• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 103
  • 26
  • 9
  • 7
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 196
  • 196
  • 46
  • 36
  • 35
  • 32
  • 28
  • 23
  • 23
  • 21
  • 20
  • 19
  • 18
  • 18
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Étude structurale et fonctionnelle d'un nouvel ARN non codant, Asgard, contrôlant l'autorenouvellement des cellules souches embryonnaires / Characterization of a novel non coding RNA, Asgard, which controls the self-renewal of mouse embryonic stem cells

Giudice, Vincent 18 December 2013 (has links)
Chez la souris, le Leukemia Inhibitory Factor (LIF) joue un rôle clé dans le maintien des cellules souches embryonnaires (ES) à l’état pluripotent. Le LIF agit en activant le facteur de transcription STAT3 via les kinases Jak. Cette activation est nécessaire et suffisante au maintien des cellules ES en autorenouvellement en présence de sérum. Une étude du transcriptome de STAT3 réalisée au laboratoire a permis d’identifier plusieurs gènes cibles de ce facteur, parmi lesquels plusieurs gènes inconnus. L’un d’eux, le gène 1456160_at, est fortement exprimé dans les cellules ES de souris et son expression diminue après induction de la différenciation. Ce gène a été appelé Asgard pour Another Self-renewal GuARDian. La caractérisation et le séquençage de ce gène ont permis de mettre en évidence qu'Asgard code pour un microARN. De nombreux microARNs jouent un rôle clé dans le maintien de l'autorenouvellement des cellules ES et dans le contrôle de la différenciation. Des expériences d’inhibition et de surexpression ont permis de montrer que Asgard est impliqué dans la régulation de la différenciation endoderme versus mésoderme. Des analyses préliminaires ont permis d’identifier Pbx3, FoxA2 et Sox17 comme cibles potentielles. Bien que les mécanismes d’action du microARN Asgard restent à confirmer, ce travail a permis d’identifier un nouveau gène clé de l'autorenouvellement des cellules ES de souris / The Leukemia Inhibitory Factor (LIF) activates the transcription factor STAT3, which results in the maintenance of mouse embryonic stem cells in the undifferentiated state by inhibiting mesodermal and endodermal differentiation. We identified several target genes of STAT3 by transcriptomic analysis. Among them, we focused on an unknown gene referred as 1456160_at on Affymetrix array. This gene is highly expressed in embryonic stem cells and its expression level decreases during differentiation. We named this gene Asgard for Another Self-renewal GuARDian. Its characterization and sequencing revealed that Asgard encodes for a microRNA sequence. Several microRNAs have been shown to play key role in the maintenance of self-renewal of mouse ES cells and in the control of differentiation. Inhibition and overexpression assays showed that Asgard inhibits endodermal differentiation in order to maintain self-renewal. Through preliminary analysis, we identified Pbx3, FoxA2 and Sox17 as potential targets of the microRNA Asgard. Our work enables us to identify a new key gene of self-renewal of mouse ES cells
182

MiRNA and co : methodologically exploring the world of small RNAs / MiARN et compagnie : une exploration méthodologique du monde des petits ARNs

