Spelling suggestions: "subject:"perturbações singular""
1 |
Bifurcações genéricas e relações de equivalência em campos de vetores suaves por partes /Perez, Otávio Henrique. January 2017 (has links)
Orientador: Tiago de Carvalho / Banca: Paulo Ricardo da Silva / Banca: Durval José Tonon / Resumo: Neste trabalho iremos abordar aspectos qualitativos e geométricos a respeito de campos de vetores suaves por partes. Nosso foco será estudar bifurcações locais e globais de codimensão um e dois e também algumas relações de equivalência para campos vetoriais suaves por partes definidos no plano. Classificaremos e caracterizaremos bifurcações genéricas por meio do retrato de fase e do diagrama de bifurcação dos campos envolvidos. Também faremos uma breve introdução sobre Sistemas Slow-Fast / Abstract: In this work we study qualitative and geometric aspects of piecewise smooth vector elds. Our focus is to study local and global bifurcations of codimension one and two and some equivalence relations for piecewise smooth vector elds de ned on the plane. We will classify and characterize generic bifurcations using the phase portrait and the bifurcation diagram of the vector elds involved. We also incorporate a brief introduction about Slow-Fast Systems / Mestre
|
2 |
Escoamentos incompressíveis com viscosidade pequena em torno de obstáculos distantes / Incompressible flows around a distant obstacle and the vanishing viscosity limitSilva, Luiz Alberto Viana, 1984- 08 October 2012 (has links)
Orientadores: Helena Judith Nussenzveig Lopes, Milton da Costa Lopes Filho / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-21T02:48:33Z (GMT). No. of bitstreams: 1
Silva_LuizAlbertoViana_D.pdf: 1535000 bytes, checksum: dc971611cbda75b2a6dd72a0bd80d05f (MD5)
Previous issue date: 2012 / Resumo: Um problema clássico em aberto é determinar se, em domínios com fronteira, soluções das equações de Navier-Stokes convergem, em um sentido apropriado, a uma solução das equações de Euler quando a viscosidade do fluido tende a zero. Baseados nesta importante questão, Kelliher, Lopes Filho e Nussenzveig Lopes examinaram, em [21], o comportamento de escoamentos com viscosidade pequena em domínios limitados com fronteira afastada, e descreveram condições precisas para que o escoamento limite fosse regido pelas equações de Euler no espaço todo. O presente trabalho é uma continuação natural do artigo mencionado, pois analisamos a dinâmica de escoamentos tridimensionais incompressíveis com viscosidade pequena em torno de obstáculos distantes. Mais precisamente, apresentamos uma estimativa fina que indica um comportamento assintótico para famílias de soluções das equações de Navier-Stokes em termos da viscosidade do escoamento e da localização do obstáculo, e contrastamos a referida estimativa com aquela demonstrada no contexto dos escoamentos em domínios limitados / Abstract: It is a classical open problem to determine if the vanishing viscosity limit can be established in the presence of boundaries. Based on this important issue, Kelliher, Lopes Filho and Nussenzveig Lopes studied in [21] the behavior of viscous incompresible flow in an expanding bounded domain when the viscosity is very small. To be more precise, these three authors described conditions under which the limiting flow satisfies the full space Euler equations. The present work is natural continuation of the aforementioned research since we consider 3D incompressible viscous flows around a distant obstacle along with the vanishing viscosity limit. Specificly, we obtain such a polynomial decay which shows an asymptotic behavior of families of 3D incompressible viscous flows, in the exterior of a single smooth obstacle, in terms of both the obstacle position and the small viscosity. Our approach allows us to compare our rate of convergence to that ones proved in [21] / Doutorado / Matematica / Doutor em Matemática
|
3 |
Sobre o número de soluções de um problema de Neumann com perturbação singular / On the number of solutions of a Neumann problem with singular perturbationNeves, Sérgio Leandro Nascimento, 1984- 20 August 2018 (has links)
Orientadores: Marcelo da Silva Montenegro, Massimo Grossi / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-20T13:53:15Z (GMT). No. of bitstreams: 1
Neves_SergioLeandroNascimento_D.pdf: 694748 bytes, checksum: 52d4109b562640e98c9a0a6098d9cb46 (MD5)
Previous issue date: 2012 / Resumo: Neste trabalho, consideramos uma classe de problemas de Neumann com perturbação singular e fazemos um estudo do número de soluções do tipo "single peak" que se concentram em um mesmo ponto. Estudamos casos de concentração no interior e na fronteira do domínio. Obtemos um resultado de multiplicidade exata que relaciona o número de tais soluções com o número de zeros estáveis de um campo vetorial associado / Abstract: In this work, we consider a class of Neumann problems with singular perturbation and we study the number of single peak solutions which concentrate at the same point. We study concentration in the interior and at the boundary of the domain. We obtain an exact multiplicity result which relates the number of such solutions with the number of stable zeros of an associated vector field. / Doutorado / Matematica / Doutor em Matemática
