121 |
Enabling Autonomous Operation of Micro Aerial Vehicles Through GPS to GPS-Denied TransitionsJackson, James Scott 11 November 2019 (has links)
Micro aerial vehicles and other autonomous systems have the potential to truly transform life as we know it, however much of the potential of autonomous systems remains unrealized because reliable navigation is still an unsolved problem with significant challenges. This dissertation presents solutions to many aspects of autonomous navigation. First, it presents ROSflight, a software and hardware architure that allows for rapid prototyping and experimentation of autonomy algorithms on MAVs with lightweight, efficient flight control. Next, this dissertation presents improvments to the state-of-the-art in optimal control of quadrotors by utilizing the error-state formulation frequently utilized in state estimation. It is shown that performing optimal control directly over the error-state results in a vastly more computationally efficient system than competing methods while also dealing with the non-vector rotation components of the state in a principled way. In addition, real-time robust flight planning is considered with a method to navigate cluttered, potentially unknown scenarios with real-time obstacle avoidance. Robust state estimation is a critical component to reliable operation, and this dissertation focuses on improving the robustness of visual-inertial state estimation in a filtering framework by extending the state-of-the-art to include better modeling and sensor fusion. Further, this dissertation takes concepts from the visual-inertial estimation community and applies it to tightly-coupled GNSS, visual-inertial state estimation. This method is shown to demonstrate significantly more reliable state estimation than visual-inertial or GNSS-inertial state estimation alone in a hardware experiment through a GNSS-GNSS denied transition flying under a building and back out into open sky. Finally, this dissertation explores a novel method to combine measurements from multiple agents into a coherent map. Traditional approaches to this problem attempt to solve for the position of multiple agents at specific times in their trajectories. This dissertation instead attempts to solve this problem in a relative context, resulting in a much more robust approach that is able to handle much greater intial error than traditional approaches.
|
122 |
Entwicklung und Validierung methodischer Konzepte einer kamerabasierten Durchfahrtshöhenerkennung für NutzfahrzeugeHänert, Stephan 03 July 2020 (has links)
Die vorliegende Arbeit beschäftigt sich mit der Konzeptionierung und Entwicklung eines neuartigen Fahrerassistenzsystems für Nutzfahrzeuge, welches die lichte Höhe von vor dem Fahrzeug befindlichen Hindernissen berechnet und über einen Abgleich mit der einstellbaren Fahrzeughöhe die Passierbarkeit bestimmt. Dabei werden die von einer Monokamera aufgenommenen Bildsequenzen genutzt, um durch indirekte und direkte Rekonstruktionsverfahren ein 3D-Abbild der Fahrumgebung zu erschaffen. Unter Hinzunahme einer Radodometrie-basierten Eigenbewegungsschätzung wird die erstellte 3D-Repräsentation skaliert und eine Prädiktion der longitudinalen und lateralen Fahrzeugbewegung ermittelt. Basierend auf dem vertikalen Höhenplan der Straßenoberfläche, welcher über die Aneinanderreihung mehrerer Ebenen modelliert wird, erfolgt die Klassifizierung des 3D-Raums in Fahruntergrund, Struktur und potentielle Hindernisse.
Die innerhalb des Fahrschlauchs liegenden Hindernisse werden hinsichtlich ihrer Entfernung und Höhe bewertet. Ein daraus abgeleitetes Warnkonzept dient der optisch-akustischen Signalisierung des Hindernisses im Kombiinstrument des Fahrzeugs. Erfolgt keine entsprechende Reaktion durch den Fahrer, so wird bei kritischen Hindernishöhen eine Notbremsung durchgeführt.
