• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation numérique de l'amortissement induit par les interfaces des structures assemblées / Modelization of dry friction damping in assembled structures

Yang, Yifan 13 December 2018 (has links)
Déterminer la durée de vie d'une pièce sous excitation vibratoire est l'un des enjeux majeurs dans l'ingénierie mécanique. Afin de donner une estimation fiable de la durée de vie, un calcul correct de champ de contrainte, qui est fortement lié à la forme et l'amplitude modale est obligatoire. Cependant, le calcul de réponse d'une structure assemblée est difficile, surtout avec la présence de frottement sec aux interfaces de liaisons qui entraîne un amortissement non linéaire. La recherche de la thèse commence par une identification phénoménologique de l'amortissement induit par le frottement sec avec 3 modèles analytiques, notamment la plaque sandwich, la rotule frottante et la plaque von Kármán. Après la caractérisation de l'amortissement structural au 1er et 2ème ordre, les influences des paramètres comme la pression de serrage, le rapport d'épaisseurs ainsi que le nombre de soudures sont analysés. La deuxième partie des travaux traite les problèmes d'amortissement avec une géométrie de dimension finie. La plaque de von Kármán est reprise dans l'étude et une méthode hybride de différences finies et d'éléments finis est adopté pour résoudre le couplage entre la flexion et les efforts internes. Une attention particulière est portée à la notion de modes non linéaires dans le cas de la plaque von Kármán. Les conditions nécessitant l'introduction de modes non linéaires sont identifiées. Le champ de force fictif qui est proposé dans l'étude sur la plaque von Kármán est ensuite introduit dans le cas de la plaque sandwich. Puis la propagation de glissement et l'influence de champ fictif sont étudiées. Afin de vérifier les phénomènes trouvés dans les études théoriques, une installation expérimentale est conçue et montée pour l'amortissement structural au premier ordre. Dans la dernière partie qui est basée sur les observations faites dans les études précédentes, une méthode de calcul de l'amortissement dans un environnement industriel est proposée. Cette méthode permet de donner un amortissement pour chaque mode isolé. / The determination of a component's lifetime under vibrational excitation is one of the most difficult challenges in mechanical engineering. In order to provide a reliable estimation of lifetime, a correct calculation of stress field, which depends on the modal form and its amplitude, is needed. However, the vibrational response calculation on an assembled structure is not easy, especially with the nonlinear structural damping induced by frictional contact surface. The research in the current thesis starts from the phenomenological identification of damping with the help of 3 analytical models, in particular the sandwich plate, rotational joint and von Karman plate. Structural damping of 1st and 2nd order are identified. The influence of parameters like clamping pressure, thickness ratio and number of welding points are also analyzed. The second part of the research focuses on problems with finite dimensions. The von Karman plate serves as the subject of the study and a hydride method which combines FDM and FEM is proposed to solve the coupling between defection and in-plane force field. A special attention is paid to nonlinear mode theory, the conditions under which the nonlinear mode is necessary are identified. The fictive force field proposed in the study of von Kármán plate is then applied to the sandwich plate model. The slipping's propagation as well as the influence of fictive force field are studied. To verify the existence of the found phenomena in the previous studies, an experimental setup is designed and mounted for the 1st order structural damping. In the last part of the research, which is based on the observations previously obtained from academic models, a calculation method of friction-induced damping in structures with complex geometries is proposed for the application in the industrial environment. This methods enables the estimation of damping for each isolated mode.
2

Correção tipo-Bartlett em modelos não lineares simétricos heteroscedástico

NASCIMENTO, Kátia Pires do 25 February 2010 (has links)
Submitted by (ana.araujo@ufrpe.br) on 2016-07-07T14:09:13Z No. of bitstreams: 1 Katia Pires do Nascimento.pdf: 303593 bytes, checksum: 6b936f81d2b21d770e2224c3fbdd07c1 (MD5) / Made available in DSpace on 2016-07-07T14:09:13Z (GMT). No. of bitstreams: 1 Katia Pires do Nascimento.pdf: 303593 bytes, checksum: 6b936f81d2b21d770e2224c3fbdd07c1 (MD5) Previous issue date: 2010-02-25 / This manuscript has two aims. First, we derive general matrix formulae to Bartlett–type correction to the score statistic in a class of heteroscedastic symmetric nonlinear regression models, with link functions any for both mean and dispersion parameter. In the second part Monte Carlo simulations are also performed to assess the influence of the correction in the models studied. / Essa dissertação tem dois objetivos. O primeiro é a obtenção de expressões matriciais para o fator de correção tipo–Bartlett para a estatística escore nos modelos não–lineares simétricos heteroscedásticos, com funções de ligação quaisquer para a média e para o parâmetro de dispersão. O segundo é apresentar resultados de simulação de forma a verificar a influência da correção nos modelos em estudo.
3

