• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 10
  • 6
  • Tagged with
  • 74
  • 74
  • 71
  • 69
  • 52
  • 49
  • 37
  • 37
  • 37
  • 23
  • 23
  • 22
  • 22
  • 21
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Nanostrukturierte Fullerenschichten für organische Bauelemente

Deutsch, Denny 15 August 2009 (has links) (PDF)
Die vorliegende Arbeit behandelt die Herstellung geordneter C60-Schichten, ihre elektrochemische Nanostrukturierung in wässrigen Lösungen und ionischen Flüssigkeiten und den Einsatz geordneter und nanostrukturierter Fullerenschichten in organischen Dünnschichttransistoren. Geordnete C60-Schichten wurden durch thermische Verdampfung im Hochvakuum hergestellt. Als Substratmaterial wurden HOPG (Graphit), Glimmer und einkristallines Silizium verwendet. Die größten einkristallinen Bereiche werden auf HOPG-Substraten erhalten. Die laterale Ausdehnung der C60-Kristallite parallel zu den Graphitstufen kann bis zu 50 µm erreichen, orthogonal zu den Stufen ist das Wachstum durch die Graphitstufen begrenzt. Die elektrochemische Reduktion von C60 -Schichten in wässriger Lösung ist elektrochemisch irreversibel. Die geflossene Ladung beträgt ein Vielfaches der theoretisch möglichen Menge. Durch die Reduktion tritt eine Nanostrukturierung der Schichtoberfläche ein, die Größe der gebildeten Cluster beträgt 20 nm bis 50 nm. Fullerenpolymere und hydriertes C60 sind die chemischen Hauptprodukte der elektrochemischen Nanostrukturierung in wässriger Lösung. Die Reduktion von Fullerenschichten in ionischen Flüssigkeiten ist aufgrund der geschlossenen Schichtoberfläche und des starken Potentialabfalls in der Fullerenschicht zunächst kinetisch gehemmt und setzt erst bei negativeren Potentialen im Bereich der Reduktion zum C60-Dianion ein. Die Reduktion der Fullerenschichten ist elektrochemisch irreversibel, zum Teil aber chemisch reversibel. Es konnte erstmals der Einsatz nanostrukturierter C60 -Schichten als aktives Halbleitermaterial in Feldeffekt-Transistoren gezeigt werden. Für die Verwendung nanostrukturierter Fullerenschichten in Feldeffekt-Transistoren wurde 11-(3-Thienyl-)undecyl-trichlorosilan als Haftvermittler eingesetzt. Die gezeigten Ergebnisse von C60 -Transistoren mit hoher Ladungsträgerbeweglichkeit und der erfolgreichen Verwendung nanostrukturierter Fullerenschichten in Transistorstrukturen zeigen die Möglichkeiten des C60 als aktives Halbleitermaterial auf.
42

Raman-Spektroskopie an metallische/organische/anorganische Heterostrukturen und Pentacen-basierten OFETs

Paez Sierra, Beynor Antonio 06 August 2008 (has links) (PDF)
Im Rahmen dieser Arbeit wurden die Wechselwirkung von Indium (In) und Magnesium (Mg) als Topelektroden auf zwei Perylen-Derivativen, 3,4,9,10-Perylentetracarbonsäure Dianhydrid (PTCDA) und Dimethyl-3,4,9,10- Perylentetracarbonsäure Diimid (DiMe-PTCDI) untersucht. Die Metal/organische Schichten wurden auf S-passivierten GaAs(100):2x1-Substraten hergestellt und unter Ultrahochvakuum (UHV)-Bedingungens aufgedampft. Als Hauptcharakterisierungsmethode wird die Raman-Spektroskopie eingesetzt, die eine nicht-destruktive Methode ist,und auch in situ Untersuchungen des Wachstumsprozesses ermöglicht. Die experimentell Ergebnisse haben gezeigt, dass alle aufgedampft Metallen auf die organische Schichten von PTCDA und DiMe-PTCDI eine Verstärkung des aktive Raman Signals von interne Schwingungsmoden fördern, begleitet durch die Aktivierung von normalerweise Infrarotaktivemoden. Diesem Phänomen als Oberflächenverstärkte Raman-Spektroskopie (SERS) genannt ist. Das Mg Wachstum auf beiden Molekularstrukturen wurde durch die viel niedrigere Diffusion des Metalls in die organischen Molekülen im Vergleich zum Indium, es war durch die Bewahrung des von externe molekulare Schwingungsmoden nach das Metallswachstum, und in ersten Mal in einem Ramanexperiment beobachtet. Die PTCDA/Mg Strukturen formen sich durch zwei Stufen des Metallwachstum, die erste gehört zu einer neuen molekularen Struktur für eine Mg Schicht dünner als 2.8 nm, wo das PTCDA Molekühl des Sauerstoff-Atoms von die dianhydride Gruppe verliert. Die zweite gehört zu das SERS Spektrum von die vorherige Struktur. Im Fall von Mg/DiMe-PTCDI Heterostrukturen, den Molekühl wird gut bewahrt, wo die Raman Verschiebung an der diimide Gruppe wird nicht modifiziert. Auch von dieser Struktur eine interessante Eigenschaft wurde durch die Kopplung zwischen diskret Moleküleigenschwingungen am 221 cm^-1, 1291 cm^-1 und 1606 cm^-1 des organischen Materials und den elektronischen Kontinuum-Zuständen des Mg-Metallkontakts. Ihre entsprechenden Energieliniengestalten werden gut durch die Breit-Wigner-Fano-Funktion beschrieben. Die Untersuchungen auf dem vorherigen Heterostrukturen half, die Kanalbildung von Pentacen-basierten organische Feldeffekt-Transistoren (OFETs) experimentell zu analysieren, und in ersten Mal in einem Ramanexperiment durchgeführt. Der organische Kanal war gebildet durch die organische Molekularstrahldeposition (OMBD) unter UHV-Bedingungens der Pentacen Moleküle, und es war mit eine Evaporationsrate von ca. 0.65 Å/min aufgedampft. Nach jede Aufdampfung von ca. 0.1 nm des organische Moleküle, den Strom und den Ramansignal in den Kanal wurden in situ gemessen. Die minimale nominelle Dicke des organischen Materials erforderlich für den effizienten Ladungstransport durch den OFET Kanal wurde um ungefähr 1.5 nm nomineller Einschluss oder 1.1 Monolagen (ML) zu sein. Eigenschaften der ersten Monolagen werden gut im Vergleich mit dickeren Schichten definiert, wo die 1.1 ML eine gestrecktes Natur wegen seines direkten Kontakts mit dem Gate-Isolator präsentieren. Es wurde gefunden, dass der leitende organische Kanal bzw. -organische erhöhende Schicht (OBL)- eine Druckdeformierung hat. Dieses Phänomen durch die rote Verschiebung der Ramanbanden beobachtet war. Das Ausgangskennlinienfeld des OFETs wurden nach die letzte aufgedampft organische Schicht gemessen. Es wurde gefunden, dass der Drain-Strom einem Relaxationsprozesse mit zwei Zeitkonstanten hat, wo eine in der Ordnung von 10¹ min ist und die zweite unter 10² min. Ein ähnliches Experiment mit der Beleuchtung des Kanals mit einer 676.4 nm Laserquelle, es erhöht der Drain- Strom und lässt ummodifiziert die Zeitkonstanten. In der Ergänzung, die OFET-Strukturen waren ex situ durch Landungstransientspektroskopie (QTS) unstersucht. Die QTS Spektren zeigten positive und negative Banden zum Gesamtsignal der relaxierte Ladung in Bezug auf die einzigartige Biaspulsepolarität. Wir haben dieses Phänomen als ,,anomales Verhalten des QTS-Signals“ genannt, und in ersten Mal in einem QTS-Experiment beobachtet. Bei Wiederholung der QTS-Messung innerhalb ca. 100 min, die QTS-Spektre eine langsame Relaxationsprozesse von Störstellen am 5 μs in bereich ca. 63 min < 10^2 min hat. Die Einfangsquerschnitten sind Zeitabhängig, es bedeutet, dass die Störstellendichte nicht Konstant im Lauf der Betriebs des OFET bleibt. Dafür des Drain-Strom verändert sich und die Beweglichkeit unabhängige des elektrisches Feld ist. Experimentell Untersuchungen auf dem OFETs mit der Kombination der Ramanspektroskopie und elektrischen Felder zeigten eine Erhöhung des Ramanseinfangsquerschnitt in endliche Bereich als die chemische SERS-Verstärkung von In bzw. Mg auf die Perylen-Derivativen PTCDA und DiMe-PTCDI. Nach den Ausschaltung des elektrisches Felds den Ramansignal des Pentacen-basierten OFET eine Relaxationsprozesse mit Zeitkonstant von ca. 94 min hat. Deshalb ist die Summe von Störstellensdichte wegen dieser am organische/anorganische Grenze plus dieser dass die elektrisches Felds am die organische Halbleiter induziert.
43