Die geschätzte Eigenbewegung und berechneten Hindernisparameter werden mithilfe von Referenzsensorik bewertet. Dabei kommt eine dGPS-gestützte Inertialplattform sowie ein terrestrischer und mobiler Laserscanner zum Einsatz. Im Rahmen der Arbeit werden verschiedene Umgebungssituationen und Hindernistypen im urbanen und ländlichen Raum untersucht und Aussagen zur Genauigkeit und Zuverlässigkeit des Verfahrens getroffen. Ein wesentlicher Einflussfaktor auf die Dichte und Genauigkeit der 3D-Rekonstruktion ist eine gleichmäßige Umgebungsbeleuchtung innerhalb der Bildsequenzaufnahme. Es wird in diesem Zusammenhang zwingend auf den Einsatz einer Automotive-tauglichen Kamera verwiesen. Die durch die Radodometrie bestimmte Eigenbewegung eignet sich im langsamen Geschwindigkeitsbereich zur Skalierung des 3D-Punktraums. Dieser wiederum sollte durch eine Kombination aus indirektem und direktem Punktrekonstruktionsverfahren erstellt werden. Der indirekte Anteil stützt dabei die Initialisierung des Verfahrens zum Start der Funktion und ermöglicht eine robuste Kameraschätzung. Das direkte Verfahren ermöglicht die Rekonstruktion einer hohen Anzahl an 3D-Punkten auf den Hindernisumrissen, welche zumeist die Unterkante beinhalten. Die Unterkante kann in einer Entfernung bis zu 20 m detektiert und verfolgt werden. Der größte Einflussfaktor auf die Genauigkeit der Berechnung der lichten Höhe von Hindernissen ist die Modellierung des Fahruntergrunds. Zur Reduktion von Ausreißern in der Höhenberechnung eignet sich die Stabilisierung des Verfahrens durch die Nutzung von zeitlich vorher zur Verfügung stehenden Berechnungen. Als weitere Maßnahme zur Stabilisierung wird zudem empfohlen die Hindernisausgabe an den Fahrer und den automatischen Notbremsassistenten mittels einer Hysterese zu stützen.
Das hier vorgestellte System eignet sich für Park- und Rangiervorgänge und ist als kostengünstiges Fahrerassistenzsystem interessant für Pkw mit Aufbauten und leichte Nutzfahrzeuge. / The present work deals with the conception and development of a novel advanced driver assistance system for commercial vehicles, which estimates the clearance height of obstacles in front of the vehicle and determines the passability by comparison with the adjustable vehicle height. The image sequences captured by a mono camera are used to create a 3D representation of the driving environment using indirect and direct reconstruction methods. The 3D representation is scaled and a prediction of the longitudinal and lateral movement of the vehicle is determined with the aid of a wheel odometry-based estimation of the vehicle's own movement. Based on the vertical elevation
plan of the road surface, which is modelled by attaching several surfaces together, the 3D space is classified into driving surface, structure and potential obstacles. The obstacles within the predicted driving tube are evaluated with regard to their distance and height. A warning concept derived from this serves to visually and acoustically signal the obstacle in the vehicle's instrument cluster. If the driver does not respond accordingly, emergency braking will be applied at critical obstacle heights. The estimated vehicle movement and calculated obstacle parameters are evaluated with the aid of reference sensors. A dGPS-supported inertial measurement unit and a terrestrial as well as a mobile laser scanner are used. Within the scope of the work, different environmental situations and obstacle types in urban and rural areas are investigated and statements on the accuracy and reliability of the implemented function are made.
A major factor influencing the density and accuracy of 3D reconstruction is uniform ambient lighting within the image sequence. In this context, the use of an automotive camera is mandatory. The inherent motion determined by wheel odometry is suitable for scaling the 3D point space in the slow speed range. The 3D representation however, should be created by a combination of indirect and direct point reconstruction methods. The indirect part supports the initialization phase of the function and enables a robust camera estimation. The direct method enables the reconstruction of a large number of 3D points on the obstacle outlines, which usually contain the lower edge. The lower edge can be detected and tracked up to 20 m away. The biggest factor influencing the accuracy of the calculation of the clearance height of obstacles is the modelling of the driving surface. To reduce outliers in the height calculation, the method can be stabilized by using calculations from older time steps. As a further stabilization measure, it is also recommended to support the obstacle output to the driver and the automatic emergency brake assistant by means of hysteresis. The system presented here is suitable for parking and maneuvering operations and is interesting as a cost-effective driver assistance system for cars with superstructures and light commercial vehicles.