Optimization of dynamic behavior of assembled structures based on generalized modal synthesis / Optimisation du comportement dynamique des systèmes complexes basée sur la méthode synthèse modale généralisée

Huang, Xingrong 21 November 2016 (has links)
Dans le processus de conception des véhicules, la vibration et le bruit sont des sujets d’étude très importants. En effet, les vibrations sont susceptibles d’affecter le comportement dynamique des structures et le bruit dégrade le confort acoustique des passagers. L’objectif principal de la thèse est de proposer un ensemble de méthodes pour l’optimisation du comportement dynamique des systèmes complexes afin de réduire les vibrations des structures et le bruit dans l’habitacle. À cet effet, on s’intéresse à des stratégies de contrôle des interfaces, comme le collage de couches viscoélastiques sur les zones les plus déformées, ou l’introduction de dispositifs frottants calibrés pour ajouter de l’amortissement à certaines fréquences de résonance. Les structures assemblées résultantes sont étudiées numériquement par une méthode de synthèse modale généralisée. La méthode de synthèse modale proposée contient plusieurs niveaux de condensation. Le premier concerne les degrés de libertés (DDL) internes de chaque sous-structure. La deuxième condensation s’effectue sur les modes de branches, de sorte à réduire le nombre de DDL aux interfaces entre les sous-structures. Pour les systèmes couplés fluide/structure, une troisième condensation portant sur les DDL du fluide est proposée. Suite à ces condensations, la dimension du système est fortement réduite. Cette méthode permet alors d’obtenir aussi bien la réponse forcée de la structure que les fluctuations du champ de pression dans le fluide. Les chemins de transmission acoustiques et vibratoires peuvent également être déduits des contributions modales intermédiaires. On montre que ces paramètres modaux peuvent être utilisés comme fonctions objectif pour une démarche d’optimisation des interfaces. Le front de Pareto des conceptions optimales est obtenu avec un algorithme génétique multi-objectif élitiste, appliqué à une approximation par krigeage de la fonction objectif. Cette approche modale est étendue à l’étude de systèmes non-linéaires. L’hypothèse fondamentale est que les modes non-linéaires sont faiblement couplés. Les paramètres modaux non-linéaires (fréquences propres, amortissements...), dépendent des amplitudes modales. L’idée est alors de calculer des modes normaux non-linéaires en fonction de leur amplitude et de superposer leurs réponses pour obtenir celle de la structure. La méthode est appliquée à des systèmes incorporant des non-linéarités de type Duffing et de frottement sec. Le cas particulier du frottement sec est considéré à travers un modèle de Masing généralisé. Deux approches modales sont développées : l’une basée sur les modes complexes, et l’autre basée sur les modes réels. L’utilisation de modes complexes ou réels dans la synthèse modale conduit à des termes d’amortissement par frottement différents. On montre que la synthèse modale non-linéaire combinée au modèle de Masing généralisé aboutit à une méthode numérique simple, rapide et efficace pour décrire le comportement non-linéaire de structures soumise à du frottement sec. / Noise and vibration are important topics in the automotive industry for several reasons, including passenger comfort and structural integrity. The main objective of this thesis is to propose a series of appropriate methods to optimize structural system characteristics, so that the vibration and noise can be reduced. To achieve this goal, interface control strategies are employed, including bonding viscoelastic layers onto the most heavily deformed zones and introducing frictional damping devices calibrated on certain resonance frequencies. Such built-up structural systems are numerically investigated via a generalized modal synthesis approach that incorporates several groups of modes. The employed modal synthesis approach consists of several levels of condensation. The first one is on the internal degrees of freedoms (DOFs) of each substructure, and the second condensation is on the branch modes so as to reduce the boundary DOFs among substructures. For coupled fluid-structural systems, a third condensation on the fluid DOFs is suggested. With these condensation techniques, the system dimension can be significantly reduced. The method allows us to obtain the forced response of the structures as well as the pressure variation of the fluids. Additionally, modal parameters characterizing vibration and noise transmission paths can be deduced as mid-stage results. We show that these modal parameters can be used as optimization objective during the interface configuration design. The Pareto front of the optimal design is achieved by employing Kriging approximations followed with an elitist multi-objective genetic algorithm. Another advantage of the modal approach is that a modal overview on the system characteristics is provided by analyzing the natural frequencies, modal damping ratios and the aforementioned modal parameters. The modal synthesis approach is further extended to study nonlinear systems. The basic assumption is that the nonlinear modes are weakly coupled. Nonlinear modal parameters, such as modal frequency and modal damping ratio, contain the essential nonlinear information and depend on modal amplitude. The main idea is to compute nonlinear normal modes according to their modal amplitude and superimpose the response of several nonlinear modes to obtain the overall forced response. The method is applied to systems involving Duffing and dry friction nonlinearities. In the case of dry friction, a generalized Masing model is considered to capture the dry friction nature. Both complex modes and real modes are used in the modal synthesis, leading to different frictional damping terms. We show that the nonlinear modal synthesis combined with the generalized Masing model yields a simple, fast and efficient numerical method to describe nonlinear performance of structures with dry friction.
4