Molecular Doping of Organic Semiconductors / Molekulare Dotierung Organischer Halbleiter - Eine Leitfähgkeits- und Seebeck-Studie

Menke, Torben 02 September 2013 (has links) (PDF)
This work aims at improving the understanding of the fundamental physics behind molecular doping of organic semiconductors, being a requirement for efficient devices like organic light-emitting diodes (OLED) and organic photovoltaic cells (OPV). The underlying physics is studied by electrical conductivity and thermoelectrical Seebeck measurements and the influences of doping concentration and temperature are investigated. Thin doped layers are prepared in vacuum by thermal co-evaporation of host and dopant molecules and measured in-situ. The fullerene C60, known for its high electron mobility, is chosen as host for five different n-dopants. Two strongly ionizing air-sensitive molecules (Cr2(hpp)4 and W2(hpp)4) and three air-stable precursor compounds (AOB, DMBI-POH and o-MeO-DMBI-I) which form the active dopants upon deposition are studied to compare their doping mechanism. High conductivities are achieved, with a maximum of 10.9 S/cm. Investigating the sample degradation by air-exposure, a method for regeneration is proposed, which allows for device processing steps under ambient conditions, greatly enhancing device fabrication possibilities. Various material combinations for p-doping are compared to study the influence of the molecular energy levels of host (MeO-TPD and BF-DPB) and dopant (F6-TCNNQ and C60F36). Corrections for the only estimated literature values for the dopant levels are proposed. Furthermore, the model system of similar-sized host pentacene and dopant F4-TCNQ is studied and compared to theoretical predictions. Finally, a model is developed that allows for estimating charge carrier mobility, density of free charge carriers, doping efficiency, as well as the transport level position from combining conductivity and Seebeck data. / Diese Arbeit untersucht organische Halbleiter und den Einfluss von molekularer Dotierung auf deren elektrische Eigenschaften, mit dem Ziel effizientere Bauelemente wie organische Leuchtdioden oder Solarzellen zu ermöglichen. Mittels Leitfähigkeitsuntersuchungen sowie thermoelektrischen Seebeck-Messungen werden die Einflüsse der Dotierkonzentration sowie der Temperatur auf die elektrischen Eigenschaften dünner dotierter Schichten analysiert. Das Abscheiden der Schichten durch Koverdampfen im Vakuum ermöglicht eine in-situ Analyse. Das Fulleren C60, bekannt für besonders hohe Elektronenbeweglichkeit, wird als Wirt für fünf verschieden n-Dotanden, zwei extrem stark ionisierende luftreaktive (Cr2(hpp)4 und W2(hpp)4) sowie drei luftstabile (AOB, DMBI-POH und o-MeO-DMBI-I), verwendet. Dies ermöglicht Schlüsse auf die unterschiedlichen zugrunde liegenden Dotiermechanismen und das Erreichen von Leitfähigkeiten von bis zu 10.9 S/cm. Für einen der luftreaktiven Dotanden wird die Probendegradation an Luft untersucht und eine Regenerationsmethode aufgezeigt, die Prozessierungsschritte in Luft erlaubt und somit entscheidend für zukünftige Bauelementfertigung sein könnte. Verschiedene p-dotierte Materialkombinationen werden untersucht, um den Einfluss der molekularen Energieniveaus von Wirt (MeO-TPD und BF-DPB) und Dotand (F6-TCNNQ und C60F36) auf die Dotierung zu studieren. Dies ermöglicht Schlussfolgerungen auf die in der Literatur bisher nur abgeschätzten Energieniveaus dieser Dotanden. Ferner werden die Eigenschaften des bereits theoretisch modellierten Paares Pentacen und F4-TCNQ mit den Vorhersagen verglichen und die Abweichungen diskutiert. Abschießend wird ein Modell entwickelt, das die Abschätzung von Dotiereffizienz, Ladungsträgerkonzentration, Ladungsträgerbeweglichkeit sowie der Position des Transportniveaus aus Leitfähigkeits- und Seebeck-Messungen erlaubt.
44