|
123 |
An Observability-Driven System Concept for Monocular-Inertial Egomotion and Landmark Position DeterminationMarkgraf, Marcel 25 February 2019 (has links)
In this dissertation a novel alternative system concept for monocular-inertial egomotion and landmark position determination is introduced. It is mainly motivated by an in-depth analysis of the observability and consistency of the classic simultaneous localization and mapping (SLAM) approach, which is based on a world-centric model of an agent and its environment. Within the novel system concept
- a body-centric agent and environment model,
- a pseudo-world centric motion propagation,
- and closed-form initialization procedures
are introduced. This approach allows for combining the advantageous observability properties of body-centric modeling and the advantageous motion propagation properties of world-centric modeling. A consistency focused and simulation based evaluation demonstrates the capabilities as well as the limitations of the proposed concept. / In dieser Dissertation wird ein neuartiges, alternatives Systemkonzept für die monokular-inertiale Eigenbewegungs- und Landmarkenpositionserfassung vorgestellt. Dieses Systemkonzept ist maßgeblich motiviert durch eine detaillierte Analyse der Beobachtbarkeits- und Konsistenzeigenschaften des klassischen Simultaneous Localization and Mapping (SLAM), welches auf einer weltzentrischen Modellierung eines Agenten und seiner Umgebung basiert. Innerhalb des neuen Systemkonzeptes werden
- eine körperzentrische Modellierung des Agenten und seiner Umgebung,
- eine pseudo-weltzentrische Bewegungspropagation,
- und geschlossene Initialisierungsprozeduren
eingeführt. Dieser Ansatz erlaubt es, die günstigen Beobachtbarkeitseigenschaften körperzentrischer Modellierung und die günstigen Propagationseigenschaften weltzentrischer Modellierung zu kombinieren. Sowohl die Fähigkeiten als auch die Limitierungen dieses Ansatzes werden abschließend mit Hilfe von Simulationen und einem starken Fokus auf Schätzkonsistenz demonstriert.
|
124 |
Robotics Approach in Mobile Laser Scanning : Generation of Georeferenced Point-based Forest ModelsFaitli, Tamas January 2023 (has links)
A mobile laser scanning (MLS) system equipped with a lidar, inertial navigation system and satellite positioning can be used to reconstruct georeferenced point-based models of the surveyed environments. Ideal reconstruction requires accurate trajectories that are challenging to obtain in forests. Satellite signals are heavily degraded under the forest canopy, while lidar-based positioning is often inefficient due to the forest’s unstructured and complex nature. Most forestry-related solutions compute or improve the trajectory in post-processing, focusing on accuracy rather than the possibility of real-time operation. On the other hand, real-time solutions exist, but they are primarily tested and evaluated in urban environments, and the forest’s effect on them is less known. In this study, high-quality, real-time point-based forest model generation was considered by applying techniques from the field of robotics. Forest data were collected with an MLS system mounted 1) on a stick carried by a person and 2) mounted on a forest harvester while performing thinning operations. The system’s trajectory was computed using lidar-inertial-based smoothing and mapping algorithms with real-time limitations. In addition, satellite measurements were either fused into the smoothing algorithm contributing to the trajectory estimation or were used to georeference the trajectory in a post-processing manner. Collecting reliable reference trajectories is difficult in forests. Therefore, this study mainly contains qualitative and relative evaluation. The results indicate that real-time and onboard processing is feasible for forest data with adequate accuracy. State-of-the-art edge and planar feature-based lidar odometry was the most accurate but could not fully maintain real-time operation. On the other hand, the normal distributions transform-based odometry can maintain fast and constant computation with slightly lower accuracy. Fusing the satellite positioning for the mapping reduced the internal integrity of the reconstructed point cloud models, and it is suggested to use it for post-processed georeferencing instead. / Ett mobilt laserskanningssystem (MLS) utrustat med ett lidar, tröghetsnavigeringssystem och satellitpositionering kan användas för att rekonstruera georefererade punktbaserade modeller av de undersökta miljöerna. Idealisk återuppbyggnad kräver exakta banor som är utmanande att uppnå i skogar. Satellitsignaler