de l’hydroxyde de potassium (KOH) pour générer de nombreux centres lacunaires en azote ainsi que des groupes hydroxyles dans la structure du matériau, a été explorée afin d’optimiser l’efficacité du matériau. De telles modifications ont démontré leurs capacités à réduire la bande interdite et à provoquer plus facilement la séparation de charges améliorant ainsi les propriétés photocatalytiques du photocatalyseur vis-à-vis de la production d’hydrogène. Cette méthode ouvre donc une nouvelle voie d’avenir pour préparer des photocatalyseurs nanocomposites efficaces possédant à la fois, une forte d’absorption de la lumière et une bonne séparation de charges. / The utilization of solar light-driven photocatalysts has emerged as a potential approach to deal with the serious current energy and environmental issues. Over the past decades, semiconductor-based photocatalysis has attracted an increasing attention for diverse applications including hydrogen production and the decomposition of organic pollutants. Currently, titanium dioxide (TiO₂) and graphitic carbon nitride (g-C₃N₄)-based photocatalysts have been considered as the most investigated materials because of their low cost, outstanding physical and chemical properties. However, their photocatalytic performances are still moderate owing to the fast charge carrier recombination and limited light absorption. The main target of the research presented in this thesis is to develop novel routes to prepare efficient materials based on TiO₂ and g-C₃N₄. These materials possess prominent features, which contribute to address the fast charge separation and light absorption problems. We firstly have prepared triazine (CxNy) acting as an oxidation co-catalyst, which efficiently facilitates electron-hole separation in a Pt-TiO₂-CxNy hollow photocatalyst system. The co-existence of Pt and CxNy functioning as the reduction and oxidation co-catalysts, respectively, has remarkably enhanced the photocatalytic performance of TiO₂. Next, we have also developed a new approach employing the air- assisted carbon sphere combustion process in preparing C/Pt/TiO₂. This material possesses many salient properties that significantly boost the electron-hole separation leading to enhanced photocatalytic performance. In an attempt to design a material that can operate under sunlight and in darkness, we have introduced Pt-WO₃/TiO₂-Au double shell hollow photocatalyst. The material has shown not only strong solar light absorption but also efficient charge separation and electron storage capacity. As a result, this type of photocatalyst exhibits a high activity performance for the degradation of organic pollutants both under visible light (λ ≥ 420 nm) and in the dark. Regarding to g-C₃N₄, we have explored the relationship between nitrogen vacancies and the plasmonic properties of Au nanoparticles employing alkali associated with the post-calcination method to prepare Au/g-C₃N₄. In fact, the produced nitrogen vacancies in the structure of g-C₃N₄ essentially enhance the interaction at Au/g-C₃N₄ interface and the plasmonic properties of Au nanoparticles. These outstanding features contribute to enhance the utilization of solar light and electron-hole separation that prompt the photocatalytic performance towards hydrogen production. Finally, we have employed a novel poly-alkali route to prepare a strong visible light absorption photocatalyst-based g-C₃N₄. The co-existence of PEI and KOH, which induces numerous nitrogen vacancies and incorporated hydroxyl groups in the structure of the resulted material, has been explored for the first time. These modifications have been proved to narrow the bandgap and facilitate the charge separation leading to enhance the solar light-driven hydrogen production. This method also opens up a new approach to prepare efficient nanocomposite photocatalysts possessing both strong light absorption and good charge separation.