Higashi, Susan 26 November 2014 (has links)
La principale contribution de cette thèse est le développement d'une méthode fiable, robuste, et rapide pour la prédiction des pré-miARNs. Deux objectifs avaient été assignés : efficacité et flexibilité. L'efficacité a été rendue possible au moyen d'un algorithme quadratique. La flexibilité repose sur deux aspects, la nature des données expérimentales et la position taxonomique de l'organisme (en particulier plantes ou animaux). Mirinho accepte en entrée des séquences de génomes complets mais aussi les très nombreuses séquences résultant d'un séquençage massif de type NGS de “RNAseq”. “L'universalité” taxonomique est obtenu par la possibilité de modifier les contraintes sur les tailles de la tige (double hélice) et de la boule terminale. Dans le cas de la prédiction des miARN de plantes la plus grande longueur de leur pré-miARN conduit à des méthodes d'extraction de la structure secondaire en tige-boule moins précises. Mirinho prend en compte ce problème lui permettant de fournir des structures secondaires de pré-miARN plus semblables à celles de miRBase que les autres méthodes disponibles. Mirinho a été utilisé dans le cadre de deux questions biologiques précises l'une concernant des RNAseq l'autre de l'ADN génomique. La première question a conduit au traitement et l'analyse des données RNAseq de Acyrthosiphon pisum, le puceron du pois. L'objectif était d'identifier les miARN qui sont différentiellement exprimés au cours des quatre stades de développement de cette espèce et sont donc des candidats à la régulation des gènes au cours du développement. Pour cette analyse, nous avons développé un pipeline, appelé MirinhoPipe. La deuxieme question a permis d'aborder les problèmes liés à la prévision et l'analyse des ARN non-codants (ARNnc) dans la bactérie Mycoplasma hyopneumoniae. Alvinho a été développé pour la prédiction de cibles des miRNA autour d'une segmentation d'une séquence numérique et de la détection de la conservation des séquences entre ncRNA utilisant un graphe k-partite. Nous avons finalement abordé un problème lié à la recherche de motifs conservés dans un ensemble de séquences et pouvant ainsi correspondre à des éléments fonctionnels / The main contribution of this thesis is the development of a reliable, robust, and much faster method for the prediction of pre-miRNAs. With this method, we aimed mainly at two goals: efficiency and flexibility. Efficiency was made possible by means of a quadratic algorithm. Flexibility relies on two aspects, the input type and the organism clade. Mirinho can receive as input both a genome sequence and small RNA sequencing (sRNA-seq) data of both animal and plant species. To change from one clade to another, it suffices to change the lengths of the stem-arms and of the terminal loop. Concerning the prediction of plant miRNAs, because their pre-miRNAs are longer, the methods for extracting the hairpin secondary structure are not as accurate as for shorter sequences. With Mirinho, we also addressed this problem, which enabled to provide pre-miRNA secondary structures more similar to the ones in miRBase than the other available methods. Mirinho served as the basis to two other issues we addressed. The first issue led to the treatment and analysis of sRNA-seq data of Acyrthosiphon pisum, the pea aphid. The goal was to identify the miRNAs that are expressed during the four developmental stages of this species, allowing further biological conclusions concerning the regulatory system of such an organism. For this analysis, we developed a whole pipeline, called MirinhoPipe, at the end of which Mirinho was aggregated. We then moved on to the second issue, that involved problems related to the prediction and analysis of non-coding RNAs (ncRNAs) in the bacterium Mycoplasma hyopneumoniae. A method, called Alvinho, was thus developed for the prediction of targets in this bacterium, together with a pipeline for the segmentation of a numerical sequence and detection of conservation among ncRNA sequences using a kpartite graph. We finally addressed a problem related to motifs, that is to patterns, that may be composed of one or more parts, that appear conserved in a set of sequences and may correspond to functional elements.
183

Alignement pratique de structure-séquence d'ARN avec pseudonœuds / Practical structure-sequence alignment of pseudoknotted RNAs

Wang, Wei 18 December 2017 (has links)
Aligner des macromolécules telles que des protéines, des ADN et des ARN afin de révéler ou exploiter, leur homologie fonctionnelle est un défi classique en bioinformatique, qui offre de nombreuses applications, notamment dans la modélisation de structures et l'annotation des génomes. Un certain nombre d'algorithmes et d'outils ont été proposés pour le problème d'alignement structure-séquence d'ARN. Cependant, en ce qui concerne les ARN complexes, comportant des pseudo-noeuds, des interactions multiples et des paires de bases non canoniques, de tels outils sont rarement utilisés dans la pratique, en partie à cause de leurs grandes exigences de calcul, et de leur incapacité à supporter des types généraux de structures. Récemment, Rinaudo et al. ont donné un algorithme paramétré général pour la comparaison structure-séquence d'ARN, qui est capable de prendre en entrée n'importe quel type de structures comportant des pseudo-noeuds. L'algorithme paramétré est un algorithme de programmation dynamique basée sur la décomposition arborescente. Nous avons développé plusieurs variantes et extensions de cet algorithme. Afin de l'accélérer sans perte sensible de précision, nous avons introduit une approche de programmation dynamique par bandes. De plus, trois algorithmes ont été développés pour obtenir des alignements sous-optimaux. De plus, nous introduisons dans ce contexte la notion de MEA (Maximum-expected Structure-Alignment) pour calculer un alignement avec la précision maximale attendue sur un ensemble d'alignements. Tous ces algorithmes ont été implémentés dans un logiciel nommé LiCoRNA (aLignment of Complex RNAs). Les performances de LiCoRNA ont été évaluées d'abord sur l'alignement des graines des familles de de la base de données RFAM qui comportent des pseudo-noeuds. Comparé aux autres algorithmes de l'état de l'art, LiCoRNA obtient généralement des résultats équivalents ou meilleurs que ses concurrents. Grâce à la grande précision démontrée par LiCoRNA, nous montrons que cet outil peut être utilisé pour améliorer les alignements de certaines familles de RFAM qui comportent des pseudo-noeuds. / Aligning macromolecules such as proteins, DNAs and RNAs in order to reveal, or conversely exploit, their functional homology is a classic challenge in bioinformatics, with far-reaching applications in structure modelling and genome annotation. In the specific context of complex RNAs, featuring pseudoknots, multiple interactions and non-canonical base pairs, multiple algorithmic solutions and tools have been proposed for the structure sequence alignment problem. However, such tools are seldom used in practice, due in part to their extreme computational demands, and because of their inability to support general types of structures. Recently, Rinaudo et al. gave a fully general parameterised algorithm for structure-sequence comparison, which is able to take as input any type of pseudoknotted structures. The parameterised algorithm is a tree decomposition based dynamic programming. To accelerate the dynamic programming algorithm without losing two much accuracy, we introduced a banded dynamic programming. Then three algorithms are introduced to get the suboptimal structure-sequence alignments. Furthermore, we introduce the notation Maximum Expected structure-sequence Alignment (MEA) to compute an alignment with maximum expected accuracy over a set of alignments. The Boltzmann match probability are computed based on the inside-outside algorithm. The algorithms are implemented in a software named LiCoRNA (aLignment of Complex RNAs). We first evaluate the performance of LiCoRNA on the seed alignment in the pseudoknotted RFAM families. Compared to the state-of-the-art algorithms, LiCoRNA shows generally equivalent or better results than its competitors. With the high accuracy showed by LiCoRNA, we further curate RFAM full pseudoknotted alignment. The reason why we realign full alignments is that covariance model does not support pseudoknot which may lead to misalign when building the full alignment.
184

