• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 2
  • Tagged with
  • 9
  • 9
  • 9
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of Classes of Singular Boundary Value Problems

Ko, Eunkyung 11 August 2012 (has links)
In this dissertation we study positive solutions to a singular p-Laplacian elliptic boundary value problem on a bounded domain with smooth boundary when a positive parameter varies. Our main focus is the analysis of a challenging class of singular p-Laplacian problems. We establish the existence of a positive solution for all positive values of the parameter and the existence of at least two positive solutions for a certain explicit range of the parameter. In the Laplacian case, we also prove the uniqueness of the positive solution for large values of the parameter. We extend our existence and multiplicity results to classes of singular systems and to the case when a domain is an exterior domain. We prove our existence and multiplicity results by the method of sub and supersolutions and our uniqueness result by establishing apriori and boundary estimates. Such results are well known in the literature for the nonsingular case. In this study, we extend these results to the more difficult singular case.
2

Existência e não existência de soluções globais para uma equação de onda do tipo p-Laplaciano / Existence and non-existence of global solutions for a wave equation with the p-Laplacian operator

Campos, Fabio Antonio Araujo de 15 March 2010 (has links)
Neste trabalho estudamos a equação de ondas do tipo p-Laplaciano \'u IND. tt\' - \'DELTA\' IND.p u + \'(- \'DELTA\' POT. alpha\' u IND. t\' = \' [u] POT.q - 2 u, definida num domínio limitado limitado do \'R POT. n\', com 2 \' > ou = \' p < q e 0 < \' alpha\' < 1. Utilizando o método de Faedo-Galerkin provamos a existência de soluções fracas globais para dados iniciais pequenos. Para essas soluções estudamos também o decaimento polinomial da energia associada. A questão da não existência de soluções globais é considerada para o caso em que a energia inicial do sistema é negativa / In this work we study the p-Laplacian wave equation \'u IND. tt\' - \' DELTA\' IND p u + \'(- \'DELTA\' POT. \'alpha\' \' u IND. t\' = \'[u] POT. q - 2 u, defined in a bounded domain of \'R POT n\', with 2 \'> or =\' p < q and 0 < \' alpha\' < 1. By using the Faedo-Galerkin method we prove the existence of weak global solutions for small initial data. We also study the polynomial decay of the associate energy. The blow-up of solutions in finite time is considered for negative initial energy
3

Problèmes non-linéaires singuliers et bifurcation / Singular nonlinear problems and bifurcation