|
15 |
Hétérostructures polaires et non polaires à base de nitrure de gallium épitaxiées sur ZnO pour applications optoélectroniquesXia, Yuanyang 01 October 2013 (has links) (PDF)
Ce travail concerne l'intégration, par épitaxie sous jets moléculaires (EJM), de matériaux nitrures d'éléments III (en particulier GaN) sur des substrats et couches tremplins à base d'oxyde de zinc (ZnO). L'objectif était la réalisation et l'étude d'hétérostructures nitrures de type puits quantiques (PQs) (Al,Ga)N/GaN et (In,Ga)N/GaN, en vue d'évaluer leurs potentialités pour la réalisation de diodes électroluminescentes (LEDs). En particulier, deux orientations cristallographiques ont été étudiées : le plan " polaire " (0001) (dit plan C) et le plan " non polaire " (11-20) (dit plan A). Les couches de GaN orientées suivant le plan A (11-20), " a-GaN ", ont été épitaxiées sur des tremplins de (Zn, Mg)O (11-20) / saphir (10-12) réalisés par EJM. L'anisotropie de la morphologie de surface, de la microstructure cristalline, ainsi que de l'émission optique des couches de a-GaN, a été mise en évidence. Une série d'échantillons de PQs de a-(GaN/Al0.2Ga0.8N) avec des épaisseurs de puits différentes a été fabriquée, et l'absence d'effet Stark quantique confiné dans ces hétérostructures a été établie. Des procédés de croissance de GaN sur des substrats de ZnO massifs d'orientation A, " a-ZnO ", et C, " c-ZnO ", ont également été développés. En particulier, des couches de GaN (0001), " c-GaN ", avec une polarité Ga- ou N- ont été épitaxiées sur la face O de substrats c-ZnO. Les mécanismes de détermination de la polarité ont été analysés. Des LEDs bleues contenant une zone active constituée de PQs (In, Ga)N / GaN ont été réalisées sur des substrats c-ZnO. Des puissances de sortie atteignant 40 µW à 20 mA et 0,1 mW à 60 mA ont été mesurées. Enfin, des PQs (In, Ga)N / GaN ont été fabriqués sur substrats a-ZnO et comparés à des PQs fabriqués sur c-ZnO avec des conditions de croissance équivalentes. Les résultats indiquent une concentration en In plus importante dans le cas des PQs épitaxiés sur c-ZnO et une polarisation de l'émission de PL suivant la direction <1-100> dans le cas des PQs épitaxiés sur a-ZnO.
|
16 |
Etude de catalyseurs nitrures et oxynitrures pour l'ammoxydation du propaneBildé, Jean 12 December 2012 (has links) (PDF)
L'acrylonitrile est un intermédiaire de l'industrie chimique pour la synthèse de nombreuxpolymères et revêtements. Il est produit à partir de propène qui devient de plus en plus cher et rare. Ceprojet visait à développer de nouveaux catalyseurs à base de nitrures ou d'oxynitrures permettantd'utiliser le propane moins cher et abondant, qui présente un intérêt industriel vu son potentieléconomique et sa durabilité, puisque son exploitation comme précurseur chimique permettraitd'utiliser plus efficacement les ressources naturelles. De nombreux solides ont été préparés et testéscomme catalyseurs. Certains se sont avérés instables dans les conditions de réaction comme lesoxynitrures VZrON, MoVON, et LaVON. D'autres comme MgTaVON et VZrAlON sont apparusstables mais soit faiblement actifs ou non sélectifs. L'étude s'est focalisée sur les oxynitrures VAlONet leur amélioration. Ils ont été caractérisés par de multiples techniques, telles que la DRX, XES,XANES, XPS, RMN 27Al, TPD NH3 et CO2. L'influence de paramètres tels que le rapport V/Al, lepH, la surface spécifique, le temps de contact ont été étudiés. Le catalyseur optimal possède un rapportV/Al d'environ 0,30. Les études ont permis de montrer que les sites nitrurés impliqués dansl'ammoxydation du propane sont du type OxV-NH2--AlO3 et que le degré d'oxydation moyen duvanadium en condition de catalyse est de 3,8. Une nouvelle méthode de préparation des catalyseurs aété mise au point à partir d'un complexe oxalate de vanadium et d'aluminium qui est décomposé parozonation, et nitruré en conditions réactionnelles. Ce catalyseur s'avère plus actif et sélectif que lescatalyseurs préparés par co-précipitation.