Transkriptomická charakterizace pomocí analýzy RNA-Seq dat / Transcriptomic Characterization Using RNA-Seq Data Analysis

Abo Khayal, Layal January 2018 (has links)
Vysoce výkonné sekvenční technologie produkují obrovské množství dat, která mohou odhalit nové geny, identifikovat splice varianty a kvantifikovat genovou expresi v celém genomu. Objem a složitost dat z RNA-seq experimentů vyžadují škálovatelné metody matematické analýzy založené na robustníchstatistických modelech. Je náročné navrhnout integrované pracovní postupy, které zahrnují různé postupy analýzy. Konkrétně jsou to srovnávací testy transkriptů, které jsou komplikovány několika zdroji variability měření a představují řadu statistických problémů. V tomto výzkumu byla sestavena integrovaná transkripční profilová pipeline k produkci nových reprodukovatelných kódů pro získání biologicky interpretovovatelných výsledků. Počínaje anotací údajů RNA-seq a hodnocení kvality je navržen soubor kódů, který slouží pro vizualizaci hodnocení kvality, potřebné pro zajištění RNA-Seq experimentu s analýzou dat. Dále je provedena komplexní diferenciální analýza genových expresí, která poskytuje popisné metody pro testované RNA-Seq data. Pro implementaci analýzy alternativního sestřihu a diferenciálních exonů jsme zlepšili výkon DEXSeq definováním otevřeného čtecího rámce exonového regionu, který se používá alternativně. Dále je popsána nová metodologie pro analýzu diferenciálně exprimované dlouhé nekódující RNA nalezením funkční korelace této RNA se sousedícími diferenciálně exprimovanými geny kódujícími proteiny. Takto je získán jasnější pohled na regulační mechanismus a poskytnuta hypotéza o úloze dlouhé nekódující RNA v regulaci genové exprese.
185

Étude de l’expression et des partenaires protéiques de l’ARN TERRA (TElomeric Repeat-containing RNA) dans les cellules de cancer humaines