|
4 |
Equações com impasse e problemas de perturbação singular /Cardin, Pedro Toniol. January 2011 (has links)
Orientador: Paulo Ricardo da Silva / Banca: João Carlos da Rocha Medrado / Banca: Fernando de Osório Mello / Banca: Claudio Aguinaldo Buzzi / Banca: Vanderlei Minori Horita / Resumo: Neste trabalho estudamos sistemas diferenciais forçados, também conhecidos como sistemas de equações com impasse. Estudamos os casos onde tais sistemas são suaves e os casos onde são possivelmente descontínuos. Usando técnicas de perturbação singular obtemos alguns resultados sobre a dinâmica destes sistemas em vizinhanças dos conjuntos de impasse. No caso suave, a Teoria de Fenichel clássica e crucial para o desenvolvimento dos principais resultados. Para o caso com descontinuidades, uma teoria similar a Teoria de Fenichel 'e desenvolvida. Além disso, estudamos a bifurcação de ciclos limites das órbitas periódicas de um centro diferencial linear quando perturbamos tal centro dentro de uma classe de sistemas diferenciais lineares por partes com impasse / Abstract: In this work we study constrained differential systems, also known as systems of equations with impasse. We study the cases where such systems are smo oth and the cases where they are p ossibly discontinuous. Using singular p erturbation techniques we obtain some results on the dynamic of these systems in neighb orho o ds of the impasse sets. In smo oth case, the classical Fenichel's Theory is crucial for the development of the main results. For the case with discontinuity, a similar theory to Fenichel's Theory is develop ed. Moreover, we study the bifurcation of limit cycles from the p erio dic orbits of a linear differential center when we p erturb such center inside a class of piecewise linear differential systems with impasse / Doutor
|
5 |
Equações com impasse e problemas de perturbação singularCardin, Pedro Toniol [UNESP] 18 March 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:32:50Z (GMT). No. of bitstreams: 0
Previous issue date: 2011-03-18Bitstream added on 2014-06-13T18:07:15Z : No. of bitstreams: 1
cardin_pt_dr_sjrp.pdf: 479456 bytes, checksum: 52785d20631e0d11a14a241fde1ae7c9 (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Neste trabalho estudamos sistemas diferenciais forçados, também conhecidos como sistemas de equações com impasse. Estudamos os casos onde tais sistemas são suaves e os casos onde são possivelmente descontínuos. Usando técnicas de perturbação singular obtemos alguns resultados sobre a dinâmica destes sistemas em vizinhanças dos conjuntos de impasse. No caso suave, a Teoria de Fenichel clássica e crucial para o desenvolvimento dos principais resultados. Para o caso com descontinuidades, uma teoria similar a Teoria de Fenichel ´e desenvolvida. Além disso, estudamos a bifurcação de ciclos limites das órbitas periódicas de um centro diferencial linear quando perturbamos tal centro dentro de uma classe de sistemas diferenciais lineares por partes com impasse / In this work we study constrained differential systems, also known as systems of equations with impasse. We study the cases where such systems are smo oth and the cases where they are p ossibly discontinuous. Using singular p erturbation techniques we obtain some results on the dynamic of these systems in neighb orho o ds of the impasse sets. In smo oth case, the classical Fenichel’s Theory is crucial for the development of the main results. For the case with discontinuity, a similar theory to Fenichel’s Theory is develop ed. Moreover, we study the bifurcation of limit cycles from the p erio dic orbits of a linear differential center when we p erturb such center inside a class of piecewise linear differential systems with impasse
|
6 |
Ondas viajantes para um problema de EDP Parabólico / Travelling waves for a parabolic PDE problemGarzon, Brayan Mauricio Rodriguez 04 March 2016 (has links)
Submitted by Jaqueline Silva (jtas29@gmail.com) on 2016-09-08T17:05:05Z
No. of bitstreams: 2
Dissertação - Brayan Maurício Rodrigues Garzon - 2016.pdf: 1077822 bytes, checksum: 22f0f3e54ede997e3bbec84f88406474 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2016-09-08T17:05:21Z (GMT) No. of bitstreams: 2
Dissertação - Brayan Maurício Rodrigues Garzon - 2016.pdf: 1077822 bytes, checksum: 22f0f3e54ede997e3bbec84f88406474 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2016-09-08T17:05:21Z (GMT). No. of bitstreams: 2
Dissertação - Brayan Maurício Rodrigues Garzon - 2016.pdf: 1077822 bytes, checksum: 22f0f3e54ede997e3bbec84f88406474 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2016-03-04 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we study and show the existence of traveling waves solutions for a system of
parabolic partial differential equations (PPDE’s) which model in-situ combustion process
in porous medium. The in-situ combustion process is a thermal method to recovery oil
from petrolific reservoirs. The system deduction is making considering two layers of
porous rock and aplying the physical laws of balance energy, fuel mass, oxygen mass,
total gas mass, and the Darcy’s law which link the pressure and volumetric flow rate.