Organische Photosensoren mit spektraler Anpassung

Jahnel, Matthias Stephan 10 January 2018 (has links) (PDF)
Der Schwerpunkt dieser Arbeit liegt auf der Simulation, Entwicklung und Realisierung organischer Halbleiterbauelemente für Anwendungen im Bereich der Sensorik. Unter dem Gesichtspunkt der Fertigung sollen die organischen lichtemittierenden Dioden (OLEDs) und die organischen Photodioden (OPDs) einfach konzeptioniert sein. Je nach Bauelementetyp stehen für die Herstellung der organischen Schichten die Vakuumtechnologie oder lösungsmittelbasierte Prozesse zur Verfügung. Eine Besonderheit der Arbeit ist die Integration der OLEDs bzw. der OPDs auf Silizium-Substraten. Zudem wird die Integration von optischen Filtern für die OLEDs sowie die Etablierung einer Dünnschichtverkapselung für die OLEDs und OPDs gezeigt. Im ersten Teil der Arbeit wird anhand von Simulationen der Dünnschichtoptik erarbeitet, welche Möglichkeiten vorhanden sind, die Charakteristik der OLEDEmission bzw. die Absorptionseigenschaften der OPDs zu beeinflussen. Die Besonderheit der OLEDs für die Sensorikanwendungen liegt hierbei in der Licht-Emission mit geringen Halbwertsbreiten. Es wird anhand von Fluoreszenzmarkern (Rhodamin 6G und Nah-IR Alzheimer Farbstoff-4) und einem Chromoprotein (PAS-GAF-64) verdeutlicht, welche Möglichkeiten für die Sensorik durch die Anregung mit der OLED bestehen. Für die OPDs hingegen wird gezeigt, welche Möglichkeiten es für das Rodamin 6G gibt, mit dielektrischen Spiegeln die Absorptionseigenschaften so zu beeinflussen, dass die gewünschten spektralen Bereiche des Lichtes absorbiert bzw. reflektiert werden. Der zweite Teil widmet sich der Entwicklung der OLEDs anhand der Integrationsmöglichkeiten der dielektrischen Filter sowie deren Optimierung. Es wird am Beispiel des Rhodamin 6G gezeigt, dass für die OLED-Emission eine Halbwertsbreite von 18 nm beim Maximum von 530 nm hat. Durch die Verwendung von Entlastungsschichten zwischen OLED und dielektrischem Spiegel können die Kennwerte der OLED positiv beeinflusst werden und weiterhin werden das Temperaturverhalten der OLEDs sowie die Verspannungseigenschaften der dielektrischen Schichten betrachtet. Darüber hinaus steht im dritten Teil die Entwicklung der organischen Photodioden im Fokus. Hierbei wurden OPDs auf Glas- und Siliziumsubstraten gefertigt. Inhalt der Entwicklung auf Glassubstraten ist die Variation der absorbierenden Schicht und deren Einfluss auf die elektro-optischen Eigenschaften. Die Entwicklung der OPDs auf Siliziumsubstraten basiert auf der Integration sowie der Optimierung verschiedener Absorbersysteme, einer alternativen Anode und Kathode sowie der Integration einer Dünnschichtverkapselung. Im Ergebnis wurden OPDs entwickelt, die ohne Dünnschichtverkapselung einen Photonen-zu-Elektron-Umwandlungs-wirkungsgrad (IPCE) von ca. 37 % bei 550 nm haben. Der IPCE konnte zudem durch die Modifikation des Kathodenaufbaus um 4 % gesteigert werden. Die OPD-Bauelemente mit integrierter Dünnschichtverkapselung zeigen einen IPCE von ca. 33 % bei 550 nm. Weiterhin wurde die Methode der orthogonalen Photolithographie zur Strukturierung der OPDs verwendet und es erfolgte der Übertrag der OPD-Technologie auf 8-Zoll-Halbleitersubstrate. In diesem Zusammenhang sind zur Bewertung von Einflüssen, wie Wasser oder Sauerstoff, Untersuchungen zur Lebensdauer der OPDs durchgeführt worden. Die Kenntnis über den Einfluss der orthogonalen Photolithographie auf die Kennwerte der OPDs sowie der Einfluss der Dünnschichtverkapselung auf die Eigenschaften der OPDs und OLEDs sind essentiell für weitere Entwicklungen und zur Fertigung von Sensoranwendungen. / This work focuses on the simulation, development and implementation of organic semiconductor devices for applications in the field of sensor technology. From the viewpoint of manufacturing, organic light emitting diodes (OLEDs) as well as organic photodiodes (OPD) should be designed simply. Depending on the type of device vacuum technology or solvent-based processes are available for producing organic layer. A special feature of OLED- and OPD-devices is the integration on silicon substrates. In addition, the integration of optical filters for OLED-devices and the thin-film encapsulation of OLEDs and OPDs is shown. The first part of the work elaborates on simulations of thin film optics, describing options to control the characteristics of the OLED-emission or the absorption properties of the OPD. A special characteristic of OLEDs is the light emission with a small full with half maximum for sensor applications. By using of fluorescent markers Rhodamine 6G and near-IR dye Alzheimer-4 or the Chromoproteins (PAS-GAF-64) clarifies the possibilities for sensors by excitation with the OLED. In contrast, for the OPD is shown which solutions are available, to influence the absorption properties of Rhodamin 6G with dielectric mirrors so that desired spectral ranges of light are absorbed or reflected. The second part is dedicated to the development of OLEDs based on integration of dielectric filters and their optimization. It is shown by the example of Rhodamine 6G that the OLED emission represents a full with at half maximum of 18 nm at 530 nm. Furthermore, the temperature behavior of the OLEDs and the strain properties of the dielectric layers are considered. Organic photodiodes are in the focus of the third part of the development. These OPDs were made on glass and silicon substrates. The main objective of the development on glass substrates is the variation of the absorption layer and its influence to the electro-optical properties to increase the spectral sensitivity of the OPD. The development of OPD on silicon substrates deals with the integration and optimization of different absorber systems, an alternative anode and cathode as well as the integration of a thin-film encapsulation. As a result, the OPDs without a thin-film encapsulation have an incident photon-to-electron conversion efficiency (IPCE) of about 37 % at 550 nm. The IPCE was increased to 4 % by modifying the cathode structure. The OPD devices with integrated thin-film encapsulation showed an IPCE of about 33 % at 550 nm. Furthermore, the method of orthogonal photolithography was used to pattern the OPD and an upscaling of the OPD technology to 8-inch semiconductor substrates have been realized. In this context studies have been carried out to evaluate the influence of process and encapsulation to the lifetime of OPDs. The knowledge about the influence of the orthogonal photolithography to the characteristics of OPDs and the influence of the thin-film encapsulation on the properties of OPD and OLEDs is essential for further development and for the manufacturing of sensor applications.
45