Bougherara, Brahim 11 September 2014 (has links)
Cette thèse s’inscrit dans le domaine mathématique de l’analyse des équations aux dérivées partielles non linéaires. Précisément, nous nous sommes intéressés à une classe de problèmes elliptiques et paraboliques avec coefficients singuliers. Ce manque de régularité pose un certain nombre de difficultés qui ne permettent pas d’utiliser directement les méthodes classiques de l’analyse non-linéaire fondées entre autres sur des résultats de compacité. Dans les démonstrations des principaux résultats, nous montrons comment pallier ces difficultés. Ceci suppose d’adapter certaines techniques bien connues mais aussi d’introduire de nouvelles méthodes. Dans ce contexte, une étape importante est l’estimation fine du comportement des solutions qui permet d’adapter le principe de comparaison faible, d’utiliser la régularité elliptique et parabolique et d’appliquer dans un nouveau contexte la théorie globale de la bifurcation analytique. La thèse se présente sous forme de deux parties indépendantes. 1- Dans la première partie (chapitre I de la thèse), nous avons étudié un problème quasi-linéaire parabolique fortement singulier faisant intervenir l’opérateur p-Laplacien. On a démontré l’existence locale et la régularité de solutions faibles. Ce résultat repose sur des estimations a priori obtenues via l’utilisation d’inégalités de type log-Sobolev combinées à des inégalités de Gagliardo-Nirenberg. On démontre l’unicité de la solution pour un intervalle de valeurs du paramètre de la singularité en utilisant un principe de comparaison faible fondé sur la monotonie d’un opérateur non linéaire adéquat. 2- Dans la deuxième partie (correspondant aux Chapitres II, III et IV de la thèse), nous sommes intéressés à l’étude de problèmes de bifurcation globale. On a établi pour ces problèmes l’existence de continuas non bornés de solutions qui admettent localement une paramétrisation analytique. Pour établir ces résultats, nous faisons appel à différents outils d’analyse non linéaire. Un outil important est la théorie analytique de la bifurcation globale qui a été introduite par Dancer (voir Chapitre II de la thèse). Pour un problème semi linéaire elliptique avec croissance critique en dimension 2, on montre que les solutions le long de la branche convergent vers une solution singulière (solution non bornée) lorsque la norme des solutions converge vers l’infini. Par ailleurs nous montrons que la branche admet une infinité dénombrable de "points de retournement" correspondant à un changement de l’indice de Morse des solutions qui tend vers l’infini le long de la branche. / This thesis is concerned with the mathematical study of nonlinear partial differential equations. Precisely, we have investigated a class of nonlinear elliptic and parabolic problems with singular coefficients. This lack of regularity involves some difficulties which prevent the straight-orward application of classical methods of nonlinear analysis based on compactness results. In the proofs of the main results, we show how to overcome these difficulties. Precisely we adapt some well-known techniques together with the use of new methods. In this framework, an important step is to estimate accurately the solutions in order to apply the weak comparison principle, to use the regularity theory of parabolic and elliptic equations and to develop in a new context the analytic theory of global bifurcation. The thesis presents two independent parts. 1- In the first part (corresponding to Chapter I), we are interested by a nonlinear and singular parabolic equation involving the p-Laplacian operator. We established for this problem that for any non-negative initial datum chosen in a certain Lebeque space, there exists a local positive weak solution. For that we use some a priori bounds based on logarithmic Sobolev inequalities to get ultracontractivity of the associated semi-group. Additionaly, for a range of values of the singular coefficient, we prove the uniqueness of the solution and further regularity results. 2- In the second part (corresponding to Chapters II, III and IV of the thesis), we are concerned with the study of global bifurcation problems involving singular nonlinearities. We establish the existence of a piecewise analytic global path of solutions to these problems. For that we use crucially the analytic bifurcation theory introduced by Dancer (described in Chapter II of the thesis). In the frame of a class of semilinear elliptic problems involving a critical nonlinearity in two dimensions, we further prove that the piecewise analytic path of solutions admits asymptotically a singular solution (i.e. an unbounded solution), whose Morse index is infinite. As a consequence, this path admits a countable infinitely many “turning points” where the Morse index is increasing.
4

Minimax methods for finding multiple saddle critical points in Banach spaces and their applications

Yao, Xudong 01 November 2005 (has links)
This dissertation was to study computational theory and methods for ?nding multiple saddle critical points in Banach spaces. Two local minimax methods were developed for this purpose. One was for unconstrained cases and the other was for constrained cases. First, two local minmax characterization of saddle critical points in Banach spaces were established. Based on these two local minmax characterizations, two local minimax algorithms were designed. Their ?ow charts were presented. Then convergence analysis of the algorithms were carried out. Under certain assumptions, a subsequence convergence and a point-to-set convergence were obtained. Furthermore, a relation between the convergence rates of the functional value sequence and corresponding gradient sequence was derived. Techniques to implement the algorithms were discussed. In numerical experiments, those techniques have been successfully implemented to solve for multiple solutions of several quasilinear elliptic boundary value problems and multiple eigenpairs of the well known nonlinear p-Laplacian operator. Numerical solutions were presented by their pro?les for visualization. Several interesting phenomena of the solutions of quasilinear elliptic boundary value problems and the eigenpairs of the p-Laplacian operator have been observed and are open for further investigation. As a generalization of the above results, nonsmooth critical points were considered for locally Lipschitz continuous functionals. A local minmax characterization of nonsmooth saddle critical points was also established. To establish its version in Banach spaces, a new notion, pseudo-generalized-gradient has to be introduced. Based on the characterization, a local minimax algorithm for ?nding multiple nonsmooth saddle critical points was proposed for further study.
5

