• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 760
  • 303
  • 111
  • 85
  • 29
  • 25
  • 25
  • 23
  • 21
  • 17
  • 13
  • 7
  • 5
  • 4
  • 3
  • Tagged with
  • 1722
  • 360
  • 254
  • 237
  • 213
  • 197
  • 194
  • 168
  • 152
  • 139
  • 112
  • 103
  • 95
  • 86
  • 83
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
661

Processing Mechanics of Additive Friction Stir Deposition

Hartley II, William Douglas 03 July 2023 (has links)
Additive friction stir deposition (AFSD) is a newly developed solid-state metal additive manufacturing (AM) technology that adds a material feeding mechanism to the friction stir principle (Yu et al.., 2018). As a newly developed process, the development of a sound understanding of the process mechanics is necessary and may shed light on both limiting factors and new opportunities. This work explores the fundamental modes of deformation through an analytical decomposition of three flow components: 1) radial spreading, 2) rotating, and 3) traversing shear flow. The analytical models provide 'back-of-the-envelope' estimates of mechanical requirements (machine torque, for example), and straightforward algebraic equations for estimating the peak strain rate associated with deformation and the expected residence time of material underneath the AFSD tool head. A more complex, but preliminary, numerical modeling approach is then presented to models the steady state material flow as a fully coupled non-Newtonian fluid with rate and temperature dependent properties. Additionally, a transient thermal model is presented which captures the thermal history of the material along a dynamic printing trajectory. The numerical models provide insight into the pressure distribution underneath the AFSD tool, which impacts deformation bonding conditions at the interface, and suggest that temperature differences under the tool may be as high as 70℃. Several interface fracture experiments reveal a well-bonded center region, with high ductility and energy dissipation, and a poorly bonded outer edge region. Novel characterization work has been presented showing evidence of a nearly uniform 50μm thick shear layer on the top surface of a deposit. Analysis of the Prandtl number suggests that this shear layer is a consequence of a thin thermal boundary layer, which in the presence of frictional shear stress, becomes a thermo-mechanical boundary layer with a distinct flow regime from the bulk. Further characterization shows viscous mixing patterns in the wake of tool pins, and incomplete bonding at the edges of the deposition track. An additional application is presented for AFSD – selective area cladding of thin sheet metal. Substrates as thin as 1.4mm were clad without localized deformation, which is dependent on the clamping configuration of the substrate. Cladding quality, interface integrity, and certain failure modes are identified for thin cladding operations. In-situ monitoring and ex-situ laser scanning shows the slow evolution of thermal distortion during cooling of the cladding-on-sheet system. Finally, residual stress and strain estimates are made using curvature methods for bi-layer specimens extracted from the cladding. / Doctor of Philosophy / Additive manufacturing of metal components (colloquially called "3D printing") has generated significant interest and excitement as the manufacturing method of the future, where new materials with complex shapes and functionalities may unlock new possibilities for commerce and industry. Metal 3D printing also gives us new methods to repair aging and damaged structures, providing opportunities to extend the life of existing infrastructure. This work is centrally focused on understanding the most important factors and physical principles at play during a particular metal additive manufacturing process, additive friction stir deposition (ASFD). AFSD uses deformation to heat and bond materials together, building on the principles of friction welding and forge welding. A fundamental understanding of the process mechanics will allow for a better understanding of the current limits and potential opportunities this new technology can provide. Using a combination of analytical analysis, numerical modeling, and experiments, this work aims to provide a deeper understanding of the material flow, thermal fields, and mechanical forces associated with depositing material by AFSD, which may be insightful for new materials, tunable material properties, and may lead to new machine design opportunities.
662

Mechanistic Study of Silane Assisted Rubber to Brass Bonding and the Effect of Alkaline Pre Treatment of Aluminum 2024 T3 on Silane Performance

Nookala, RamaKrishna 21 July 2006 (has links)
No description available.
663

Investigation of the structure and bonding of metal complexes through the use of density functional theory

Brett, Constance M. 13 July 2005 (has links)
No description available.
664

Development of novel micro-embossing methods and microfluidic designs for biomedical applications