Charge Carrier Trap Spectroscopy on Organic Hole Transport Materials

Pahner, Paul 25 January 2017 (has links) (PDF)
Electronic circuits comprising organic semiconductor thin-films are part of promising technologies for a renewable power generation and an energy-efficient information technology. Whereas TV and mobile phone applications of organic light emitting diodes (OLEDs) got ready for the market awhile ago, organic photovoltaics still lack in power conversion efficiencies, especially in relation to their current fabrication costs. A major reason for the low efficiencies are losses due to the large number of charge carrier traps in organic semiconductors as compared to silicon. It is the aim of this thesis to identify and quantify charge carrier traps in vacuum-deposited organic semiconductor thin-films and comprehend the reasons for the trap formation. For that, the techniques impedance spectroscopy (IS), thermally stimulated currents (TSC), and photoelectron spectroscopy are utilized. In order to assess the absolute energy of charge carrier traps, the charge carrier transport levels are computed for various hole transport materials such as MeO-TPD, pentacene, and ZnPc. Unlike inorganics, organic semiconductors possess in first-order approximation Gaussian distributed densities of states and temperaturedependent transport levels. The latter shift by up to 300 meV towards the energy gap-mid when changing from room temperature to 10 K as it is done for TSC examinations. The frequency-dependent capacitance response of charge carrier traps in organic Schottky diodes of pentacene and ZnPc are studied via impedance spectroscopy. In undoped systems, deep traps with depths of approx. 0.6 eV and densities in the order of 1016...1017 cm−3 are prevailing. For pentacene, the deep trap density is reduced when the material undergoes an additional purification step. Utilizing p-doping, the Fermi level is tuned in a way that deep traps are saturated. Vice versa, the freeze-out of p-doped ZnPc provides further insight into the influence of trap-filling, impurity saturation and reserve on the Fermi level position in organic semiconductors. Furthermore, charge carrier traps are investigated via thermally stimulated currents. It is shown that the trap depths are obtained correctly only if the dispersive transport of the released charge carriers until their extraction is considered. For the first time, the polarity of charge carrier traps in MeO-TPD, ZnPc, and m-MTDATA is identified from TSC’s differences in release time when spacer layers are introduced in the TSC samples. Simultaneously, tiny hole mobilities in the order of 10−13 cm2 Vs−1 are detected for low-temperature thin-films of the hole transporter material Spiro-TTB. It is shown for Spiro-TTB co-evaporated with the acceptor molecule F6-TCNNQ and a p-doped ZnPc:C60 absorber blend that the doping process creates shallow trap levels. Finally, various organic hole transport materials are examined upon their stability in water and oxygen atmosphere during sample fabrication and storage of the organic electronics. In case of pentacene, ZnPc, MeO-TPD, and m-MTDATA, hole traps are already present in unexposed thin-films, which increase in trap density upon oxygen exposure. A global trap level caused by oxygen impurities is found at energies of 4.7...4.8 eV that is detrimental to hole transport in organic semiconductors. / Elektronische Bauelemente aus Dünnschichten organischer Halbleiter sind Teil möglicher Schlüsseltechnologien zur regenerativen Energiegewinnung und energieeffizienten Informationstechnik. Während Fernseh- und Mobilfunkanwendungen organischer Leuchtdioden (OLEDs) bereits vor einiger Zeit Marktreife erlangt haben, ist die organische Photovoltaik (OPV) noch durch zu hohe Fertigungskosten in Relation zu unzureichenden Effizienzen unrentabel. Ein wesentlicher Grund für die niedrigen Wirkungsgrade sind Verluste durch die im Vergleich zu Silizium hohe Zahl an Ladungsträgerfallen in organischen Halbleitern. Ziel dieser Arbeit ist es, mittels Impedanz-Spektroskopie (IS), thermisch stimulierten Strömen (TSC) und Photoelektronenspektroskopie methodenübergreifend Ladungsträgerfallen in vakuumverdampften organischen Dünnschichten zu identifizieren, zu quantifizieren und ihre Ursachen zu ergründen. Um die Energie von Ladungsträgerfallen absolut beziffern zu können, wird zunächst für verschiedene Lochtransportmaterialien wie z.B. MeO-TPD, Pentazen und ZnPc die Transportenergie aus den in erster Ordnung gaußförmigen Zustandsdichten berechnet. Im Gegensatz zu anorganischen Halbleitern ist die Transportenergie in organischen Halbleitern temperaturabhängig. Sie verschiebt sich beim Übergang von Raumtemperatur zu 10 K, wie für TSC Untersuchungen bedeutsam, um bis zu 300 meV in Richtung der Bandlückenmitte. Mittels Impedanz-Spektroskopie wird die frequenzabhängige Kapazitätsantwort von Ladungsträgerfallen in organischen Schottky-Dioden aus Pentazen und ZnPc untersucht. In undotierten Systemen dominieren Defekte mit Tiefen um 0.6 eV, deren Dichte in der Größenordnung von 1016...1017 cm−3 liegt, sich aber im Fall von Pentazen durch einen zusätzlichen Materialaufreinigungsschritt halbieren lässt. Über p-Dotierung wird das Fermi-Level so eingestellt, dass tiefe Fallen abgesättigt werden können. Umgekehrt liefert das Ausfrieren von p-dotiertem ZnPc weitere Belege für den Einfluss von Fallenzuständen, Störstellen-Erschöpfung und Reserve auf das Fermi-Level in dotierten organischen Halbleitern. Im Weiteren werden Ladungsträgerfallen über thermisch stimulierte Ströme untersucht. Es wird gezeigt, dass die Fallentiefen nur dann konsistent bestimmt werden, wenn der dispersive Transport von freigesetzten Ladungsträgern zur Extraktionsstelle berücksichtigt wird. Durch Einführung von ’Abstandshalterschichten’ werden erstmalig über TSC die Polaritäten von Ladungsträgerfallen in MeO-TPD, ZnPc und m-MTDATA per Laufzeitunterschied bestimmt. Gleichzeitig werden geringste Löcherbeweglichkeiten in der Größenordnung von 10−13 cm2 Vs−1 für stark gekühlte Dünnschichten des Lochtransporters Spiro-TTB gemessen. Wie für Spiro-TTB koverdampft mit dem Akzeptormolekül F6-TCNNQ und p-dotierte Mischschichten der Absorbermaterialien ZnPc und C60 gezeigt, erzeugt Dotierung relativ flache Störstellen. Abschließend werden verschiedene organische Lochtransporter-Materialien auf ihre Stabilität in Wasser- und Sauerstoffatmosphären während der Prozessierung und der Lagerung fertiger elektronischer Bauelemente untersucht. Für Pentazen, ZnPc, MeO-TPD und m-MTDATA werden Löcherfallen in intrinsischen Dünnschichten nachgewiesen. Bei Kontakt mit Sauerstoff nimmt deren Defektdichte zu. Es findet sich ein universales Fallenniveau bei rund 4.7...4.8 eV, verursacht durch Sauerstoffverunreinigungen, welches den Lochtransport in organischen Halbleitern limitiert.
46

Electrosynthesis and characterization of thin copolymer films based on pyrrole and thiophene derivatives

Dang, Xuan Dung 11 August 2005 (has links)
Die Copolymerisation wurde mit dem Ziel untersucht, polymere Materialien zu synthetisieren, die die individuellen Eigenschaften der entsprechenden Homopolymere kombinieren. Die Dissertation konzentrierte sich auf die Elektrosynthese und Charakterisierung von leitfähigen Copolymerfilmen auf Basis von Pyrrol- und Thiophenderivaten. Mit einer Reihe von elektrochemischen, spektroskopischen und mikroskopischen Untersuchungsmethoden (Zyklovoltammetrie, elektrochemische Impedanz-spektroskopie, photoelektrochemische Spektroskopie, Elektrospray- Ionisations-Massenspektroskopie, Festkörper- NMR, Raman-Spektroskopie, Thermoanalyse und Rasterelektronenmikroskopie) wurde die Bildung echter Copolymere von Pyrrol mit Bithiophen und von 3-Methylthiophen mit Ethyl-3-thiophenazetat nachgewiesen. Die analytischen Ergebnisse bestätigen, dass Random- Copolymere und keine Block-Copolymere gebildet wurden. Die elektronischen und strukturellen Eigenschaften der Copolymerfilme liegen zwischen denen der jeweiligen Homopolymere und sind abhängig von der Copolymerzusammensetzung. Insbesondere die Halbleiterparameter der Copolymerfilme von Pyrrol mit Bithiophen wie Flachband-Potential, Bandlücken-Energie und Ladungsträgerdichte verschieben sich von denen des reinen Polypyrrols bis zum Polybithiophen, wenn der Gehalt an Bithiophen im Copolymerfilm vergrößert wird. Diese Parameter sind einstellbar durch Variation des Monomerverhältnisses oder des Polymerisationspotentials. Außerdem konnten die strukturellen und elektronischen Eigenschaften des funktionalisierten Polymers Ethyl-3-thiophenazetat durch Copolymerisation mit 3-Methylthiophen deutlich verbessert werden. Die synthetisierten leitfähigen Copolymerfilme können in der Sensorik Anwendung finden. / The copolymerization has been studied as a new strategy to synthesize polymer materials by combining interesting properties of the respective homopolymers. In this dissertation, the work focused on the electrosynthesis and characterization of conducting copolymer films based on pyrrole and thiophene derivatives. A variety of electrochemical, spectroscopic and microscopic techniques such as cyclic voltammetry, electrochemical impedance and photoelectrochemical spectroscopy, electrospray ionization mass spectroscopy, solid state NMR and Raman spectroscopy, thermal analysis and scanning electron microscopy supported the formation of true copolymers of pyrrole with bithiophene and 3-methylthiophene with ethyl-3-thiophene acetate. The analytical results exhibited that random copolymers were produced rather than block copolymers. The electronic and structural characteristics of the copolymer films were intermediate between those of the respective homopolymers and they were dependent on the copolymer composition. In particular, the semiconducting parameters of the copolymer films of pyrrole and bithiophene such as flat band potential, band gap energy and charge carrier density shifted from those of polypyrrole to polybithiophene with increasing bithiophene content of the copolymer films. Such parameters were controlled precisely by alternating either the monomer ratio or the polymerization potential. In addition, the morphological and electronic properties of the functionalized polymers of ethyl-3-thiophene acetate were increased significantly by copolymerization with 3-methylthiophene. The obtained conducting copolymer films were able to be applied in the field of sensoric.
47