Minimax methods for finding multiple saddle critical points in Banach spaces and their applications

Yao, Xudong 01 November 2005 (has links)
This dissertation was to study computational theory and methods for ?nding multiple saddle critical points in Banach spaces. Two local minimax methods were developed for this purpose. One was for unconstrained cases and the other was for constrained cases. First, two local minmax characterization of saddle critical points in Banach spaces were established. Based on these two local minmax characterizations, two local minimax algorithms were designed. Their ?ow charts were presented. Then convergence analysis of the algorithms were carried out. Under certain assumptions, a subsequence convergence and a point-to-set convergence were obtained. Furthermore, a relation between the convergence rates of the functional value sequence and corresponding gradient sequence was derived. Techniques to implement the algorithms were discussed. In numerical experiments, those techniques have been successfully implemented to solve for multiple solutions of several quasilinear elliptic boundary value problems and multiple eigenpairs of the well known nonlinear p-Laplacian operator. Numerical solutions were presented by their pro?les for visualization. Several interesting phenomena of the solutions of quasilinear elliptic boundary value problems and the eigenpairs of the p-Laplacian operator have been observed and are open for further investigation. As a generalization of the above results, nonsmooth critical points were considered for locally Lipschitz continuous functionals. A local minmax characterization of nonsmooth saddle critical points was also established. To establish its version in Banach spaces, a new notion, pseudo-generalized-gradient has to be introduced. Based on the characterization, a local minimax algorithm for ?nding multiple nonsmooth saddle critical points was proposed for further study.
6

O método das sub e supersoluções para um sistema do tipo (p,q)-Laplaciano. / The method of sub and supersolutions for a (p, q) -Laplaciano type system.

SILVA, José de Brito. 08 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-08T20:06:07Z No. of bitstreams: 1 JOSÉ DE BRITO SILVA - DISSERTAÇÃO PPGMAT 2013..pdf: 535262 bytes, checksum: eb7f0d4f7e69b8a4b86d3e1dc0f16739 (MD5) / Made available in DSpace on 2018-08-08T20:06:07Z (GMT). No. of bitstreams: 1 JOSÉ DE BRITO SILVA - DISSERTAÇÃO PPGMAT 2013..pdf: 535262 bytes, checksum: eb7f0d4f7e69b8a4b86d3e1dc0f16739 (MD5) Previous issue date: 2013-10 / Capes / Neste trabalho discutiremos a existência de soluções fracas positivas para um sistema do (p, q)-Laplaciano com mudança de sinal nas funções de peso, com domínio limitado e fronteira suave. Para garantir a existência de soluções fracas positivas primeiramente asseguraremos a solução positiva de um problema calásico que é o problema de autovalor do p-laplaciano, e do problema "linear"do p-laplaciano com condição zero de Dirichlet. Feito isto usaremos a existência destas soluções para assegurar que o problema em questão admite solução fraca positiva, via o método das sub-super-soluções / In this work we discuss the existence of weak positive solutions for a system (p, q)- Laplacian with change of sign in the weight functions with bounded domain and smooth boundary. To ensure the existence of weak positive solutions first will ensure a positive solution to a classic problem that is the problem eigenvalue p-Laplacian value, and the "linear"problem with zero condition p-Laplacian Dirichelt. Having done this we use the existence of these solutions to ensure that the problem in question admits a weak positive solution via the method of sub-super-solutions.
7

Existência e não existência de soluções globais para uma equação de onda do tipo p-Laplaciano / Existence and non-existence of global solutions for a wave equation with the p-Laplacian operator