The traveling waves are obtained making an useful variavel change such that convert the
PPDE’s system in an ordinary differential equations system (ODE’s) where the existence
of heteroclinic orbits is equivalent to the existence of a traveling waves for the system of
PPDE’s which connect the burned state to the unburned state. In the proof of the existence
and uniquess of such orbits are used basic tools in Qualitative Ordinary Differential
Equations Theory, Dynamical Systems, Perturbation Theory and TravelingWaves Theory
with special mention to Singular Perturbation Theory and Melnikov Method inside of the
perturbation theory. / Neste trabalho estudamos e mostramos a existência de soluções do tipo onda viajante
para um sistema de equações diferenciais parciais parabólico (EDPP’s) que modela um
processo de combustão in-situ através de um meio poroso. A combustão in-situ é um
método térmico de recuperação de óleo de reservatórios petrolíferos. O sistema é deduzido
considerando duas camadas de rocha porosa e aplicando as leis físicas de balanço de
energia, de massa de combustível, oxigênio, gás total, e a lei de Darcy que relaciona a
pressão e a vazão volumétrica dos fluidos considerados. As ondas viajantes são obtidas
fazendo uma mudança de variáveis apropriada de modo que o sistema de EDPP’s se
transforme num sistema de equações diferenciais ordinárias (EDO’s), onde a existência
de uma orbita conectando dois equilíbrios corresponde-se com a existência de uma onda
viajante do sistema de EDPP’s, conectando um estado totalmente queimado com um
estado não queimado. Para a prova de existência e unicidade das referidas órbitas são
utilizadas ferramentas básicas da Teoria qualitativa das Equações Diferenciais Ordinárias,
Sistemas Dinâmicos, Teoria da Perturbação e Teoria de Ondas Viajantes, ressaltando
dentro da teoria da perturbação a técnica da Perturbação Singular Geométrica e o Método
de Melnikov.
|
7 |
Estudo qualitativo de campos suaves por partes via problema de perturbação singular / Qualitative study of piecewise smooth vector field via singular pertubation problemSantos, Mayk Joaquim dos 16 January 2017 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2017-02-16T11:16:03Z
No. of bitstreams: 2
Dissertação - Mayk Joaquim dos Santos - 2017.pdf: 2151565 bytes, checksum: 0afafa6be7f2f9c3ee2a27ca9bf4bf24 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-02-16T11:16:36Z (GMT) No. of bitstreams: 2
Dissertação - Mayk Joaquim dos Santos - 2017.pdf: 2151565 bytes, checksum: 0afafa6be7f2f9c3ee2a27ca9bf4bf24 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-02-16T11:16:36Z (GMT). No. of bitstreams: 2
Dissertação - Mayk Joaquim dos Santos - 2017.pdf: 2151565 bytes, checksum: 0afafa6be7f2f9c3ee2a27ca9bf4bf24 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2017-01-16 / In this work we will show that, given a piecewise smooth vector field, we can apply the regularization method and, from it, via blow-up, turn it into a singular perturbation problem. By doing that, we can use the tools from singular perturbation theory to perform a qualitative study of piecewise smooth vector fields. Finally, we will show that, through successive changes of coordinates, a singularity of a discontinuous submanifold of codimension k, where k=1 or k=2, can be transformed into a singularity of codimension 0 in order to study the qualitative behavior in this submanifold, where the Filippov’s convention holds. / Neste trabalho mostraremos que, dado um campo de vetores suaves por partes, podemos aplicar o método de regularização e, a partir deste, via “blow-up”, o transformamos em um problema de perturbação singular. Podemos, dessa forma, fazer uso das ferramentas da teoria de perturbação singular para realizar um estudo qualitativo dos campos de vetores suaves por partes. Por último, mostraremos que através de sucessivas mudanças de coordenadas podemos transformar uma singularidade de uma subvariedade de descontinuidade de codimensão k, onde k=1 ou k=2, em uma uma singularidade de codimensão 0 e estudar o comportamento qualitativo ao longo desta subvariedade, onde é válida a convenção de Filippov.