|
17 |
Hétérostructures polaires et non polaires à base de nitrure de gallium épitaxiées sur ZnO pour applications optoélectroniques / GaN based polar and nonpolar heterostructures grown on ZnO for optoelectronic applicationsXia, Yuanyang 01 October 2013 (has links)
Ce travail concerne l'intégration, par épitaxie sous jets moléculaires (EJM), de matériaux nitrures d’éléments III (en particulier GaN) sur des substrats et couches tremplins à base d’oxyde de zinc (ZnO). L’objectif était la réalisation et l’étude d’hétérostructures nitrures de type puits quantiques (PQs) (Al,Ga)N/GaN et (In,Ga)N/GaN, en vue d’évaluer leurs potentialités pour la réalisation de diodes électroluminescentes (LEDs). En particulier, deux orientations cristallographiques ont été étudiées : le plan « polaire » (0001) (dit plan C) et le plan « non polaire » (11-20) (dit plan A). Les couches de GaN orientées suivant le plan A (11-20), « a-GaN », ont été épitaxiées sur des tremplins de (Zn, Mg)O (11-20) / saphir (10-12) réalisés par EJM. L’anisotropie de la morphologie de surface, de la microstructure cristalline, ainsi que de l'émission optique des couches de a-GaN, a été mise en évidence. Une série d'échantillons de PQs de a-(GaN/Al0.2Ga0.8N) avec des épaisseurs de puits différentes a été fabriquée, et l'absence d’effet Stark quantique confiné dans ces hétérostructures a été établie. Des procédés de croissance de GaN sur des substrats de ZnO massifs d’orientation A, « a-ZnO », et C, « c-ZnO », ont également été développés. En particulier, des couches de GaN (0001), « c-GaN », avec une polarité Ga- ou N- ont été épitaxiées sur la face O de substrats c-ZnO. Les mécanismes de détermination de la polarité ont été analysés. Des LEDs bleues contenant une zone active constituée de PQs (In, Ga)N / GaN ont été réalisées sur des substrats c-ZnO. Des puissances de sortie atteignant 40 µW à 20 mA et 0,1 mW à 60 mA ont été mesurées. Enfin, des PQs (In, Ga)N / GaN ont été fabriqués sur substrats a-ZnO et comparés à des PQs fabriqués sur c-ZnO avec des conditions de croissance équivalentes. Les résultats indiquent une concentration en In plus importante dans le cas des PQs épitaxiés sur c-ZnO et une polarisation de l’émission de PL suivant la direction <1-100> dans le cas des PQs épitaxiés sur a-ZnO. / This work focus on the integration of III-nitride materials, by molecular beam epitaxy (MBE), on ZnO based templates and substrates. The objective is to explore the potential of (Al,Ga)N/GaN and (In,Ga)N/GaN multi-quantum wells (MQWs) grown on ZnO for the fabrication of light emitting diodes (LEDs). In particular, two crystal orientations are studied: the polar (0001) plane (c-plane) and the nonpolar (11-20) plane (a-plane). The structural and optical properties of epitaxial layers are mainly characterized by AFM, SEM, XRD, TEM and PL. A-plane (11-20) GaN layers have been grown on a-(Zn,Mg)O/r-sapphire templates by MBE. The surface morphology, the crystal microstructure, as well as the optical emission of a-GaN layers show strong anisotropic properties. A series of a-plane Al0.2Ga0.8N/GaN MQWs with different well thicknesses have been fabricated and the absence of quantum confined Stark effect in these nonopolar heterostructures has been evidenced. Processes of growing GaN on both c- and a- plane bulk ZnO substrates have been developed. In particular, GaN layers with either Ga- or N- polarities have been grown on O face ZnO, and their polarity determination mechanisms have been analyzed. (In,Ga)N/GaN MQWs based blue LEDs have been demonstrated on c- ZnO substrates. Output powers of 40 µW at 20 mA and 0.1 mW at 60 mA have been measured. Finally, a-plane (In,Ga)N/GaN MQWs are fabricated on bulk a-ZnO substrates and compared with c-plane MQWs grown under similar conditions. PL measurements indicate that a-plane MQWs exhibit a lower In incorporation efficiency and a polarized emission along <1-100> direction.