Fabio Antonio Araujo de Campos 15 March 2010 (has links)
Neste trabalho estudamos a equação de ondas do tipo p-Laplaciano \'u IND. tt\' - \'DELTA\' IND.p u + \'(- \'DELTA\' POT. alpha\' u IND. t\' = \' [u] POT.q - 2 u, definida num domínio limitado limitado do \'R POT. n\', com 2 \' > ou = \' p < q e 0 < \' alpha\' < 1. Utilizando o método de Faedo-Galerkin provamos a existência de soluções fracas globais para dados iniciais pequenos. Para essas soluções estudamos também o decaimento polinomial da energia associada. A questão da não existência de soluções globais é considerada para o caso em que a energia inicial do sistema é negativa / In this work we study the p-Laplacian wave equation \'u IND. tt\' - \' DELTA\' IND p u + \'(- \'DELTA\' POT. \'alpha\' \' u IND. t\' = \'[u] POT. q - 2 u, defined in a bounded domain of \'R POT n\', with 2 \'> or =\' p < q and 0 < \' alpha\' < 1. By using the Faedo-Galerkin method we prove the existence of weak global solutions for small initial data. We also study the polynomial decay of the associate energy. The blow-up of solutions in finite time is considered for negative initial energy
8

Étude de quelques problèmes elliptiques et paraboliques quasi-linéaires avec singularités / Study of some quasilinear and singular elliptic and parabolic problems

Sauvy, Paul 04 December 2012 (has links)
Cette thèse s’inscrit dans le domaine mathématique de l’analyse des équations aux dérivées partielles non-linéaires. Plus précisément, nous avons fait ici l’étude de problèmes quasi-linéaires singuliers. Le terme "singulier" fait référence à l’intervention d’une non-linéarité qui explose au bord du domaine où ’équation est posée. La présence d’une telle singularité entraîne un manque de régularité et donc de compacité des solutions qui ne nous permet pas d’appliquer directement les méthodes classiques de l’analyse non-linéaire pour démontrer l’existence de solutions et discuter des propriétés de régularité et de comportement asymptotique de ces solutions. Pour contourner cette difficulté, nous sommes amenés à établir des estimations a priori très fines au voisinage du bord du domaine en combinant diverses méthodes : méthodes de monotonie (reliée au principe du maximum), méthodes variationnelles, argument de convexité, méthodes de point fixe et semi-discrétisation en temps. A travers, l’étude de trois problèmes-modèle faisant intervenir l’opérateur p-Laplacien, nous avons montré comment ces différentes méthodes pouvaient être mises en œuvre. Les résultats que nous avons obtenus sont décrits dans les trois chapitres de cette thèse : Dans le Chapitre I, nous avons étudié un problème d’absorption elliptique singulier. En utilisant des méthodes de sur- et sous solutions et des méthodes variationnelles, nous établissons des résultats d’existence de solutions. Par des méthodes de comparaison locale, nous démontrons également la propriété de support compact de ces solutions, pour de fortes singularités. Dans le Chapitre II, nous étudions le cas d’un système d’équations quasi-linéaires singulières. Par des arguments de point fixe et de monotonie, nous démontrons deux résultats généraux d’existence de solutions. Dans un deuxième temps, nous faisons une analyse plus détaillée de systèmes du type Gierer-Meinhardt modélisant des phénomènes biologiques. Des résultats d’unicité ainsi que des estimations précises sur le comportement des solutions sont alors obtenus. Dans le Chapitre III, nous faisons l’étude d’un problème d’absorption, parabolique singulier. Nous établissons par une méthode de semi-discrétisation en temps des résultats d’existence de solutions. Grâce à des inégalités d’énergie, nous démontrons également l’extinction en temps fini de ces solutions. / This thesis deals with the mathematical field of nonlinear partial differential equations analysis. More precisely, we focus on quasilinear and singular problems. By singularity, we mean that the problems that we have considered involve a nonlinearity in the equation which blows-up near the boundary. This singular pattern gives rise to a lack of regularity and compactness that prevent the straightforward applications of classical methods in nonlinear analysis used for proving existence of solutions and for establishing the regularity properties and the asymptotic behavior of the solutions. To overcome this difficulty, we establish estimations on the precise behavior of the solutions near the boundary combining several techniques : monotonicity method (related to the maximum principle), variational method, convexity arguments, fixed point methods and semi-discretization in time. Throughout the study of three problems involving the p-Laplacian operator, we show how to apply this different methods. The three chapters of this dissertation the describes results we get :– In Chapter I, we study a singular elliptic absorption problem. By using sub- and super-solutions and variational methods, we prove the existence of the solutions. In the case of a strong singularity, by using local comparison techniques, we also prove that the compact support of the solution. In Chapter II, we study a singular elliptic system. By using fixed point and monotonicity arguments, we establish two general theorems on the existence of solution. In a second time, we more precisely analyse the Gierer-Meinhardt systems which model some biological phenomena. We prove some results about the uniqueness and the precise behavior of the solutions. In Chapter III, we study a singular parabolic absorption problem. By using a semi-discretization in time method, we establish the existence of a solution. Moreover, by using differential energy inequalities, we prove that the solution vanishes in finite time. This phenomenon is called "quenching".
9