Lu, Chunmeng 22 September 2006 (has links)
No description available.
665

Single Sided Bonding of Cylindrical Battery Cells

He, Xu January 2021 (has links)
Over the last ten years the Li-ion battery cells plays a significant role in the world’s decarbonization and reduction of CO2 emission. They are widely applied in many industries, such as consumer electronics, transportation and energy storage industries. The number of batteries cells varies from a few to thousands in a battery application, they are connected in series and/or parallel according to their designed voltage and capacity. It is a great advantage to be able to electrically connect the positive and negative sides of the battery from one side when designing and manufacturing battery modules and battery packs, because the whole built height of module could be a little lower and the rest of space below the cell body is free for cooling or thermal management. In this thesis project, different bonding technologies were compared, and ultrasonic wire bonding was selected to connect the negative electrode (shoulder) of battery and busbar. However, bonding on the shoulder of battery was still a challenge. The mechanism of ultrasonic wire bonding and the surface condition of the shoulder were studied in the project in order to develop the bonding process. Besides, the DoE experiment was used to further optimize the parameters of the wire bonding process. The 4 most influential factors were obtained from 7 factors from the screening factor experiment. Then a full factorial experiment was carried out for evaluation. Finally, a series of optimized parameters could be summarized. / Under de senaste tio åren har litiumjonbattericellerna spelat en betydande roll för världens koldioxidutsläpp och minskning av CO2-utsläpp. De används i stor utsträckning inom många industrier, såsom hemelektronik, transport och energilagringsindustrier. Antalet battericeller varierar från några få till tusentals i en batteriapplikation, de är seriekopplade och/eller parallellt beroende på den spänning och kapacitet de är avseddaför. Det är en stor fördel att kunna koppla ihop batteriets positiva och negativa sidorelektriskt på samma sida när man designar och tillverkar batterimoduler ochbatteripaket, eftersom hela bygghöjden på modulen kan vara lite lägre och resten av utrymmet under cellkroppen är fri för kylning eller termisk hantering. I detta examensarbete jämfördes olika bindningsteknologier och ultraljudstrådsbindning valdes för att ansluta den negativa elektroden (axeln) på batteriet och samlingsskenan. Att fästa på axeln av batteriet var dock fortfarande en utmaning. Mekanismen för ultraljudstrådbindning och axelns yttillstånd studerades i projektet för att utveckla bindningsprocessen. Dessutom användes DoE-experimentet för att ytterligare optimera parametrarna för trådbindningsprocessen. De 4 mest inflytelserika faktorerna erhölls från 7 faktorer från screeningfaktorexperimentet. Därefter utfördes ett fullständigt faktorexperiment för utvärdering. Slutligen kunde en serie optimerade parametrar sammanställas.
666

Transient liquid phase (TLP) bonding as reaction–controlled diffusion

Atieh, A.M., Cooke, Kavian O., Epstein, M. 12 September 2022 (has links)
No / The transient liquid phase bonding process has long been dealt with as a pure diffusion process at the joint interface, that is, as a mass phenomenon. In spite of the advances in the application of this technique to bond complex engineering alloys, the available models have failed to incorporate the effect of surface phenomena on the joining process. In this work, a new reaction–controlled diffusion formulation model is proposed, and the observation of experimental results of joining Al6061 alloy using thin single (50, 100 micron) and double Cu foils is recorded. This work directly unveils the unique role played by surface reaction–controlled diffusion rather than purely mass diffusion bonding process. Our experimental and modeling results reveal a conceptually new understanding that may well explain the joint formation in TLP bonding process.
667

Electronic Structure And Bonding In Metallaboranes And Main Group Compounds

Hari Krishna Reddy, Kurre 10 1900 (has links) (PDF)
This thesis entitled “Electronic Structure and Bonding in Metallaboranes and Main Group Compounds” consists of five chapters. Chapter 1 gives an exposition of concepts and techniques used in understanding the electronic structure and bonding in some chemically interesting molecules. Heuristics concepts like isolobal analogy and electron counting rules are used in analyzing and predicting some novel chemical systems. A brief description of computational techniques such as density functional theory (DFT) based methods are used to quantitatively examine the structures and energies of these systems. In chapter 2 we present a critical analysis of bonding in neutral and dianionic stannadiphospholes and compare the potential energy surfaces with the isoelectronic Cp+ and Cp- species. The analysis indicates that Sn can be a better isolobal analogue to P+ than to BH or CH+. In chapter 3 we present new strategy to stabilize B2H4 in planar configuration using transition metal fragments. This requires the metal to donate two electrons into the empty B-B π orbital. Such complexes present a unique case study to the classical DCD model of metal-π complex. In chapter 4 we study the bonding in some recently synthesized metallaboranes which does not follow conventional electron counting rules. The complex and non-canonical nature of these metallaboranes feature some unique bonding patterns which are elucidated using theoretical techniques. In the final chapter we present new approach to build metal coated boron fullerenes. We use electron counting rules to device new structures which show enhanced metal boron bonding.
668

