• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • 2
  • Tagged with
  • 15
  • 15
  • 9
  • 9
  • 8
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence du métabolisme mitochondrial dans l'hématopoïèse : Analyse de la réponse adaptative des cellules de la moelle osseuse et des thymocytes au dysfonctionnement de l’OXPHOS / Influence of mitochondrial metabolism in hematopoieisis : Analysis of the adaptative response of bone marrow cells and thymocytes to OXPHOS dysfunction

Bertaux, Audrey 27 March 2018 (has links)
Les mitochondries sont des organelles qui jouent un rôle clé dans le métabolisme cellulaire en centralisant la production d'ATP à partir de nombreux substrats via la phosphorylation oxydative (OXPHOS). Les réactions enzymatiques impliquées dans ce processus régulent la prolifération, la différenciation, l'activation et l'auto renouvellement cellulaire. Le but de mon travail a été d'identifier le rôle de l'OXPHOS dans l'hématopoïèse et les mécanismes d'adaptation métabolique des cellules sanguines de la moelle, des lymphocytes B et des thymocytes à la dysfonction mitochondriale. L'atout majeur de cette étude est la génération de deux modèles murins déficients pour les protéines mitochondriales AIF ou NDUFS4 dans le système hématopoïétique. Nous avons observé que l'absence de ces protéines entraine des dysfonctions de l'OXPHOS sévère (AIF KO) ou modérée (NDUFS4 KO), entrainant des anomalies dans le développement hématopoïétique. Dans les deux modèles, en réponse au stress métabolique induit par la dysfonction de l'OXPHOS, les cellules de moelle activent la glycolyse anaérobie et la biogenèse mitochondriale tandis que les thymocytes favorisent l'assimilation et la dégradation des acides gras. Cette étude multiparamétrique, incluant des approches in vivo, ex vivo et in vitro, souligne l'importance de l'OXPHOS et du métabolisme mitochondrial dans le développement hématopoïétique. / By integrating different biochemical pathways and generating energy in form of ATP, through the electron transfer associated to oxidative phosphorylation (OXPHOS), mitochondria play a key role in cellular metabolism. In the hematopoietic cells, the mitochondrial metabolism appears implicated in proliferation, differentiation, activation and self-renewal regulation. In this context, the aim of my PhD work was to unravel the response of bone marrow (BM) cells, B-cells and thymocytes to OXPHOS dysfunction. To do that, we have developed two original hematopoietic cell-specific murine models deficient in the mitochondrial proteins AIF or NDUFS4. Severe (AIF KO) or moderate (NDUFS4 KO) OXPHOS dysfunction leads to pleiotropic consequences on hematopoietic development, including pancytopenia, BM aplasia, alterations in the development of the B-cell and erythroid lineages and T-cell developmental blockade at the immature stage. Strikingly, in response to OXPHOS dysfunction, BM cells stimulate anaerobic glycolysis and mitochondrial biogenesis, whereas thymocytes favor the assimilation and degradation of fatty acids. Overall my work, which included in vivo, ex vivo and in vitro approaches, underlines the relevance of OXPHOS and mitochondrial metabolism in the development of the hematopoietic cells.
2

Impact des phosphorylations sur tyrosine sur le métabolisme mitochondrial : régulation et impacts fonctionnels des phosphorylations induites par la Src kinase / Tyrosine phosphorylation impact on mitochondrial metabolism : regulation and functionnal impacts of phosphorylation mediated by the Src kinase