Organisch modifizierte Ag/GaAs-Schottky-Kontakte

Lindner, Thomas 15 November 2000 (has links)
In dieser Arbeit wurden die Strom-Spannungs- und Kapazitäts-Spannungs-Kennlinien von Ag/n-GaAs(100) Schottky-Dioden untersucht, wobei die Kennlinien durch organische Zwischenschichten verschiedener Dicke modifiziert werden. Dazu wird der organische Halbleiter 3,4,9,10- Perylentetracarboxyldianhydrid (PTCDA) verwendet. Die PTCDA-Schichten werden mittels Organischer Molekularstrahldeposition (OMBD) hergestellt. Die Charakterisierung der Ag/PTCDA/GaAs-Dioden erfolgte sowohl in situ als auch ex situ.
48

Raman-Spektroskopie an metallische/organische/anorganische Heterostrukturen und Pentacen-basierten OFETs

Paez Sierra, Beynor Antonio 20 December 2007 (has links)
Im Rahmen dieser Arbeit wurden die Wechselwirkung von Indium (In) und Magnesium (Mg) als Topelektroden auf zwei Perylen-Derivativen, 3,4,9,10-Perylentetracarbonsäure Dianhydrid (PTCDA) und Dimethyl-3,4,9,10- Perylentetracarbonsäure Diimid (DiMe-PTCDI) untersucht. Die Metal/organische Schichten wurden auf S-passivierten GaAs(100):2x1-Substraten hergestellt und unter Ultrahochvakuum (UHV)-Bedingungens aufgedampft. Als Hauptcharakterisierungsmethode wird die Raman-Spektroskopie eingesetzt, die eine nicht-destruktive Methode ist,und auch in situ Untersuchungen des Wachstumsprozesses ermöglicht. Die experimentell Ergebnisse haben gezeigt, dass alle aufgedampft Metallen auf die organische Schichten von PTCDA und DiMe-PTCDI eine Verstärkung des aktive Raman Signals von interne Schwingungsmoden fördern, begleitet durch die Aktivierung von normalerweise Infrarotaktivemoden. Diesem Phänomen als Oberflächenverstärkte Raman-Spektroskopie (SERS) genannt ist. Das Mg Wachstum auf beiden Molekularstrukturen wurde durch die viel niedrigere Diffusion des Metalls in die organischen Molekülen im Vergleich zum Indium, es war durch die Bewahrung des von externe molekulare Schwingungsmoden nach das Metallswachstum, und in ersten Mal in einem Ramanexperiment beobachtet. Die PTCDA/Mg Strukturen formen sich durch zwei Stufen des Metallwachstum, die erste gehört zu einer neuen molekularen Struktur für eine Mg Schicht dünner als 2.8 nm, wo das PTCDA Molekühl des Sauerstoff-Atoms von die dianhydride Gruppe verliert. Die zweite gehört zu das SERS Spektrum von die vorherige Struktur. Im Fall von Mg/DiMe-PTCDI Heterostrukturen, den Molekühl wird gut bewahrt, wo die Raman Verschiebung an der diimide Gruppe wird nicht modifiziert. Auch von dieser Struktur eine interessante Eigenschaft wurde durch die Kopplung zwischen diskret Moleküleigenschwingungen am 221 cm^-1, 1291 cm^-1 und 1606 cm^-1 des organischen Materials und den elektronischen Kontinuum-Zuständen des Mg-Metallkontakts. Ihre entsprechenden Energieliniengestalten werden gut durch die Breit-Wigner-Fano-Funktion beschrieben. Die Untersuchungen auf dem vorherigen Heterostrukturen half, die Kanalbildung von Pentacen-basierten organische Feldeffekt-Transistoren (OFETs) experimentell zu analysieren, und in ersten Mal in einem Ramanexperiment durchgeführt. Der organische Kanal war gebildet durch die organische Molekularstrahldeposition (OMBD) unter UHV-Bedingungens der Pentacen Moleküle, und es war mit eine Evaporationsrate von ca. 0.65 Å/min aufgedampft. Nach jede Aufdampfung von ca. 0.1 nm des organische Moleküle, den Strom und den Ramansignal in den Kanal wurden in situ gemessen. Die minimale nominelle Dicke des organischen Materials erforderlich für den effizienten Ladungstransport durch den OFET Kanal wurde um ungefähr 1.5 nm nomineller Einschluss oder 1.1 Monolagen (ML) zu sein. Eigenschaften der ersten Monolagen werden gut im Vergleich mit dickeren Schichten definiert, wo die 1.1 ML eine gestrecktes Natur wegen seines direkten Kontakts mit dem Gate-Isolator präsentieren. Es wurde gefunden, dass der leitende organische Kanal bzw. -organische erhöhende Schicht (OBL)- eine Druckdeformierung hat. Dieses Phänomen durch die rote Verschiebung der Ramanbanden beobachtet war. Das Ausgangskennlinienfeld des OFETs wurden nach die letzte aufgedampft organische Schicht gemessen. Es wurde gefunden, dass der Drain-Strom einem Relaxationsprozesse mit zwei Zeitkonstanten hat, wo eine in der Ordnung von 10¹ min ist und die zweite unter 10² min. Ein ähnliches Experiment mit der Beleuchtung des Kanals mit einer 676.4 nm Laserquelle, es erhöht der Drain- Strom und lässt ummodifiziert die Zeitkonstanten. In der Ergänzung, die OFET-Strukturen waren ex situ durch Landungstransientspektroskopie (QTS) unstersucht. Die QTS Spektren zeigten positive und negative Banden zum Gesamtsignal der relaxierte Ladung in Bezug auf die einzigartige Biaspulsepolarität. Wir haben dieses Phänomen als ,,anomales Verhalten des QTS-Signals“ genannt, und in ersten Mal in einem QTS-Experiment beobachtet. Bei Wiederholung der QTS-Messung innerhalb ca. 100 min, die QTS-Spektre eine langsame Relaxationsprozesse von Störstellen am 5 μs in bereich ca. 63 min < 10^2 min hat. Die Einfangsquerschnitten sind Zeitabhängig, es bedeutet, dass die Störstellendichte nicht Konstant im Lauf der Betriebs des OFET bleibt. Dafür des Drain-Strom verändert sich und die Beweglichkeit unabhängige des elektrisches Feld ist. Experimentell Untersuchungen auf dem OFETs mit der Kombination der Ramanspektroskopie und elektrischen Felder zeigten eine Erhöhung des Ramanseinfangsquerschnitt in endliche Bereich als die chemische SERS-Verstärkung von In bzw. Mg auf die Perylen-Derivativen PTCDA und DiMe-PTCDI. Nach den Ausschaltung des elektrisches Felds den Ramansignal des Pentacen-basierten OFET eine Relaxationsprozesse mit Zeitkonstant von ca. 94 min hat. Deshalb ist die Summe von Störstellensdichte wegen dieser am organische/anorganische Grenze plus dieser dass die elektrisches Felds am die organische Halbleiter induziert.
49