Dalachi, Myriam 03 1900 (has links)
Telomeres are nucleoprotein structures that cap the physical ends of eukaryotic chromosomes. They consist of repetitive DNA sequences 5’-TTAGGG-3’ assembled with proteins which form the shelterin complex. This complex protects the ends of chromosomes by inhibiting DNA repair pathways at telomeres and avoid their recognition as double-strand breaks. Telomeres have been identified as a transcriptionally silent zone until 2007 when a noncoding RNA called TERRA (TElomeric Repeat containing RNA) transcribed from telomeres was discovered. This RNA gave rise to many questions: How is TERRA regulated? How is TERRA expressed? Does TERRA interact with proteins, DNA or RNA? After several studies, we know that TERRA is frequently expressed in cancer cells and it interacts with a large proteome. Nevertheless, its specific function remains unknown. In this thesis, we studied this RNA in human cancer cells using live-cell microscopy which allowed us to get information on TERRA’s dynamics, localization and its interactome. Moreover, we used single-molecule imaging on TERRA 15q labeled by the MS2-GFP system, which allowed the visualization of TERRA transcripts. This study resulted in the discovery of two types of TERRA population from telomere 15q: one of the population is characterized by the formation of clusters and a second population is constituted of unique molecules more dynamic in the nucleus. Finally, in order to better understand TERRA’s functions, we developed a new approach which consists on immunoprecipitating TERRA using the MS2 stem-loops as a tag to identify TERRA-interacting proteins such as the telomeric factor TRF2 or RNA-binding proteins like hnRNP -A1 or FUS. / Les télomères forment les extrémités des chromosomes chez les eucaryotes. Ces séquences répétées en tandem 5’-TTAGGG-3’ font partie d’un complexe nucléoprotéique appelé shelterin. En effet, cet assemblage de protéines télomériques permet la protection des extrémités des chromosomes, permettant à celles-ci de ne pas être reconnues comme des cassures dans l’ADN et d’activer les voies de réparation de l’ADN. Les télomères ont longtemps été reconnus comme étant des zones de transcription inactives, ce jusqu’en 2007 lorsqu’une équipe de recherche découvrit un ARN non codant appelé TERRA (Telomeric Repeat containing RNA). Ce dernier a suscité de nombreuses questions : quel est le rôle de cet ARN? Comment est-il exprimé et régulé? Interagit-il avec d’autres facteurs cellulaires? Les différentes recherches menées sur cet ARN ont permis de conclure que celui-ci était fréquemment induit dans les cellules de cancer, que ses partenaires d’interactions sont nombreux, mais que ses fonctions restent encore mal définies. Par ailleurs, ces différentes études ont toujours été ou presque réalisées sur des cellules fixées, sur une population totale d’ARN télomérique TERRA. Afin d’apporter de nouvelles réponses et de mieux caractériser cet ARN, nous avons étudié ce transcrit dans des cellules de cancer humain en utilisant la technique de microscopie en temps réel, qui permet de récolter des données sur la dynamique, la localisation de cet ARN et ses éventuels partenaires. De plus, nous nous sommes intéressés à des molécules uniques de TERRA issues du télomère 15q en exploitant la technique de marquage avec des tiges-boucles MS2 (MS2-GFP). Cette étude de microscopie a permis de découvrir deux types de population de l’ARN TERRA 15q : une population caractérisée par des assemblages d’ARN dit clusters (agrégats d’ARN) et une population plus singulière qui semble avoir une diffusion plus importante dans le noyau de la cellule. Par ailleurs, l’expression de l’ARN TERRA semble être différente d’un type cellulaire à un autre et nous avons donc cherché à connaître le niveau d’expression de cet ARN au sein de la lignée étudiée au cours de ce projet de recherche. Enfin, afin de découvrir de nouveaux rôles pour cet ARN, nous avons développé une approche de co-immunoprécipitation de l’ARN TERRA pour identifier des interactions avec des protéines du complexe shelterin comme TRF2, ou des protéines liant l’ARN comme hnRNP-A1 ou encore FUS.
186

Régulation de l’expression et de la localisation des ARN TLC1 et TERRA en réponse à différents stress génomiques chez la levure