|
18 |
Etude des propriétés structurales et électroniques de nouveaux matériaux à base d'alliages III-N pour l'optoélectronique / Electrical and structural properties of the new III-N alloys for optoelectronics devicesBaghdadli, Tewfik 10 July 2009 (has links)
Cette thèse portait sur la caractérisation électrique et optique de nouveaux matériaux à base d'alliages III-N pour l’optoélectronique et la mise en œuvre de procédés de réalisation des contacts ohmiques et Schottky sur ces alliages. Le premier volet de cette thèse de concernait la maîtrise des contacts métalliques, particulièrement délicate dans le cas de ces matériaux à large bande interdite où il faut optimiser les prétraitements de surface, la métallisation multicouches et les procédés de recuit. Nous avons développé des procédés à relativement basse température (entre 200°C et 500°C) et étudié l'influence du prétraitement chimique et des paramètres du recuit et on a pu trouver des conditions permettant d'obtenir des contacts Ti/Al avec une excellente ohmicité et des contacts Schottky Au et Pt avec des paramètres de conduction permettant de réaliser des dispositifs fonctionnels. Le second volet de cette thèse concernait l'étude des propriétés électroniques et structurales de l'alliage BGaN, nouveau matériau élaboré au laboratoire par MOVPE. La caractérisation électrique a montré pour la première fois une augmentation drastique de la résistivité associée à une diminution de la concentration des porteurs libres lorsqu'on augmente la composition de bore dans BGaN. Grâce à des mesures de la résistivité du BGaN en fonction de la température et en utilisant un modèle qui prend en compte l'ensemble des interactions, cette augmentation de la résistivité a été discutée et interprétée en terme de compensation des dopants résiduels. En outre une très intéressante corrélation a pu être effectuée avec les résultats de la spectroscopie Raman via le couplage phonon-plasmon / This thesis work concerns the electrical and optical characterization of new III-N nitride alloys for optoelectronics and the optimization of ohmic and Schottky contacts on these materials. The first part of this thesis was related to the realization of metallic contacts, particularly difficult for these high bandgap materials, by the optimization of the surface treatment, multi-layer metallization and thermal annealing. We developed annealing processes at relatively low temperature (between 200°C and 500°C) and studied the effect of the chemical treatment and annealing in order to find the optimal conditions for ohmic contacts. We obtained for instance Ti/Al contacts with an excellent ohmicity and used Pt to process Schottky functional diodes. The second part of this thesis was related to the study of the electronic and structural properties of the new BGaN alloy grown by MOVPE in our laboratory. The electric characterization showed for the first time a dramatic increase in the resistivity associated to the decrease of the free carriers’ concentration when the composition of boron in BGaN increases. The variation of the resistivity in BGaN with respect to the temperature was analyzed by using a theoretical model which takes into account the free carriers’ interaction with impurities and phonons and the variation of resistivity with boron in BGaN was discussed in this framework and linked to a compensation phenomenon of the residual dopants. On the other hand a very interesting correlation was carried out between Raman and electrical results through the phonon-plasmon coupling
|
19 |
Synthèse de nouveaux nanophotocatalyseurs en microfluidique supercritique / Synthesis of Novel Nanophotocatalyst in Micro/Millifludic Supercritical ReactorRavi Anusuyadevi, Prasaanth 12 December 2018 (has links)