Hébert Chatelain, Etienne 26 September 2011 (has links)
La mitochondrie est une organelle très importante vu son implication dans plusieurs processus cellulaires. Elle produit notamment la majeure partie de l'énergie qui est consommée par la cellule, grâce aux processus d'oxydation phosphorylante (OXPHOS). La phosphorylation des enzymes impliquées dans les OXPHOS apparait comme une voie de régulation importante de la production énergétique. L'objectif de ce thèse était donc de comprendre comment les phosphorylations, et plus particulièrement, les phosphorylations sur tyrosine induites par la Src kinase influencent les OXPHOS. Il a donc été démontré qu'il existe, à l'intérieur des mitochondries, des voies de régulation de ces processus de phosphorylation induits par la Src kinase. Ces processus pouvant induire la phosphorylation de plusieurs enzymes mitochondriales, notamment plusieurs sous-unités des complexes du système des électrons et ainsi, grandement influencer les OXPHOS. Il a aussi été démontré que la Src kinase semble aussi présente dans les mitochondries de cellules cancéreuses, induisant la phosphorylation d'une sous-unité de la NADH-oxidoréductase et une augmentation du métabolisme énergétique mitochondrial. Cette régulation des OXPHOS dans les cellules cancéreuses par la Src kinase pourrait participer à l'établissement du phénotype hautement prolifératif de ces cellules. / Mitochondria are implicated in several key cellular processes. They are producing most part of the energy that is consumed by the cell via oxidative phosphorylation processes (OXPHOS). Phosphorylation of different components implicated in OXPHOS are known to constitute an important regulation pathway of energetic production. The objective of this thesis was to understand how tyrosine phosphorylation induced by the Src kinase could influence OXPHOS. First, it was shown that Src kinase mediated phosphorylation can be regulated directly in mitochondria, inducing phosphorylation of several mitochondrial proteins and different effects on OXPHOS. I also demonstrated that Src kinase is also present in mitochondria of cancer cells where it can lead to phosphorylation of NADH-oxidoreductase. This phosphorylation site is associated with increase of OXPHOS which could be implicated in the establishment of global phenotype of cancer cells.
3

Régulation des fonctions mitochondriales dans la cardioprotection : spécificité du rat

De Paulis, Damien 20 January 2011 (has links) (PDF)
Le postconditionnement cardiaque est paradoxal chez le rat. Certains auteurs ont montré que cet animal pouvait être protégé par le postconditionnement alors que d'autres ont montré qu'il était inefficace. L'objectif de notre travail était d'éclaircir cette situation et d'établir un lien entre la régulation des fonctions mitochondriales et la réussite ou l'échec du postconditionnement. Nous avons montré sur un modèle in vivo que le rat est sensible au postconditionnement cardiaque sous certaines conditions. Il semble que la réussite de cette thérapie nécessite à la fois une préservation de la phosphorylation oxydative, une inhibition de l'ouverture du mPTP et une diminution de la production de ROS. Nous avons également montré que le complexe I de la chaîne respiratoire régule l'ouverture du mPTP en liaison avec l'état de la Cyp D. L'ensemble de nos résultats montrent que le rat n'est pas réfractaire au postconditionnement, mais pour que celui-ci soit efficace, il est nécessaire de préserver l'intégrité des différentes fonctions mitochondriales. La cardioprotection et la régulation des fonctions mitochondriales sont donc spécifiquement liées au modèle utilisé
4