Lalonde, Maxime 06 1900 (has links)
Les télomères forment la structure qui coiffe les extrémités des chromosomes. Ils sont essentiels pour protéger l’intégrité génomique. À cause du problème de fin de réplication, les télomères raccourcissent à chaque division cellulaire, menant à l’arrêt du cycle cellulaire, à la sénescence et à la mort cellulaire. Pour contrevenir au raccourcissement des télomères, les cellules immortalisées et hautement prolifératives, ainsi que la plupart des eucaryotes unicellulaires tels que Saccharomyces cerevisiae, expriment la télomérase, un complexe ribonucléoprotéique enzymatique qui rallonge les télomères. Pour permettre le maintien de la longueur des télomères et assurer l’intégrité du génome, plusieurs régulateurs contrôlent le recrutement et l’activité de la télomérase, s’assurant du ciblage précis de l’activité de la télomérase à ses substrats. Aux télomères, un dérèglement des mécanismes de régulation de la télomérase peut mener au raccourcissement des télomères, à des fusions de chromosomes et au développement d’un potentiel cancéreux. La télomérase peut aussi agir aux cassures d’ADN où son activité se traduit par l’ajout de novo d’un télomère et conduit à la perte de matériel génétique, à l’instabilité génomique et possiblement à la mort cellulaire. Son recrutement et son activité y sont donc inhibés. Les mécanismes par lesquels la cellule régule l’activité de la télomérase aux télomères et aux cassures d’ADN restent encore peu connus. De plus, en réponse à certains stress, ces mécanismes peuvent être altérés. Les travaux présentés dans cette thèse ont pour but d’étudier les régulateurs de l’activité de la télomérase et l’impact de certains stress cellulaires sur cette régulation. Dans la première partie, nous avons étudié la localisation de l’ARN TLC1, la sous-unité ARN de la télomérase, à travers le cycle cellulaire chez S. cerevisiae. Alors que cet ARN est majoritairement dans le nucléoplasme en G1/S, il démontre une accumulation nucléolaire en phase G2/M du cycle cellulaire. Chez la levure, la réparation des cassures d’ADN se fait majoritairement par recombinaison homologue et est exclue du nucléole. Dans ce contexte, nous avons formulé l’hypothèse que l’accumulation de l’ARN TLC1 au nucléole en G2/M constitue un mécanisme par lequel l’ajout de novo de télomère est inhibé aux cassures d’ADN. Nous avons fixé comme buts de caractériser les mécanismes régulant l’accumulation nucléolaire de l’ARN TCL1 et d’étudier comment la présence de dommage à l’ADN influence cette régulation. Nous avons pu montrer que la localisation nucléolaire de l’ARN TLC1 dépend de l’hélicase Pif1, de la protéine de la recombinaison homologue Rad52 et que la présence de dommage à l’ADN et l’absence de Rad52 influence le trafic nucléaire de cet ARN. Dans ces conditions, la protéine de la recombinaison homologue Rad51 permet l’accumulation de Cdc13 aux cassures et favorise l’accumulation de l’ARN TLC1 au nucléoplasme et aux cassures d’ADN. Cette accumulation est dépendante de la SUMO ligase Siz1 et mène à une augmentation d’ajout de novo de télomère aux sites de cassures d’ADN. Pour pouvoir quantifier l’augmentation d’ajout de novo de télomère, nous avons développé une nouvelle approche basée sur le séquençage haut-débit de type Illumina pour identifier et quantifier les événements d’ajout de novo de télomère sur le génome entier de manière non-biaisée. Dans la deuxième partie de la thèse, nous avons étudié les mécanismes contrôlant l’expression d’un régulateur de la télomérase nommé TERRA (telomeric repeats containing RNA). TERRA est un long ARN non-codant qui est transcrit à partir des régions sous-télomériques jusqu’aux répétitions télomériques. Chez S. cerevisiae, l’expression de TERRA est inhibée au niveau de sa transcription par le complexe SIR et au niveau de sa dégradation par l’exonucléase Rat1. Pourtant, les télomères courts expriment TERRA à des niveaux élevés. Cette augmentation de l’expression de TERRA permet de concentrer et de cibler l’activité de la télomérase aux télomères courts. En étudiant l’expression de TERRA, nous avons remarqué que les télomères exprimant cet ARN démontrent une perte prématurée de leur cohésion en phase S du cycle cellulaire. Nous pensons que l’organisation structurelle des télomères et, plus particulièrement, la cohésion télomérique participe à la régulation de l’expression de TERRA. De plus, plusieurs groupes ont montré que l’expression de TERRA était régulée en réponse à plusieurs stress, de façon indépendante de la taille des télomères. Dans ce contexte, nous formulons l’hypothèse que le stress oxydatif et les changements métaboliques induits durant la transition diauxique influence l’expression de TERRA. Pour cette partie de la thèse, nous avions comme but d’étudier comment l’expression de TERRA étaient régulé par les changements métaboliques comme la transition diauxique et d’étudier le rôle joué par le complexe de la cohésine dans la régulation de l’expression de TERRA. Nous avons montré que les télomères courts montrent une perte de cohésion prématurée en début de phase S, ce qui favorise l’expression de TERRA en cis. Alors qu’une perte de fonction partielle de la cohésine résulte en une augmentation de l’expression de TERRA, la rétention forcée de cohésine à un télomère court réprime sa transcription. Cette perte de cohésion aux télomères courts est dépendante de Sir4 mais indépendante de Sir2, ce qui suggère que le rôle de