Ce sujet de thèse fait partie d’un projet européen visant à développer l’utilisation de la lumière solaire pour créer des produits à haute valeur ajoutée en utilisant la photochimie catalytique. Dans ce contexte, la synthèse de nanophotocatalyseurs est essentielle car les caractéristiques des nanomatériaux doit être maîtrisées pour optimiser l'efficacité de la réaction. Les méthodes de synthèses utilisant les fluides supercritiques (haute pression / haute température) se sont révélés être des procédés de choix pour de tels développements. Combinés à l’utilisation de microréacteurs, il est alors possible d’accéder à un contrôle fin des propriétés du matériau, notamment celles de surface. Les objectifs de ce projet sont de (i) développer des procédés de synthèse permettant de concevoir de nouveaux nanophotocatalyseurs basés sur l’oxyde de titane et des nanoparticules de semi-conducteurs de nitrures, en particulier GaN/TiO2 et GaxIn1-xN/TiO2, (ii) de tester l’efficacité photocatalytique de ces matériaux sur plusieurs réactions photochimiques modèles (oxydation des thiols, trifluorométhylation, conversion des amines en imines), à la fois en réacteur fermé et en réacteurs photochimiques sous flux et (iii) d’étudier les options de changement d’échelle pour améliorer les taux de production de ces nanophotocatalyseurs. / This PhD thesis is part of a larger European ITN project (Photo4Future) dealing with improvement of the use of sun light for making valuable products through new heterogeneous catalytic photochemical processes. In this context, the synthesis of nanophotocatalysts is essential since their characteristics must be controlled to optimize the process efficiency towards the desired products. Supercritical fluids synthesis approaches (high pressure / high temperature) have proven to be promising for such developments. Combined to microreactors, it is then possible to reach a precise control of material properties, including surfaces. The objectives of this project are (i) to develop synthetic methods for designing new nanophotocatalysts based on titania and nitrides quantum dots, in particular GaN/TiO2 and GaxIn1-xN/TiO2, (ii) to test their photocatalytics efficiency on several model photochemical reactions (oxidation of thiols, trifluoromethylation and amine to imine conversion), both in batch mode and using continuous flow photochemical reactors and (iii) to investigate the scale-up options for increasing the production rates of such nanophotocatalysts.
|
20 |
Étude théorique de la faisabilité des LED à base de ZnGeN2 / Theoretical study and feasibility of ZnGeN2-based LEDRolles, Mélanie 11 December 2018 (has links)
Le développement de LED à base de nitrures représente un enjeu important tant sur le plan scientifique qu’industriel et sociétal. De par leur large bande interdite, les matériaux semi-conducteurs à base de nitrures d’éléments III (composés III-N) tels que le GaN et ses alliages sont de très bons candidats pour la réalisation de dispositifs optoélectroniques nouveaux. Néanmoins, ces systèmes présentent bon nombre de limitations, principalement dues à l’évolution des propriétés de l’InGaN lorsque la concentration d’indium augmente. Les effets de contrainte et de polarisation affectent la qualité du matériau et donc l’émission spontanée de la LED en général. De plus, dans un contexte de raréfaction des ressources naturelles, l’utilisation de l’indium, matériau rare et cher, doit se faire de manière raisonnée. Or les systèmes actuels (micro-écran, dispositifs portatifs, ...) requièrent des LED toujours plus puissantes et riches en Indium. Le but est aujourd’hui d’obtenir des LED haute performance, avec un bon rendu de couleurs et surtout à moindre coût en utilisant des matériaux alternatifs. C’est dans ce contexte que s’inscrit ce sujet de thèse qui consiste en l’étude théorique du matériau ZnGeN2 et de son introduction au sein d’une structure LED. L’idée est ici de créer un puits quantique de type II InGaN-ZnGeN2 afin d’augmenter l’efficacité des zones d’actives et ainsi de réaliser des LED pouvant opérer sur une large gamme de longueurs d’ondes allant de l’IR à l’UV. Cette approche permet de diminuer la quantité d’indium dans les LED et ainsi de créer des structures moins onéreuses avec un matériau de meilleure qualité. Le ZnGeN2 dérive des nitrures d’éléments III en remplaçant le groupe III alternativement par un élément du groupe II (Zn) et du groupe IV (Ge). Les énergies de gap et le paramètre de maille de ZnGeN2 sont très proches de ceux du GaN. De plus, les organisations cristallographiques sont similaires et le large décalage de bande entre InGaN et ZnGeN2 autorise la formation d’une