Estrutura topológica do conjunto de soluções de perturbações não lineares do p-laplaciano / Topological structure of the solution set of ninlinear perturbation of the p-laplacian

Marcial, Marcos Roberto 23 June 2014 (has links)
Submitted by Erika Demachki (erikademachki@gmail.com) on 2015-01-16T17:13:32Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Tese - Marcos Roberto Marcial - 2014.pdf: 1577179 bytes, checksum: ac1649c996b2193bad6b704f05eca30c (MD5) / Approved for entry into archive by Erika Demachki (erikademachki@gmail.com) on 2015-01-16T17:40:15Z (GMT) No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Tese - Marcos Roberto Marcial - 2014.pdf: 1577179 bytes, checksum: ac1649c996b2193bad6b704f05eca30c (MD5) / Made available in DSpace on 2015-01-16T17:40:15Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Tese - Marcos Roberto Marcial - 2014.pdf: 1577179 bytes, checksum: ac1649c996b2193bad6b704f05eca30c (MD5) Previous issue date: 2014-06-23 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, we study the topological structure of the solution set for a class of problems −Δpu = λ f (u)+μg(u)|∇u|p+Ψ(x) in Ω, u > 0 in Ω, u = 0 on ∂Ω, where Ω ⊂ IRN is a bounded domain with ∂Ω smooth, p, λ, μ are constants with p > 1, λ ≥ 0, μ ∈ IR and f ,g : (0,∞)→IR Ψ : Ω→IR are continuous functions. We will use Variational and Topological Methods, which includes minimization of energy functional and building connected components of solutions in a sense that we will define. Also we will employ arguments about the theory of regularity for p-Laplacian operator, approach arguments , maximum principles, results about sub and supersolutions and also arguments including monotonic type operators. / Neste trabalho estudamos a estrutura topológica do conjunto de soluções da classe de problemas −Δpu = λ f (u)+μg(u)|∇u|p+Ψ(x) em Ω, u > 0 em Ω, u = 0 sobre ∂Ω, onde Ω⊂IRN é um domínio limitado com fronteira ∂Ω regular, p, λ, μ são constantes com p > 1, λ ≥ 0, μ ∈ IR e f ,g : (0,∞)→IR, Ψ : Ω→IR são funções contínuas. Utilizamos Métodos Variacionais e Topológicos, que incluem minimização de funcionais energia e construção de componentes conexas de soluções em um sentido que definiremos. Empregamos também argumentos sobre a teoria da regularidade para o operador p- Laplaciano, argumentos de aproximação, bem como princípios de máximo, resultados sobre sub e supersoluções e também argumentos com operadores tipo monotônico.

Page generated in 0.0829 seconds