A Vertical C60 Transistor with a Permeable Base Electrode

Fischer, Axel 11 September 2015 (has links)
A high performance vertical organic transistor based on the organic semiconductor C60 is developed in this work. The sandwich geometry of this transistor, well known from organic light-emitting diodes or organic solar cells, allows for a short transfer length of charge carriers in vertical direction. In comparison to conventional organic field-effect transistors with lateral current flow, much smaller channel lengths are reached, even if low resolution and low-cost shadow masks are used. As a result, the transistor operates at low voltages (1 V), drives current densities in the range of 10 A/cm², and enables a switching speed in the MHz range. The operation mechanism is studied in detail. It is demonstrated that the transistor can be described by a nano-porous permeable base electrode insulated by a thin native aluminum oxide film on its surface. Thus, the transistor has to be understood as two metal-oxide-semiconductor diodes, sharing a common electrode, the base. Upon applying a bias to the base, charges accumulate in front of the oxide, similar to the channel formation in a field-effect transistor. Due to the increased conductivity in this region, charges are efficiently transported toward and through the pinholes of the base electrode, realizing a high charge carrier transmission. Thus, even a low concentration of openings in the base electrode is sufficient to ensure large transmission currents. The device concept turns out to be ideal for applications where high transconductance and high operation frequency are needed, e.g. in analog amplifier circuits. The full potential of the transistor is obtained if the active area is structured by an insulating layer in order to perfectly align the three electrodes. Besides that, molecular doping near the charge injecting contact is essential to minimize the contact resistance. Due to the high power density in the vertical C60 transistor, Joule self-heating occurs, which is discussed in this work in the context of organic semiconductors. The large activation energies of the electrical conductivity observed cause the presence of S-shaped current-voltage characteristics and result in thermal switching as well as negative differential resistances, as demonstrated for several two-terminal devices. A detailed understanding of these processes is important to determine restrictions and proceed with further optimizations.:CONTENTS Publications, patents and conference contributions 9 1 Introduction 13 2 Theory 19 2.1 From small molecules to conducting thin films . . . . . . . . . . . . . . . . . . . . 19 2.1.1 Aromatic hydrocarbons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2 Solid state physics of molecular materials . . . . . . . . . . . . . . . . . . . 24 2.1.3 Energetic landscape of an organic semiconductor . . . . . . . . . . . . . . 26 2.1.4 Charge transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2 Semiconductor structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.2.1 Semiconductor statistics and transport . . . . . . . . . . . . . . . . . . . . 42 2.2.2 Charge injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.2.3 Limitations of the current . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.2.4 Metal-oxide-semiconductor structures . . . . . . . . . . . . . . . . . . . . . 57 2.3 Self-heating theory of thermistor device . . . . . . . . . . . . . . . . . . . . . . . . 61 3 Organic transistors 65 3.1 The organic field-effect transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.1.1 Basic principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.1.2 Device characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.1.3 Device geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.1.4 Device parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.1.5 Issues of OFETs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.1.6 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.2 Overview over vertical organic transistors . . . . . . . . . . . . . . . . . . . . . . . 76 3.2.1 VOTs with an unstructured base electrode . . . . . . . . . . . . . . . . . . . 76 3.2.2 VOTs with structured base electrode . . . . . . . . . . . . . . . . . . . . . . 79 3.2.3 Charge injection modulating transistors . . . . . . . . . . . . . . . . . . . . 82 3.2.4 Vertical organic field-effect transistor . . . . . . . . . . . . . . . . . . . . . . 85 3.2.5 Development of the scientific output . . . . . . . . . . . . . . . . . . . . . . 87 3.2.6 Competing technologies and approaches . . . . . . . . . . . . . . . . . . . 88 3.3 Vertical Organic Triodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.3.1 Stucture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.3.2 Electronic configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.3.3 Energetic alignment of the diodes . . . . . . . . . . . . . . . . . . . . . . . 92 3.3.4 Current flow in the on and the off-state . . . . . . . . . . . . . . . . . . . . 94 3.3.5 Definition and extraction of parameters . . . . . . . . . . . . . . . . . . . . 95 4 Experimental 101 4.1 General processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.1.1 Thermal vapor deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.1.2 Processing tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.1.3 Processing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.2 Mask setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.3 Measurement setups and tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.3.1 Current-voltage measurements . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.3.2 Frequency-dependent measurements . . . . . . . . . . . . . . . . . . . . . 108 4.3.3 Impedance Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.3.4 Ultraviolet and X-ray Photoelectron Spectroscopy . . . . . . . . . . . . . . . 110 4.3.5 Thermal imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.4 Materials used in C60 triodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.4.1 Buckminsterfullerene C60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.4.2 Tungsten paddlewheel W2(hpp)4 . . . . . . . . . . . . . . . . . . . . . . . . 116 4.4.3 Aluminum and its oxides . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.4.4 Spiro-TTB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.5 Materials used in Organic Light-emitting Diodes . . . . . . . . . . . . . . . . . . . 121 5 Introduction of C60 VOTs 123 5.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.2 Diode characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5.3 Base sweep measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.4 Determination of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5.5 Common-base connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 5.6 Output characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.7 Frequency-dependent measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.8 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6 Effect of annealing 141 6.1 Charge carrier transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6.2 Sheet resistance and transmittance of the base electrode . . . . . . . . . . . . . . 142 6.3 Investigation of morphological changes . . . . . . . . . . . . . . . . . . . . . . . . 144 6.4 Photoelectron spectroscopy of the base electrode . . . . . . . . . . . . . . . . . . 153 6.5 Influence of air exposure and annealing onto the dopants . . . . . . . . . . . . . . 159 6.6 Electrical characteristics of the diodes . . . . . . . . . . . . . . . . . . . . . . . . . 162 6.7 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 7 Working Mechanism 167 7.1 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.2 Diode characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.3 Simulation and modeling of the diode characteristics . . . . . . . . . . . . . . . . . 173 7.4 Interpretation of the operation mechanism . . . . . . . . . . . . . . . . . . . . . . . 181 7.5 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 8 Optimization of VOTs 183 8.1 Misalignment of the electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 8.2 Use of doping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 8.3 Variation of the intrinsic layer thickness . . . . . . . . . . . . . . . . . . . . . . . . . 190 8.4 Structuring the active area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 8.5 High-frequency operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 8.6 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 9 Self-heating in organic semiconductors 209 9.1 Temperature activation in C60 triodes . . . . . . . . . . . . . . . . . . . . . . . . . . 210 9.2 nin-C60 crossbar structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 9.3 Thermal switching in organic semiconductors . . . . . . . . . . . . . . . . . . . . . 216 9.4 Self-heating in large area devices: Organic LEDs . . . . . . . . . . . . . . . . . . . 218 9.5 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 10 Conclusion and Outlook 227 10.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 10.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 A Appendix 233 A.1 Appendix 1: Accuracy of the current gain . . . . . . . . . . . . . . . . . . . . . . . 233 A.2 Appendix 2: Fit of XRR measurements . . . . . . . . . . . . . . . . . . . . . . . . . 234 A.3 Appendix 3: Atomic force microscopy . . . . . . . . . . . . . . . . . . . . . . . . . 236 A.4 Appendix 4: Transmission electron microscopy . . . . . . . . . . . . . . . . . . . . 236 A.5 Appendix 5: Drift-diffusion simulation of nin devices . . . . . . . . . . . . . . . . . 239 A.6 Appendix 6: A simple parallel thermistor circuit . . . . . . . . . . . . . . . . . . . . 