|
8 |
Ondas viajantes para um modelo de combustão em meios porosos e para a equação KPP. / Traveling waves for a combustion model in porous media and for the KPP equation.ARAÚJO, Bruno Sérgio Vasconcelos. 26 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-26T14:26:54Z
No. of bitstreams: 1
BRUNO SÉRGIO VASCONCELOS DE ARAÚJO - DISSERTAÇÃO PPGMAT 2011..pdf: 771076 bytes, checksum: d91b1038ca64863eb3d4ce5f4d5200d0 (MD5) / Made available in DSpace on 2018-07-26T14:26:54Z (GMT). No. of bitstreams: 1
BRUNO SÉRGIO VASCONCELOS DE ARAÚJO - DISSERTAÇÃO PPGMAT 2011..pdf: 771076 bytes, checksum: d91b1038ca64863eb3d4ce5f4d5200d0 (MD5)
Previous issue date: 2011-07 / Neste trabalho é apresentado um estudo sobre existência e unicidade de soluções
do tipo onda viajante para duas classes de equações diferenciais. A primeira delas
consiste de um sistema que modela a propagação de uma frente de temperatura em
meios porosos. Tal modelo é utilizado em métodos térmicos aplicados à recuperação
de óleo em engenharia de petróleo. Para este modelo são provados a existência e
unicidade de uma solução do tipo onda viajante para uma faixa de velocidades de
propagação a partir de um valor crítico. A existência é provada usando técnicas de
perturbação singular geométrica e a unicidade usando a integral de Melnikov. A segundaclasseconsistedeumaequaçãodotiporeação-difusãoconhecidanaliteratura
comoaequaçãoKPP.Estaequaçãoapareceemproblemasdereaçõesquímicasautocatalíticas
isotérmicas. Usando técnicas similares às da primeira classe são obtemos
resultados análogos de existência e unicidade de soluções do tipo onda viajante. O
trabalho termina com o estudo da estabilidade espectral daquelas ondas viajantes
com velocidades não críticas da equação KPP sob perturbações em um espaço de
Banach com peso. / In this work is presented a study about the existence and uniqueness of traveling
waves solutions for two classes of differential equations. The first of them is a
system modeling a temperature front propagation in a porous media. This model
come from a thermal method applied to oil recovery in petroleum engineering. For
this model it is proved the existence and uniqueness of a traveling wave solution for
a range of propagation velocities above a critical value. The existence is proved by
the geometric singular perturbation technique and the uniqueness by the Melnikov
Integral. The second class is a reaction-diffusion equation known in literature as
the KPP equation. This equation come from isothermal autocatalytic chemical
reactions problems. By analogous techniques used in the first class are obtained
analogous results on the existence and uniqueness of traveling wave solutions. The
workfinisheswiththespectralstabilitystudyofthetravelingwaveswithnoncritical
velocities of the KPP equation under perturbations in a weighted Banach space.
|
9 |
Sobre Regularização e Perturbação Singular / On Regularization and Singular PerturbationCASTRO, Ubirajara José Gama de 24 February 2011 (has links)
Made available in DSpace on 2014-07-29T16:02:17Z (GMT). No. of bitstreams: 1
UBIRAJARA JOSe GAMA DE CASTRO.pdf: 516477 bytes, checksum: c0a8c62202b2da19be1a2dc69a29e416 (MD5)
Previous issue date: 2011-02-24 / The main goal of this work is to study the behavior of Discontinuous Vector Fields in a
neighborhood of a tipical singularity (tangency) using for this the regularization process
developed by Teixeira and Sotomayor [9] and, using also, some technics of the Geometric
Singular Perturbation Theory [2]. / O principal objetivo deste trabalho é estudar o comportamento numa vizinhança de uma
singularidade típica (tangência) dos campos vetoriais descontínuos utilizando o processo
de regularização desenvolvido por Teixeira e Sotomayor [9] e perturbações singulares [2].
|
Page generated in 0.0861 seconds