Réduction de modèle par sous-structuration et modes non-linéaires : Application à la dynamique des roues aubagées

Joannin, Colas 28 April 2017 (has links)
Le désaccordage des roues aubagées est une thématique de recherche d’un intérêt tout particulier pour l’industrie aéronautique, en recherche constante d’outils de calcul toujours plus prédictifs et performants pour répondre aux exigences croissantes des organismes de certification. Si le phénomène est aujourd’hui relativement bien maîtrisé dans un cadre linéaire, la prise en compte des non-linéarités dans l’étude du désaccordage reste encore problématique, notamment en raison du manque de méthode adaptée pour mener ce type d’analyses sur des modèles industriels. L’objectif principal de ce travail de thèse est de proposer une nouvelle méthode de calcul permettant de déterminer efficacement la réponse forcée d’une roue aubagée désaccordée, en tenant compte de l’impact des non-linéarités sur la dynamique de la structure à l’échelle macroscopique. La méthode développée repose sur le concept de sous-structuration, et exploite la notion de mode complexe non-linéaire pour capturer les non-linéarités dans l’espace de réduction de chaque sous-structure. En adoptant une approche fréquentielle, les sous-structures sont représentées par des super-éléments non-linéaires, dont l’assemblage conduit au modèle réduit de la roue désaccordée. La résolution du système mathématique obtenu est ensuite réalisée numériquement par des techniques itératives. La méthode développée a pu être testée et validée sur différents systèmes soumis à des non-linéarités de frottement, allant du simple modèle phénoménologique à un modèle éléments finis de roue aubagée industrielle. Sur des modèles à paramètres concentrés de taille relativement faible, les performances très intéressantes de cette méthode permettent de conduire des études statistiques quantitatives sur l’impact du désaccordage en présence de non-linéarités. Les résultats obtenus suggèrent que le comportement du système non-linéaire face au désaccordage est susceptible d’être significativement différent du comportement de son homologue linéaire, d’où l’intérêt de mener ce type d’investigations. Les performances de cette méthode ont également pu être confirmées sur des modèles éléments finis de grande taille, en permettant de réaliser à un coût raisonnable des simulations de réponse forcée non-linéaire sur une roue industrielle désaccordée. / Mistuning of bladed disks has been a key topic of research for the aeronautics industry. To get accreditation for their engines, manufacturers must comply with evermore stringent requirements, and thus constantly seek for better simulation tools. Even though the phenomenon is well understood nowadays for linear systems, nonlinearities are still seldom taken into account when dealing with the mistuning of industrial structures, partly due to the lack of a dedicated method to tackle such a complex problematic. The main objective of this work is to develop a novel method allowing to compute efficiently the forced response of a mistuned bladed disk, while taking into account the impact of nonlinearities on the vibrations at a macroscopic scale. The method derived relies on a substructuring approach, and uses the concept of nonlinear complex modes to capture the nonlinearities in the reduction basis of each substructure. In the frequency domain, the substructures take the form of nonlinear superelements, which once assembled lead to the reduced-order model of the mistuned bladed disk. The resulting mathematical system is then solved by means of iterative solvers. This new method is tested and validated on different systems subjected to dry friction nonlinearities, from basic phenomenological models to large-scale finite element models of industrial structures. On lumped-parameter models, the performance of this method allows to investigate the statistical impact of mistuning in the presence of nonlinearities, by performing thousands of simulations. The results suggest that the behaviour of the nonlinear model can be significantly different from that of the linear one, hence the importance to carry out such investigations. The capabilities of the method have also been confirmed on large-scale models, by performing several forced response computations on a nonlinear and mistuned finite element model, at a reasonable cost
5