241 List of Figures 245 References 290 / In dieser Arbeit wird ein vertikaler organischer Transistor mit hoher Leistungsfähigkeit vorgestellt, der auf dem organischen Halbleiter C60 basiert. Die von organischen Leuchtdioden und organischen Solarzellen bekannte \'Sandwich’-Geometrie wird verwendet, so dass es möglich ist, für die vertikale Stromrichtung kurze Transferlängen der Ladungsträger zu erreichen. Im Vergleich zum konventionellen organischen Feldeffekttransistor mit lateralem Stromfluss werden dadurch viel kleinere Kanallängen erreicht, selbst wenn preisgünstige Schattenmasken mit geringer Auflösung für die thermische Verdampfung im Vakuum genutzt werden. Daher kann der Transistor bei einer Betriebsspannung von 1 V Stromdichten im Bereich von 10 A/cm² und Schaltgeschwindigkeiten im MHz-Bereich erreichen. Obwohl diese Technologie vielversprechend ist, fehlt bislang ein umfassendes Verständnis des Funktionsmechanismus. Hier wird gezeigt, dass der Transistor eine nanoporöse Basiselektrode hat, die durch ein natives Oxid auf ihrer Oberfläche elektrisch isoliert ist. Daher kann das Bauelement als zwei Metall-Oxid-Halbleiter-Dioden verstanden werden, die sich eine gemeinsame Elektrode, die Basis, teilen. Unter Spannung akkumulieren Ladungsträger vor dem Oxid, ähnlich zur Ausbildung eines Ladungsträgerkanals im Feldeffekttransistor. Aufgrund der erhöhten Leitfähigkeit in dieser Region werden Ladungsträger effizient zu und durch die Öffnungen der Basis transportiert, was zu hohen Ladungsträgertransmissionen führt. Selbst bei einer geringen Konzentration von Löchern in der Basiselektrode werden so hohe Transmissionsströme erzielt. Das Bauelementkonzept ist ideal für Anwendungen, in denen eine hohe Transkonduktanz und eine hohe Schaltgeschwindigkeit erreicht werden soll, z.B. in analogen Schaltkreisen, die kleine Signale verarbeiten. Das volle Potential des Transistors offenbart sich jedoch, wenn die aktive Fläche durch eine Isolatorschicht strukturiert wird, um den Überlapp der drei Elektroden zu optimieren, so dass Leckströme minimiert werden. Daneben ist die Dotierung der Molekülschichten am Emitter essentiell, um Kontaktwiderstände zu vermeiden. Aufgrund der hohen Leistungsdichten in den vertikalen C60-Transistoren kommt es zur Selbsterwärmung, die in dieser Arbeit im Kontext organischen Halbleiter diskutiert wird. Die große Aktivierungsenergie der Leitfähigkeit führt zu S-förmigen Strom-Spannungs-Kennlinien und hat thermisches Umschalten sowie negative differentielle Widerstände zur Folge, was für verschiedene Bauelemente demonstriert wird. Ein detailliertes Verständnis dieser Prozesse ist wichtig, um Beschränkungen für Anwendungen zu erkennen und um entsprechende Verbesserungen einzuführen.:CONTENTS Publications, patents and conference contributions 9 1 Introduction 13 2 Theory 19 2.1 From small molecules to conducting thin films . . . . . . . . . . . . . . . . . . . . 19 2.1.1 Aromatic hydrocarbons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2 Solid state physics of molecular materials . . . . . . . . . . . . . . . . . . . 24 2.1.3 Energetic landscape of an organic semiconductor . . . . . . . . . . . . . . 26 2.1.4 Charge transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2 Semiconductor structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.2.1 Semiconductor statistics and transport . . . . . . . . . . . . . . . . . . . . 42 2.2.2 Charge injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.2.3 Limitations of the current . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.2.4 Metal-oxide-semiconductor structures . . . . . . . . . . . . . . . . . . . . . 57 2.3 Self-heating theory of thermistor device . . . . . . . . . . . . . . . . . . . . . . . . 61 3 Organic transistors 65 3.1 The organic field-effect transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.1.1 Basic principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.1.2 Device characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.1.3 Device geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.1.4 Device parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.1.5 Issues of OFETs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.1.6 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.2 Overview over vertical organic transistors . . . . . . . . . . . . . . . . . . . . . . . 76 3.2.1 VOTs with an unstructured base electrode . . . . . . . . . . . . . . . . . . . 76 3.2.2 VOTs with structured base electrode . . . . . . . . . . . . . . . . . . . . . . 79 3.2.3 Charge injection modulating transistors . . . . . . . . . . . . . . . . . . . . 82 3.2.4 Vertical organic field-effect transistor . . . . . . . . . . . . . . . . . . . . . . 85 3.2.5 Development of the scientific output . . . . . . . . . . . . . . . . . . . . . . 87 3.2.6 Competing technologies and approaches . . . . . . . . . . . . . . . . . . . 88 3.3 Vertical Organic Triodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.3.1 Stucture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.3.2 Electronic configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.3.3 Energetic alignment of the diodes . . . . . . . . . . . . . . . . . . . . . . . 92 3.3.4 Current flow in the on and the off-state . . . . . . . . . . . . . . . . . . . . 94 3.3.5 Definition and extraction of parameters . . . . . . . . . . . . . . . . . . . . 95 4 Experimental 101 4.1 General processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.1.1 Thermal vapor deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.1.2 Processing tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.1.3 Processing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.2 Mask setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.3 Measurement setups and tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.3.1 Current-voltage measurements . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.3.2 Frequency-dependent measurements . . . . . . . . . . . . . . . . . . . . . 108 4.3.3 Impedance Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.3.4 Ultraviolet and X-ray Photoelectron Spectroscopy . . . . . . . . . . . . . . . 110 4.3.5 Thermal imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.4 Materials used in C60 triodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.4.1 Buckminsterfullerene C60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.4.2 Tungsten paddlewheel W2(hpp)4 . . . . . . . . . . . . . . . . . . . . . . . . 116 4.4.3 Aluminum and its oxides . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.4.4 Spiro-TTB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.5 Materials used in Organic Light-emitting Diodes . . . . . . . . . . . . . . . . . . . 121 5 Introduction of C60 VOTs 123 5.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.2 Diode characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5.3 Base sweep measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.4 Determination of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5.5 Common-base connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 5.6 Output characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.7 Frequency-dependent measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.8 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6 Effect of annealing 141 6.1 Charge carrier transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6.2 Sheet resistance and transmittance of the base electrode . . . . . . . . . . . . . . 142 6.3 Investigation of morphological changes . . . . . . . . . . . . . . . . . . . . . . . . 144 6.4 Photoelectron spectroscopy of the base electrode . . . . . . . . . . . . . . . . . . 153 6.5 Influence of air exposure and annealing onto the dopants . . . . . . . . . . . . . . 159 6.6 Electrical characteristics of the diodes . . . . . . . . . . . . . . . . . . . . . . . . . 162 6.7 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 7 Working Mechanism 167 7.1 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.2 Diode characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.3 Simulation and modeling of the diode characteristics . . . . . . . . . . . . . . . . . 173 7.4 Interpretation of the operation mechanism . . . . . . . . . . . . . . . . . . . . . . . 181 7.5 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 8 Optimization of VOTs 183 8.1 Misalignment of the electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 8.2 Use of doping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 8.3 Variation of the intrinsic layer thickness . . . . . . . . . . . . . . . . . . . . . . . . . 190 8.4 Structuring the active area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 8.5 High-frequency operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 8.6 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 9 Self-heating in organic semiconductors 209 9.1 Temperature activation in C60 triodes . . . . . . . . . . . . . . . . . . . . . . . . . . 210 9.2 nin-C60 crossbar structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 9.3 Thermal switching in organic semiconductors . . . . . . . . . . . . . . . . . . . . . 216 9.4 Self-heating in large area devices: Organic LEDs . . . . . . . . . . . . . . . . . . . 218 9.5 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 10 Conclusion and Outlook 227 10.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 10.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 A Appendix 233 A.1 Appendix 1: Accuracy of the current gain . . . . . . . . . . . . . . . . . . . . . . . 233 A.2 Appendix 2: Fit of XRR measurements . . . . . . . . . . . . . . . . . . . . . . . . . 234 A.3 Appendix 3: Atomic force microscopy . . . . . . . . . . . . . . . . . . . . . . . . . 236 A.4 Appendix 4: Transmission electron microscopy . . . . . . . . . . . . . . . . . . . . 236 A.5 Appendix 5: Drift-diffusion simulation of nin devices . . . . . . . . . . . . . . . . . 239 A.6 Appendix 6: A simple parallel thermistor circuit . . . . . . . . . . . . . . . . . . . . 241 List of Figures 245 References 290
50