Heterogeneous Integration of Shape Memory Alloysfor High-Performance Microvalves

Gradin, Henrik January 2012 (has links)
This thesis presents methods for fabricating MicroElectroMechanical System (MEMS) actuators and high-flow gas microvalves using wafer-level integration of Shape Memory Alloys (SMAs) in the form of wires and sheets. The work output per volume of SMA actuators exceeds that of other microactuation mechanisms, such as electrostatic, magnetic and piezoelectric actuation, by more than an order of magnitude, making SMA actuators highly promising for applications requiring high forces and large displacements. The use of SMAs in MEMS has so far been limited, partially due to a lack of cost efficient and reliable wafer-level integration approaches. This thesis presents new methods for wafer-level integration of nickel-titanium SMA sheets and wires. For SMA sheets, a technique for the integration of patterned SMA sheets to silicon wafers using gold-silicon eutectic bonding is demonstrated. A method for selective release of gold-silicon eutectically bonded microstructures by localized electrochemical etching, is also presented. For SMA wires, alignment and placement of NiTi wires is demonstrated forboth a manual approach, using specially built wire frame tools, and a semiautomatic approach, using a commercially available wire bonder. Methods for fixing wires to wafers using either polymers, nickel electroplating or mechanical silicon clamps are also shown. Nickel electroplating offers the most promising permanent fixing technique, since both a strong mechanical and good electrical connection to the wire is achieved during the same process step. Resistively heated microactuators are also fabricated by integrating prestrained SMA wires onto silicon cantilevers. These microactuators exhibit displacements that are among the highest yet reported. The actuators also feature a relatively low power consumption and high reliability during longterm cycling. New designs for gas microvalves are presented and valves using both SMA sheets and SMA wires for actuation are fabricated. The SMA-sheet microvalve exhibits a pneumatic performance per footprint area, three times higher than that of previous microvalves. The SMA-wire-actuated microvalve also allows control of high gas flows and in addition, offers benefits of lowvoltage actuation and low overall power consumption. / QC 20120514
669

Etude de la déformation particule/substrat au mécanisme de liaison en projection à froid / Improvement of the coating properties deposited by cold spray and developed for different industriel applications

Xie, Yingchun 16 December 2016 (has links)
La projection à froid, aussi appelée cold spray, est considérée comme un nouveau membre de la famille de laprojection thermique depuis une trentaine d'années maintenant. Cette thèse propose d'étudier le comportement endéformation des particules et du substrat et de mettre en avant les liaisons formées dans le revêtement par deuxapproches complémentaires, expérimentale et de simulation.Une méthode innovante pour observer directement la surface fracturée des particules déposées après décollementdu substrat a été testée avec succès. Par ce moyen, la surface de contact entre particule et substrat sousdifférentes conditions a été analysée.Concernant les résultats expérimentaux, une nouvelle théorie a été proposée pour expliquer le mécanisme deliaison interfaciale d'un revêtement dur de Ni sur substrat mou d'Al reposant sur l'effet de martelage répété desparticules, sur l'effet de pression du gaz principal et sur l'effet de préchauffage du substrat. La transformation dumécanisme de liaison revêtement/substrat au cours de la construction du dépôt a été mise en évidence en passantdu verrouillage mécanique à une combinaison d'une liaison mécanique et d'une liaison métallurgique, puis à laformation d'instabilités sous forme d'un mélange tourbillonnaire à l'interface. Plus de zones de liaisonsmétallurgiques sont générées sous forte pression, une plus grande déformation plastique apparaît grâce latempérature de préchauffage, et une adhérence plus forte au sein des dépôts est capable de se produire en dépitde la présence d'un film d'oxyde épais sur la surface du substrat. / Cold spraying, also called cold gas dynamic spraying, is a new coating technology which has been developed duringthe past three decade. In this study, a comprehensive investigation on particle deformation behavior and bondingbehavior between particle and substrate was conducted by experiment and numerical method.This thesis aims at presenting an innovative method to directly observe the fractured contact surface between thecold sprayed particle and substrate. By this means, the particle/substrate fractured contact surfaces were analyzedfor different conditions.Based on the experimental results, a new theory was proposed to explain the interfacial bonding mechanism of hardNi coating onto soft Al substrate. It is assumed that the particle peening effect is essential for the formation ofdiscontinuous metallurgical bonding. The dominant coating/substrate bonding mechanism is responsible of thetransformation during the coating build-up process of the initial mechanical interlocking to a combination ofmechanical interlocking and metallurgical bonding therefore of the formation of interfacial instabilities. The highcontact pressure is the relevant factor determining the particle/substrate metallurgical bonding. More metallurgicalbonding areas were generated due to strengthen peening effect of the subsequently deposited particles with higherpropelling gas pressure. Finally, stronger adhesion is able to occur despite the presence of a thick oxide film on thesubstrate surface by the preheating of the substrate. Higher temperatures help the materials to undergoes astronger plastic deformation that disrupts the oxide films. That leads to initiate an intimate contact between particleand substrate.
670