Localization Induced Base Isolation In Fractionally And Hysteretically Damped Nonlinear Systems

Mukherjee, Indrajit 11 1900 (has links)
This Thesis comprises of two parts containing similar studies of Nonlinear Localization induced Base Isolation of structural systems. The present method of base isolation,like other nonlinear vibration isolation methods, enjoys certain merits like capability of absorbing broad band vibrations, attenuating heavy shocks etc. The research in this thesis is an extension of this base isolation strategy first proposed by Vakakis and co-author. The strategy involves augmenting an appendage referred to as the secondary system with the main structural unit or the primary system, which we want to isolate from disturbances at the base. The primary system is coupled to the secondary system through a stiffness element. Both the primary and secondary systems have nonlinear dynamic behavior. It is seen that for certain choice of values of the coupling element, steady state vibration of very small magnitude is induced in the primary system. This result was established by considering a general discrete nonlinear system with viscous damping. Now it is a well known fact that viscous damping, though being widely used in literature as well as in practice doesn't turn out to be accurate enough to capture structural damping behaviors. Moreover, the actual damping mechanism if governed by some nonlinear function of the system variables, may influence the physics governing the nonlinear localization phenomenon in a manner rendering the present method not suitable for structural systems at the very outset. So in the present study we focus our attention in establishing the robustness and hence utility of the method by considering technically more defensible models of structural damping. These models efficiently capture certain complex phenomena which structures are known to exhibit. The occurrence of localization induced vibration isolation in structural systems in the presence of these damping models is taken as a proof of the efficacy of the method and its applicability to a wide range of situations. The present study establishes existence of localization through relevant analytical and numerical exercises. In the first part of the thesis we take up the study of nonlinear localization induced base isolation of a three degrees of freedom system having cubic nonlinearities under sinusoidal base excitation. The damping forces in the system are hysteretic in nature. In the present setting this is captured by Bouc-Wen model of hysteresis. Bouc-Wen model is one of the most widely used phenomenological model of hysteresis to have a ready-to-use mathematical description of hysteretic patterns appearing in structural engineering systems. The nature of responses of the different degrees of freedom as excitation frequency varies is a better way of analyzing the performance of the vibration isolation system. We adopt this line of approach for the present study. Normally Harmonic Balance Method (HBM) serves this purpose very well but in the present case as the hysteretic variable is not explicitly related to the system variables, HBM cannot be straightway implemented. Moreover, the hysteretic variable is related to other state variables through a relation which contains non-smooth terms. As a result, Incremental Harmonic Balance (IHB) method is used to obtain amplitude frequency relationship of the system response. The stability analysis of the solution branches is done by using Floquet Theory. Direct numerical simulation is then made use of to support our results that are obtained from this approximate numeric-analytic estimate of the amplitudefrequency relationships of the system, which helps us to analyze the efficacy of this method of base isolation for a broad class of systems. In the next part we consider a similar system where the damping forces in the system are described by functions of fractional derivative of the instantaneous displacements. Fractional Derivative based damping model has been found to be very effective in describing structural damping. We adopt half-order fractional derivative for our study, which can capture damping behavior of polymeric material very well. Typically linear and quadratic damping is considered separately as these are the two most relevant representations of structural damping. Under the assumption of smallness of certain system parameters and nonlinear terms an approximate estimate of the response at each degree of freedom of the system is obtained using Method of Multiple Scales. We then consider a situation where the nonlinear terms and certain other system parameters are no longer small. For the case where asymptotic methods are no longer valid, the assessment of performance of the vibration isolation system is made from amplitude-frequency relations. As a result, we take recourse to the Harmonic Balance Method in conjunction with arc length based continuation technique for obtaining the frequency amplitude plot for linear damping and Incremental Harmonic Balance method for quadratic damping, each of which is validated against results obtained from direct numerical simulation of the system. It needs to be appreciated that base isolation obtained this way has no counterpart in the linear theory.
6