Charge Carrier Trap Spectroscopy on Organic Hole Transport Materials

Pahner, Paul 16 September 2016 (has links)
Electronic circuits comprising organic semiconductor thin-films are part of promising technologies for a renewable power generation and an energy-efficient information technology. Whereas TV and mobile phone applications of organic light emitting diodes (OLEDs) got ready for the market awhile ago, organic photovoltaics still lack in power conversion efficiencies, especially in relation to their current fabrication costs. A major reason for the low efficiencies are losses due to the large number of charge carrier traps in organic semiconductors as compared to silicon. It is the aim of this thesis to identify and quantify charge carrier traps in vacuum-deposited organic semiconductor thin-films and comprehend the reasons for the trap formation. For that, the techniques impedance spectroscopy (IS), thermally stimulated currents (TSC), and photoelectron spectroscopy are utilized. In order to assess the absolute energy of charge carrier traps, the charge carrier transport levels are computed for various hole transport materials such as MeO-TPD, pentacene, and ZnPc. Unlike inorganics, organic semiconductors possess in first-order approximation Gaussian distributed densities of states and temperaturedependent transport levels. The latter shift by up to 300 meV towards the energy gap-mid when changing from room temperature to 10 K as it is done for TSC examinations. The frequency-dependent capacitance response of charge carrier traps in organic Schottky diodes of pentacene and ZnPc are studied via impedance spectroscopy. In undoped systems, deep traps with depths of approx. 0.6 eV and densities in the order of 1016...1017 cm−3 are prevailing. For pentacene, the deep trap density is reduced when the material undergoes an additional purification step. Utilizing p-doping, the Fermi level is tuned in a way that deep traps are saturated. Vice versa, the freeze-out of p-doped ZnPc provides further insight into the influence of trap-filling, impurity saturation and reserve on the Fermi level position in organic semiconductors. Furthermore, charge carrier traps are investigated via thermally stimulated currents. It is shown that the trap depths are obtained correctly only if the dispersive transport of the released charge carriers until their extraction is considered. For the first time, the polarity of charge carrier traps in MeO-TPD, ZnPc, and m-MTDATA is identified from TSC’s differences in release time when spacer layers are introduced in the TSC samples. Simultaneously, tiny hole mobilities in the order of 10−13 cm2 Vs−1 are detected for low-temperature thin-films of the hole transporter material Spiro-TTB. It is shown for Spiro-TTB co-evaporated with the acceptor molecule F6-TCNNQ and a p-doped ZnPc:C60 absorber blend that the doping process creates shallow trap levels. Finally, various organic hole transport materials are examined upon their stability in water and oxygen atmosphere during sample fabrication and storage of the organic electronics. In case of pentacene, ZnPc, MeO-TPD, and m-MTDATA, hole traps are already present in unexposed thin-films, which increase in trap density upon oxygen exposure. A global trap level caused by oxygen impurities is found at energies of 4.7...4.8 eV that is detrimental to hole transport in organic semiconductors. / Elektronische Bauelemente aus Dünnschichten organischer Halbleiter sind Teil möglicher Schlüsseltechnologien zur regenerativen Energiegewinnung und energieeffizienten Informationstechnik. Während Fernseh- und Mobilfunkanwendungen organischer Leuchtdioden (OLEDs) bereits vor einiger Zeit Marktreife erlangt haben, ist die organische Photovoltaik (OPV) noch durch zu hohe Fertigungskosten in Relation zu unzureichenden Effizienzen unrentabel. Ein wesentlicher Grund für die niedrigen Wirkungsgrade sind Verluste durch die im Vergleich zu Silizium hohe Zahl an Ladungsträgerfallen in organischen Halbleitern. Ziel dieser Arbeit ist es, mittels Impedanz-Spektroskopie (IS), thermisch stimulierten Strömen (TSC) und Photoelektronenspektroskopie methodenübergreifend Ladungsträgerfallen in vakuumverdampften organischen Dünnschichten zu identifizieren, zu quantifizieren und ihre Ursachen zu ergründen. Um die Energie von Ladungsträgerfallen absolut beziffern zu können, wird zunächst für verschiedene Lochtransportmaterialien wie z.B. MeO-TPD, Pentazen und ZnPc die Transportenergie aus den in erster Ordnung gaußförmigen Zustandsdichten berechnet. Im Gegensatz zu anorganischen Halbleitern ist die Transportenergie in organischen Halbleitern temperaturabhängig. Sie verschiebt sich beim Übergang von Raumtemperatur zu 10 K, wie für TSC Untersuchungen bedeutsam, um bis zu 300 meV in Richtung der Bandlückenmitte. Mittels Impedanz-Spektroskopie wird die frequenzabhängige Kapazitätsantwort von Ladungsträgerfallen in organischen Schottky-Dioden aus Pentazen und ZnPc untersucht. In undotierten Systemen dominieren Defekte mit Tiefen um 0.6 eV, deren Dichte in der Größenordnung von 1016...1017 cm−3 liegt, sich aber im Fall von Pentazen durch einen zusätzlichen Materialaufreinigungsschritt halbieren lässt. Über p-Dotierung wird das Fermi-Level so eingestellt, dass tiefe Fallen abgesättigt werden können. Umgekehrt liefert das Ausfrieren von p-dotiertem ZnPc weitere Belege für den Einfluss von Fallenzuständen, Störstellen-Erschöpfung und Reserve auf das Fermi-Level in dotierten organischen Halbleitern. Im Weiteren werden Ladungsträgerfallen über thermisch stimulierte Ströme untersucht. Es wird gezeigt, dass die Fallentiefen nur dann konsistent bestimmt werden, wenn der dispersive Transport von freigesetzten Ladungsträgern zur Extraktionsstelle berücksichtigt wird. Durch Einführung von ’Abstandshalterschichten’ werden erstmalig über TSC die Polaritäten von Ladungsträgerfallen in MeO-TPD, ZnPc und m-MTDATA per Laufzeitunterschied bestimmt. Gleichzeitig werden geringste Löcherbeweglichkeiten in der Größenordnung von 10−13 cm2 Vs−1 für stark gekühlte Dünnschichten des Lochtransporters Spiro-TTB gemessen. Wie für Spiro-TTB koverdampft mit dem Akzeptormolekül F6-TCNNQ und p-dotierte Mischschichten der Absorbermaterialien ZnPc und C60 gezeigt, erzeugt Dotierung relativ flache Störstellen. Abschließend werden verschiedene organische Lochtransporter-Materialien auf ihre Stabilität in Wasser- und Sauerstoffatmosphären während der Prozessierung und der Lagerung fertiger elektronischer Bauelemente untersucht. Für Pentazen, ZnPc, MeO-TPD und m-MTDATA werden Löcherfallen in intrinsischen Dünnschichten nachgewiesen. Bei Kontakt mit Sauerstoff nimmt deren Defektdichte zu. Es findet sich ein universales Fallenniveau bei rund 4.7...4.8 eV, verursacht durch Sauerstoffverunreinigungen, welches den Lochtransport in organischen Halbleitern limitiert.

Page generated in 0.2609 seconds