Mechanical and Tribological Aspects of Microelectronic Wire Bonding

Satish Shah, Aashish January 2010 (has links)
The goal of this thesis is on improving the understanding of mechanical and tribological mechanisms in microelectronic wire bonding. In particular, it focusses on the development and application of quantitative models of ultrasonic (US) friction and interfacial wear in wire bonding. Another objective of the thesis is to develop a low-stress Cu ball bonding process that minimizes damage to the microchip. These are accomplished through experimental measurements of in situ US tangential force by piezoresistive microsensors integrated next to the bonding zone using standard complementary metal oxide semiconductor (CMOS) technology. The processes investigated are thermosonic (TS) Au ball bonding on Al pads (Au-Al process), TS Cu ball bonding on Al pads (Cu-Al process), and US Al wedge-wedge bonding on Al pads (Al-Al process). TS ball bonding processes are optimized with one Au and two Cu wire types, obtaining average shear strength (SS) of more than 120 MPa. Ball bonds made with Cu wire show at least 15% higher SS than those made with Au wire. However, 30% higher US force induced to the bonding pad is measured for the Cu process using the microsensor, which increases the risk of underpad damage. The US force can be reduced by: (i) using a Cu wire type that produces softer deformed ball results in a measured US force reduction of 5%; and (ii) reducing the US level to 0.9 times the conventionally optimized level, the US force can be reduced by 9%. It is shown that using a softer Cu deformed ball and a reduced US level reduces the extra stress observed with Cu wire compared to Au wire by 42%. To study the combined effect of bond force (BF) and US in Cu ball bonding, the US parameter is optimized for eight levels of BF. For ball bonds made with conventionally optimized BF and US settings, the SS is ≈ 140 MPa. The amount of Al pad splash extruding out of bonded ball interface (for conventionally optimized BF and US settings) is between 10–12 µm. It can be reduced to 3–7 µm if accepting a SS reduction to 50–70 MPa. For excessive US settings, elliptical shaped Cu bonded balls are observed, with the major axis perpendicular to the US direction. By using a lower value of BF combined with a reduced US level, the US force can be reduced by 30% while achieving an average SS of at least 120 MPa. These process settings also aid in reducing the amount of splash by 4.3 µm. The US force measurement is like a signature of the bond as it allows for detailed insight into the tribological mechanisms during the bonding process. The relative amount of the third harmonic of US force in the Cu-Al process is found to be five times smaller than in the Au-Al process. In contrast, in the Al-Al process, a large second harmonic content is observed, describing a non-symmetric deviation of the force signal waveform from the sinusoidal shape. This deviation might be due to the reduced geometrical symmetry of the wedge tool. The analysis of harmonics of the US force indicates that although slightly different from each other, stick-slip friction is an important mechanism in all these wire bonding variants. A friction power theory is used to derive the US friction power during Au-Al, Cu-Al, and Al-Al processes. Auxiliary measurements include the current delivered to the US transducer, the vibration amplitude of the bonding tool tip in free-air, and the US tangential force acting on the bonding pad. For bonds made with typical process parameters, several characteristic values used in the friction power model such as the ultrasonic compliance of the bonding system and the profile of the relative interfacial sliding amplitude are determined. The maximum interfacial friction power during Al-Al process is at least 11.5 mW (3.9 W/mm²), which is only about 4.8% of the total electrical power delivered to the US transducer. The total sliding friction energy delivered to the Al-Al wedge bond is 60.4 mJ (20.4 J/mm²). For the Au-Al and Cu-Al processes, the US friction power is derived with an improved, more accurate method to derive the US compliance. The method uses a multi-step bonding process. In the first two steps, the US current is set to levels that are low enough to prevent sliding. Sliding and bonding take place during the third step, when the current is ramped up to the optimum value. The US compliance values are derived from the first two steps. The average maximum interfacial friction power is 10.3 mW (10.8 W/mm²) and 16.9 mW (18.7 W/mm²) for the Au-Al and Cu-Al processes, respectively. The total sliding friction energy delivered to the bond is 48.5 mJ (50.3 J/mm²) and 49.4 mJ (54.8 J/mm²) for the Au-Al and Cu-Al processes, respectively. Finally, the sliding wear theory is used to derive the amount of interfacial wear during Au-Al and Cu-Al processes. The method uses the US force and the derived interfacial sliding amplitude as the main inputs. The estimated total average depth of interfacial wear in Au-Al and Cu-Al processes is 416 nm and 895 nm, respectively. However, the error of estimation of wear in both the Au-Al and the Cu-Al processes is ≈ 50%, making this method less accurate than the friction power and energy results. Given the error in the determination of compliance in the Al-Al process, the error in the estimation of wear in the Al-Al process might have been even larger; hence the wear results pertaining to the Al-Al process are not discussed in this study.

Page generated in 0.0415 seconds