Sir4 dans l’ancrage des télomères à la membrane nucléaire pourrait être impliqué dans ce phénomène. Nous avons également montré que la transcription de TERRA est induite durant la transition diauxique, une phase de croissance cellulaire où, suite à la déplétion du glucose, les cellules adaptent leur métabolisme en faveur de la respiration oxydative. Cette augmentation d’expression coïncide avec l’accumulation cytoplasmique de TERRA. Ensemble, les travaux présentés dans cette thèse explorent les liens entre les stress cellulaires tels que les dommages à l’ADN, le raccourcissement télomérique, le stress oxydatif et le métabolisme cellulaire, et leur impact sur le trafic de la télomérase et l’expression de son régulateur TERRA. / Telomeres constitute the structure at the end of linear chromosomes which is essential to protect genome integrity. Due to the end-replication problem, telomeres get shorter with every cell division, leading to cell cycle arrest, senescence and cell death. To counteract telomere shortening, highly proliferative cells and most unicellular eukaryotes, like Saccharomyces cerevisiae, express telomerase, a ribonucleoprotein enzyme that elongates telomeres. Many regulatory pathways affect telomerase activity and recruitment to assure precise targeting of telomerase activity to its proper substrate, the telomeres. Impairing these pathways can lead to telomere shortening, end-to-end chromosome fusions and immortalization. Telomerase can also be recruited at double strand breaks (DSBs), where its activity leads to de novo telomere additions which induce genomic instability, loss of genetic information and possibly cell death. For this reason, telomerase recruitment and activity is strongly inhibited at DSB. However, the mechanisms behind this regulation are still poorly understood. Furthermore, many cellular stresses affect telomerase regulation at telomeres and DSBs. Our goal is to study the regulation of telomerase activity and the impact of cellular stresses on this regulation. In the first part of this thesis, we looked at the cell cycle localization of the Saccharomyces cerevisiae RNA subunit of the telomerase, TLC1 RNA. While TLC1 RNA is mostly in the nucleoplasm in G1/S, it accumulates in the nucleolus in G2/M. In yeast, the most common DSB repair pathway is homologous recombination (HR). As HR is mostly excluded from the nucleolus in G2/M, we propose that the accumulation of TLC1 RNA in the nucleolus in G2/M may represent a regulatory pathway that repress de novo telomere addition by physically separating telomerase from sites of DNA repair by HR. We aim to characterize the mechanisms by which TLC1 RNA localization is regulated and how the presence of DSB affects this trafficking. We were able to show that the nucleolar localization of TLC1 RNA is dependent on the Pif1 helicase and on the HR protein Rad52. Furthermore, we showed that the presence of DSBs and the absence of Rad52 alter the nuclear trafficking of TLC1 RNA. In these conditions, Rad51 favors the accumulation of Cdc13 at DSBs and promotes the nucleoplasmic accumulation of TLC1 RNA. This accumulation is dependent on the SUMO ligase Siz1 and leads to an increased addition of de novo telomere at DNA breaks. In order to identify de novo telomere addition events genome-wide, we developed an unbiased genome-wide technique based on Illumina sequencing of genomic DNA. In the second part of this thesis, we studied another regulator of telomerase activity, the long non-coding RNA (lncRNA) TERRA (telomeric repeats-containing RNA), which is transcribed from subtelomeric regions through the telomeric tracts. In S. cerevisiae, TERRA expression is controlled at the transcriptional level by the SIR complex and its degradation by the exonuclease Rat1. Nevertheless, short telomeres escape transcriptional inhibition and degradation to express TERRA at higher levels. TERRA serves as a regulator of telomerase, allowing the concentration and the targeting of telomerase activity to short telomeres. While studying TERRA expression, we observed that TERRA-expressing telomeres display a premature S-phase loss of cohesion. We propose that cohesin and telomere cohesion are regulators of TERRA expression. In addition, other groups have shown that TERRA expression was regulated in response to different cellular stress. This regulation seems to be independent from telomere length. In these contexts, we propose that oxidative stress and metabolic changes induced during the diauxic shift affect TERRA expression. We aim to study how the diauxic shift affects TERRA expression and study the role of cohesin in regulating TERRA expression. We were able to show that telomere cohesion inhibits TERRA expression and that short telomeres display a premature loss of cohesion to allow TERRA expression. This loss of cohesion is dependent on Sir4 and probably on Sir4-mediated telomere anchoring at the nuclear membrane. Additionally, we showed that TERRA transcription is increased during the diauxic shift, when yeast cells switch from fermentative glycolysis to oxidative respiration. Yeast cells in this phase also display a cytoplasmic accumulation of TERRA molecules. Altogether, the articles presented in this thesis explore the interplay between cellular stresses such as DNA damage, telomere shortening, oxidative stress and respiratory metabolism, and their roles in the regulation of the localisation and expression of TLC1 RNA and TERRA.
187