är kraftigt försämrade under skogens tak, medan lidarbaserad positionering ofta är ineffektiv på grund av skogens ostrukturerade och komplexa natur. De flesta skogsbruksrelaterade lösningar beräknar eller förbättrar banan i efterbearbetning, med fokus på noggrannhet snarare än möjligheten till drift i realtid. Å andra sidan finns realtidslösningar, men de är främst testade och utvärderade i stadsmiljöer och skogens påverkan på dem är mindre känd. I denna studie övervägdes högkvalitativ, punktbaserad skogsmodellgenerering i realtid genom att tillämpa tekniker från robotteknikområdet. Skogsdata samlades in med ett MLS-system monterat 1) på en pinne som bärs av en person och 2) monterad på en skogsskördare under gallringsoperationer. Systemets bana beräknades med hjälp av lidar-tröghetsbaserade utjämnings- och kartläggningsalgoritmer med realtidsbegränsningar. Dessutom fuserades satellitmätningar antingen in i utjämningsalgoritmen som bidrog till banuppskattningen eller användes för att georeferera banan på ett efterbearbetningssätt. Att samla pålitliga referensbanor är svårt i skogar. Därför innehåller denna studie främst kvalitativ och relativ utvärdering. Resultaten indikerar att bearbetning i realtid och ombord är möjlig för skogsdata med tillräcklig noggrannhet. Toppmodern kant- och planfunktionsbaserad lidarodometri var den mest exakta men kunde inte helt upprätthålla realtidsdrift. Å andra sidan kan normalfördelningstransformationsbaserad odometri upprätthålla snabb och konstant beräkning med något lägre noggrannhet. Att sammansmälta satellitpositioneringen för kartläggningen minskade den interna integriteten hos de rekonstruerade punktmolnmodellerna, och det föreslås att man istället använder den för efterbehandlad georeferens.
|
125 |
Through the Blur with Deep Learning : A Comparative Study Assessing Robustness in Visual Odometry TechniquesBerglund, Alexander January 2023 (has links)
In this thesis, the robustness of deep learning techniques in the field of visual odometry is investigated, with a specific focus on the impact of motion blur. A comparative study is conducted, evaluating the performance of state-of-the-art deep convolutional neural network methods, namely DF-VO and DytanVO, against ORB-SLAM3, a well-established non-deep-learning technique for visual simultaneous localization and mapping. The objective is to quantitatively assess the performance of these models as a function of motion blur. The evaluation is carried out on a custom synthetic dataset, which simulates a camera navigating through a forest environment. The dataset includes trajectories with varying degrees of motion blur, caused by camera translation, and optionally, pitch and yaw rotational noise. The results demonstrate that deep learning-based methods maintained robust performance despite the challenging conditions presented in the test data, while excessive blur lead to tracking failures in the geometric model. This suggests that the ability of deep neural network architectures to automatically learn hierarchical feature representations and capture complex, abstract features may enhance the robustness of deep learning-based visual odometry techniques in challenging conditions, compared to their geometric counterparts.
|
126 |
Creating Good User Experience in a Hand-Gesture-Based Augmented Reality Game / Användbarhet i ett handgestbaserat AR-spelLam, Benny, Nilsson, Jakob January 2019 (has links)
The dissemination of new innovative technology requires feasibility and simplicity. The problem with marker-based augmented reality is similar to glove-based hand gesture recognition: they both require an additional component to function. This thesis investigates the possibility of combining markerless augmented reality together with appearance-based hand gesture recognition by implementing a game with good user experience. The methods employed in this research consist of a game implementation and a pre-study meant for measuring interactive accuracy and precision, and for deciding upon which gestures should be utilized in the game. A test environment was realized in Unity using ARKit and Manomotion SDK. Similarly, the implementation of the game used the same development tools. However, Blender was used for creating the 3D models. The results from 15 testers showed that the pinching gesture was the most favorable one. The game was evaluated with a System Usability Scale (SUS) and received a score of 70.77 among 12 game testers, which indicates that the augmented reality game, which interaction method is solely based on bare-hands, can be quite enjoyable.
|
Page generated in 0.038 seconds