LIGHT-MATTER INTERACTION FROM ATOMISTIC RARE-EARTH CENTERS IN SOLIDS TO MASSIVE LEVITATED OBJECTS

Xiaodong Jiang (10524008) 19 April 2022 (has links)
<p>  </p> <p>A harmonic oscillator is a ubiquitous tool in various disciplines of engineering and physics for sensing and energy transduction. The degrees of freedom, low noise oscillation, and efficient input-output coupling are important metrics when designing sensors and transducers using such oscillators. The ultimate examples of such oscillators are quantum mechanical oscillators coherently transducing information or energy. Atoms are oscillators whose degrees of freedom can be controlled and probed coherently by means of light. Elegant techniques developed during the last few decades have enabled us to use atoms, for example, to build exquisite quantum sensors such as clocks with the precision of <1 second error over the lifetime of the universe, to store and transduce information of various forms and also to develop quantum processors. Similar to atoms, mechanical oscillators can also be controlled ultimately to their single vibrational quanta and be used for similar sensing and transduction applications.</p> <p><br></p> <p>In this thesis, we explore both atomic and mechanical systems and develop a toolbox to build an effective atom-light interface and light-oscillator interface for controlling such atomic and mechanical oscillators and use them in sensing and storage applications. Primarily, we study two disparate platforms: 1) rare-earth ions in solids integrated into photonic chips as a compact and heterogeneous platform and 2) nanoscopic and macroscopic oscillators interfaced with light and magnetic field to isolate them from environmental noise. </p> <p><br></p> <p>Rare earth (RE) ions in crystals have been identified as robust optical centers and promising candidates for quantum communication and transduction applications. Lithium niobate (LN), a novel crystalline host of RE ions, is considered as a viable material for photonic system integration because of its electro-optic and integration capability. This thesis first experimentally reports the activation and characterization of LN crystals implanted with Yb and Er ions and describes their scalable integration with a silicon photonic chip with waveguide and resonator structures. The evanescent coupling of light emitted from Er ions with optical modes of waveguide and microcavity and modified photoluminescence (PL) of Er ions from the integrated on-chip Er:LN-Si-SiN photonic device with quality factor of 104 have been observed at room temperature. This integrated platform can ultimately enable developing quantum memory and provide a path to integrate more photonic components on a single chip for applications in quantum communication and transduction.</p> <p><br></p> <p>Optomechanical systems are also considered as candidates for light storage and sensing. In this thesis, we also present results of the theoretical study of coherent light storage in an array of nanomechanical resonators. The majority of the thesis is focusing on an optomechanical sensing experiment based on levitation. An oscillator well isolated from environmental noise can be used to sense force, inertia, torque, and magnetic field with high sensitivity as the interaction with these quantities can change the amplitude or frequency of the oscillator’s vibration, which can be accurately measured by light. It has been proposed that such levitated macroscopic objects could be used as quantum sensors and transducers at their quantum ground states. They are also proposed as a platform to test fundamental physics such as detecting gravitational waves, observing macroscopic quantum entanglement, verifying the spontaneous collapse models, and searching for dark matter.</p> <p><br></p> <p>In particular, we consider superconducting levitation of macroscopic objects in vacuum whose positions are measured by light. We build an optomechanical platform based on a levitated small high reflective (HR)-coated mirror above a superconductor disk. We use this levitated mirror at ambient conditions to detect the magnetic field with a sensitivity on the order of <em>pT/sqrt(Hz).</em> Moreover, the levitated mirror is used as the end mirror of a Fabry–Pérot cavity to create an optical resonance that could be used to study coherent radiation pressure forces. The platform provides a sensitive tool to measure the various forces exerted on the mirror and it offers the possibility of the coherent optical trapping of macroscopic objects and precision gravity sensing. Moreover, we study the nonlinear dissipation and mode coupling of a levitated HR-coated magnetic mirror above a superconducting disk in vacuum conditions. We observe that by exciting one vibrational mode of the mirror, the vibrational noise of another mode can be significantly suppressed by a factor of 60. We attribute this unique noise suppression mechanism to the mode coupling and nonlinear dissipation caused by the driven magnetic inhomogeneity of the levitated object. Such a suppression mechanism can enable cooling certain modes independent of their detection and position in the spectrum, which may be promising for precision sensing applications.</p>

Page generated in 0.0545 seconds