Role of post-transcriptional regulation in human liver

Chaturvedi, Praneet 11 February 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / My thesis comprises of two individual projects which revolve around the importance of post-transcriptional regulation in liver. My first project is studying the integrated miRNA – mRNA network in NAFLD. For fulfillment of the study we conducted a genome-wide study to identify microRNAs (miRs) as well as the miR-mRNA regulatory network associated with hepatic fat and NAFLD. Hepatic fat content (HFC), miR and mRNA expression were assessed in 73 human liver samples. Liver histology of 49 samples was further characterized into normal (n=33) and NAFLD (n=16). Liver miRNome and transcriptome were significantly associated with HFC and utilized to (a) build miR-mRNA association networks in NAFLD and normal livers separately based on the potential miR-mRNA targeting and (b) conduct pathway enrichment analyses. We identified 62 miRs significantly correlated with HFC (p < 0.05 with q < 0.15), with miR-518b and miR-19b being most positively and negatively correlated with HFC, respectively (p < 0.008 for both). Integrated network analysis showed that six miRs (miRs-30b*, 612, 17*, 129-5p, 204 and 20a) controlled ~ 70% of 151 HFC-associated mRNAs (p < 0.001 with q < 0.005). Pathway analyses of these HFC-associated mRNA revealed their key effect (p<0.05) in inflammation pathways and lipid metabolism. Further, significant (p<2.47e-4, Wilcoxon test) reduction in degree of negative associations for HFC-associated miRs with HFC-associated mRNAs was observed in NAFLD as compared to normal livers, strongly suggesting highly dysfunctional miR-mRNA post-transcriptional regulatory network in NAFLD. Our study makes several novel observations which provide clues to better understand the pathogenesis and potential treatment targets of NAFLD. My second project is based on uncovering important players of post-transcriptional regulation (RBPs) and how they are associated with age and gender during healthy liver development. For this study, we performed an association analysis focusing on the expression changes of 1344 RNA Binding proteins (RBPs) as a function of age and gender in human liver. We identify 88 and 45 RBPs to be significantly associated with age and gender respectively. Experimental verification of several of the predicted associations in the mouse model confirmed our findings. Our results suggest that a small fraction of the gender-associated RBPs (~40%) are likely to be up-regulated in males. Altogether, these observations show that several of these RBPs are important developmentally conserved regulators. Further analysis of the protein interaction network of RBPs associated with age and gender based on the centrality measures like degree, betweenness and closeness revealed that several of these RBPs might be prominent players in liver development and impart gender specific alterations in gene expression via the formation of protein complexes. Indeed, both age and gender-associated RBPs in liver were found to show significantly higher clustering coefficients and network centrality measures compared to non-associated RBPs. The compendium of RBPs and this study will help us gain insight into the role of post-transcriptional regulatory molecules in aging and gender specific expression of genes.
188

Evolution and Function of Compositional Patterns in Mammalian Genomes

Prakash, Ashwin January 2011 (has links)
No description available.
189

Construction and Analysis of a Genome-Wide Insertion Library in Schizosaccharomyces pombe Reveals Novel Aspects of DNA Repair

Li, Yanhui 09 February 2015 (has links)
No description available.
190

Exploring TERRA (TElomeric Repeat-containing RNA) Expression and Regulation During Cell Growth in Saccharomyces cerevisiae