hétérostructure du type II InGaN/ZnGeN2. L’insertion d’une couche de ZnGeN2 dans une structure classique de puits quantique GaN/InGaN aboutit à des modifications significatives : le fort confinement des trous dans la couche de ZnGeN2 autorise l’utilisation d’une quantité moindre d’indium dans le puits. Dans le puits quantique de type II InGaN/ZnGeN2 une fine couche d’AlGaN est utilisée comme barrière pour un meilleur confinement. L’ensemble permet d’obtenir un meilleur recouvrement des fonctions d’ondes électron-trou comparé à celui obtenu dans le cas d’une LED classique. Au cours de la thèse nous présenterons les résultats des simulations des différentes structures LED avec puits quantique de type-II. Nous étudierons des structures LED pour des émissions dans le vert et le rouge. Différentes géométries de LED seront développées en faisant varier la position et l’épaisseur de la couche de ZnGeN2. Nous utiliserons ici le logiciel de simulation SILVACO/ATLAS avec le modèle k.p à six bandes pour le calcul de la structure de bandes, qui prend en compte les effets de tension, l’enchevêtrement des bandes de valence ainsi que les polarisations spontanées et piézoélectriques / Nitride LEDs development presents significant scientific and societal issues. The aim is to get low-cost, high efficiency LEDs with accurate color-rending (typically the Color Rending Index has to be higher than 90). Due to their large band gap (from 0.8 to 6.2 eV), III-N materials, as GaN and alloys, are still used for LEDs development. Nevertheless, they present several huge limitations mainly due to the evolution of InGaN properties for higher Indium concentrations. Strain and polarization effects affect then the LED quality through the reduction of the spontaneous emission. New high-performance devices require the development of new materials and the introduction of ZnGeN2 layers could be an alternative solution. We report here on a new green and red-emitting light emitting device (LED) architecture containing only 16% of indium. The structure is based on the use of a new type-II ZnGeN2/In0.16Ga0.84N quantum well. Type II InGaN-ZnGeN2 quantum wells (QWs) were proposed for the improvement of efficiency in active regions and realizing then devices operating in a large wavelength range from UV to IR. The zinc germanium nitride (ZnGeN2) is a new promising semiconductor for optoelectronic devices such as LED or photovoltaic cells due to its large, direct, and adjustable band gap, most particularly considered to overcome the green-gap issue in LED technology. ZnGeN2 derives from the III-nitride elements by replacing the III-group alternatively by a group II (Zn) and a group IV (Ge). Both the energy band gap and the lattice parameters of ZnGeN2 are very close to those of GaN. The crystallographic organizations are similar and the recently predicted large band offset between GaN and ZnGeN2 allows the formation of a type-II InGaN-ZnGeN2 heterostructure. Studies of ZnGeN2 based quantum well behaviors are scarce and no information on the overall electro-optical operation of such LED is available. We simulate here with SILVACO/ATLAS the complete behavior of a green and red LED structures in which the active region is a type-II ZnGeN2/In0.16Ga0.84N quantum well. A thin AlGaN layer is used as a barrier for a better carrier confinement. The position and the thickness of the ZnGeN2 layer are parameters used to examine the luminous and electrical behavior as well as the external quantum efficiency of this LED compared to a standard InGaN-based LED emitting at the same wavelength. Inserting a ZnGeN2 layer in a conventional type-I InGaN QW structure yields significant modifications. The strong confinement of holes in the ZnGeN2 layer allows the use of a lower In-content InGaN QW with uniform In content. We demonstrate a significant enhancement of the spontaneous emission and the possibility to reach both a better quantum efficiency and light output when using the type-II structure. The self-consistent 6-band k.p method is used to perform the band structure calculations, which consider the effect of strain, the valence band mixing, and the spontaneous and piezoelectric polarizations
|
Page generated in 0.0596 seconds