Perez Romero, Carmina Angelica 08 1900 (has links)
Please find the referenced videos attached / The physical ends of eukaryotic chromosomes consist of repetitive DNA sequences, which are associated with specialized proteins forming a nucleoprotein structure essential for the integrity of the linear chromosomes, and are known as telomeres. Telomerase is an enzyme responsible for the maintenance of the telomeric repeats at the end of the chromosomes. Telomerase is a ribonucleoprotein, which contains a catalytic subunit that possesses reverse transcriptase activity, and a RNA subunit that acts as a template, since it possess the telomeric repeat sequences necessary to amplify telomere ends. Telomeres are transcribed in most eukaryotes into a non-coding RNA know as TERRA (Telomeric repeats-containing RNA). It has been proposed that TERRA may act as a regulator of telomere homeostasis, and as an inhibitor of telomerase, however, its specific function is still unknown. In Saccharomyces cerevisiae, TERRA is rapidly degraded by the 5’-3’ Rat1 exonuclease, which has hampered its study by classic biochemical experiments in yeast. In this thesis, we report the use of cytological approaches to study TERRA in budding yeast. Two different approaches were used for this purpose: the fluorescent in-situ hybridization (FISH) and the labeling of TERRA by the MS2-GFP system, which allow the visualization of TERRA transcripts form a single telomere in living cells. With these two approaches, we observed that TERRA is expressed from a single telomere and accumulates as a single perinuclear foci, in a small percentage of cells population. We also demonstrate that TERRA expression occurs due to telomere shortening. We demonstrate that TERRA interacts in vivo with the telomerase RNA (TLC1) in yeast. Telomere elongation depends on the action of several telomerase molecules that are visible as clusters, which associate with telomeres in late S phase in yeast, and mammalian cells. In adidition, we show that TERRA stimulates the nucleation of telomerase clusters. By performing time course experiments of TERRA and TLC1 RNA in live cells, we observed that TERRA acts as a scaffold for generating telomerase clusters, which are then recruited in late S phase to the telomere from which TERRA molecules originated. The recruitment of TERRA to its telomere of origin is dependent on factors that control telomerase recruitment at telomeres like: Mre11, Tel1 and the yKu complex. We propose that a short telomere expresses TERRA to assemble and organize telomerase molecules, which later on allows their recruitment at the short telomere, where elongation is needed. Finally we showed an up-regulation of TERRA, and telomerase RNA TLC1, accompanied by a predominant cytoplasmic localization as cell growth progresses from exponential growth to diauxic shift, and stationary phase. In these conditions, TERRA foci co-localize with TLC1 RNA foci, suggesting that the function of TERRA as a scaffold molecule to generate telomerase cluster is necessary for this yeast cell growth phases. / Les télomères à l’extrémité des chromosomes constituent une structure d’ADN et de protéines essentielle à l’intégrité de ces chromosomes. La télomérase est l’enzyme responsable du maintien des répétitions télomériques à l’extrémité des chromosomes. Cette enzyme est constituée d’une sous-unité catalytique, qui possède une activité de transcriptase réverse, et d’une sous-unité d’ARN, qui fourni la matrice nécessaire à la synthèse des répétitions télomériques. Les ARN contenant des répétions télomériques (ou Telomeric repeats-containing RNA; TERRA) constitue une nouvelle classe d’ARN non-codants transcrits à partir des télomères et conservée chez la plupart des eucaryotes. TERRA a été proposé d’agir comme un régulateur de l‘homéostasie des télomères et comme inhibiteur de la télomérase, mais sa fonction spécifique reste inconnue. De plus, chez la levure Saccharomyces cerevisiae, TERRA est rapidement dégradé par l’exonucléase 5’-3’ Rat1, ce qui complique l’étude de cet ARN par les méthodes biochimiques classiques. Dans cette thèse, nous rapportons l‘utilisation d’une approche cytologique pour étudier TERRA dans les cellules de levures. Deux approches sont utilisées : l’hybridation in situ en fluorescence (FISH) et l’étiquetage de TERRA à l’aide du système MS2-GFP, qui nous permet de visualiser l’expression de TERRA transcrit d’un seul télomère dans des cellules vivantes. Avec ces deux approches, nous observons que TERRA exprimé à partir d’un seul télomère s’accumule dans un faible nombre de cellules, sous la forme d’un focus périnucléaire. De plus, nous montrons que TERRA est exprimé lorsque son télomère raccourcit. Par immunoprécipitation, nous montrons que TERRA interagit in vivo avec l’ARN de la télomérase de levure, TLC1. L’élongation des télomères dépend de l‘action de multiples molécules de télomérase, qui sont visibles sous la forme de clusters de télomérases, qui s‘associent en phase S avec les télomères chez la levure et les cellules de mammifère. Nous démontrons que TERRA stimule la nucléation de ces clusters de télomérase. Par imagerie en temps réel de TERRA et de l’ARN TLC1, nous observons que TERRA agit comme molécule d’échafaudage pour générer des clusters de télomérases, qui sont par la suite recrutés, en phase S, au télomère duquel TERRA a été exprimé. Le recrutement d’un focus de TERRA à son télomère d’origine dépend des facteurs contrôlant le recrutement de la télomérase aux télomères : Mre11, Tel1 et le complexe yKu. Nous proposons qu’un télomère court exprime TERRA pour assembler et organiser les molécules de télomérase, afin que celles-ci soit puissent être recrutées au télomère court pour permettre son élongation. Enfin, nous observons une surexpression de l’ARN de la télomérase TLC1 et de TERRA, ainsi qu’une accumulation cytoplasmique de ceux-ci sous la forme de foci, lorsque la cellule passe de la phase de croissance exponentiel à la phase diauxique, puis à la phase stationnaire. Dans ces conditions, les foci d’ARN TLC1 colocalisent avec les foci de TERRA, suggérant que la fonction de TERRA comme molécule d’échafaudage pour générer des foci de télomérase est aussi nécessaire durant ces phases du cycle de croissance des levures.

Page generated in 0.0687 seconds