La modulation du métabolisme cellulaire par l'E3 Ubiquitine Ligase MARCH-1

Sabourin, Antoine 09 1900 (has links)
La relocalisation et la dégradation médiée par ubiquitination sont utilisées par la cellule pour contrôler la localisation et l’expression de ses protéines. L’E3 ubiquitine ligase MARCH1 est impliqué dans la régulation post-traductionnelle de CMH-II et de CD86. Dans ce mémoire, on propose un rôle additionnel à MARCH1. Nos résultats expérimentaux nous portent à croire que MARCH1 pourrait moduler le métabolisme cellulaire en favorisant la relocalisation et la dégradation d’enzymes impliquées dans la glycolyse. La grande majorité des cellules utilise la phosphorylation oxydative pour générer de l’ATP en présence d’oxygène. Dans un environnement hypoxique, cette dernière est non fonctionnelle et la cellule doit utiliser la glycolyse anaérobique pour produire son ATP. Une cellule cancéreuse à des besoins énergétiques supérieurs en raison de l’augmentation de sa biomasse et de sa prolifération incontrôlée. Pour subvenir à ces besoins, elle maximise sa production d’énergie en modifiant son métabolisme; c’est l’effet Warburg. On retrouve dans les cellules immunitaires des modifications similaires au métabolisme cellulaire suite à un signal d’activation. Ici, nous montrons que la respiration mitochondriale maximale, la réserve respiratoire et la glycolyse maximale sont diminuées dans les cellules présentatrice d’antigènes qui expriment MARCH1. Nous avons montré que MARCH1 était localisable au niveau de la mitochondrie, ce qui lui permet d’interagir avec les enzymes de la glycolyse. Finalement, nous avons quantifié l’expression de Eno1 et de LDHB par Western Blot, pour montrer une augmentation de l’expression de ces enzymes en absence de MARCH1. À la lumière de ces résultats, nous discutons des avantages que procure la diminution de l’expression de MARCH1 dans un contexte inflammatoire, suite à l’activation des cellules présentatrices d’antigènes. Ce phénomène permettrait une présentation antigénique plus efficace, une augmentation de la production d’énergie et une meilleure résistance aux ROS produits lors de la réponse inflammatoire. / Relocation and degradation mediated by ubiquitination are used by the cell to control the localization and the expression of proteins. E3 ubiquitin ligase MARCH1 is known to be involved in post-translational regulation of MHC-II and CD86. In this thesis, we suggest an additional role to MARCH1. Our experimental results lead us to believe that MARCH1 may modulate cellular metabolism by promoting the relocation and degradation of enzymes involved in glycolysis. The vast majority of cells generate ATP from oxidative phosphorylation in presence of oxygen. In a hypoxic environment, the latter is non-functional and the cell must use the anaerobic glycolysis to produce ATP. A cancerous cell requires more energy due to increased biomass and its uncontrolled proliferation. To meet these needs, it maximizes its energy production regardless of oxygen concentrations. Many studies have shown that aerobic glycolysis is preferred to oxidative phosphorylation in cancer cells, even if the two pathway are used simultaneously; it is described as the Warburg effect. Similar modification of the cellular metabolism is also found in immune cells after an activation signal to fulfill the cell functions. Here we show that the maximal mitochondrial respiration, the respiratory reserves and the maximal glycolysis are reduced in antigen-presenting cells that express MARCH1. Furthermore, we showed that MARCH1 can be localized on the mitochondria to interact with it’s target. Finally, we quantified the expression of Eno1 and LDHB by Western blot to show an increased expression of these enzymes in the absence of MARCH1. Thus, we discuss the benefits of the expression reduction of MARCH1 in an inflammatory context, following the activation of antigen presenting cells. This phenomenon would allow a better antigen presentation, an increased energy production and a greater resistance to ROS, produced during the inflammatory response.
5

L’adénosine et CD73 dans le potentiel métastatique et le métabolisme cellulaire

Delisle, Vincent 08 1900 (has links)
No description available.
6

Métabolisme mitochondrial cérébral chez les mâles et les femelles : rôle des stéroïdes endogènes et effet de la progestérone après ischémie transitoire focale / Brain Mitochondrial Metabolism in Males and Females : Endogenous Steroids Influence and Progesterone Effects after Transient Focal Ischemia

Gaignard, Pauline 10 June 2015 (has links)
Les stéroïdes sexuels ne sont pas impliqués uniquement dans la reproduction, ils sont également actifs dans le système nerveux où ils exercent des effets neuroprotecteurs. La mitochondrie a un rôle central dans la synthèse de l’énergie cellulaire et le contrôle du stress oxydant. Ces fonctions mitochondriales seraient une cible potentielle des effets des stéroïdes sexuels dans le cerveau. Deux approches ont été développées au cours de ce travail de thèse : une approche physiologique avec l’étude de l’influence des stéroïdes endogènes sur la fonction mitochondriale cérébrale et une approche thérapeutique en utilisant le modèle expérimental de l’ischémie cérébrale et du traitement par la progestérone. Pour analyser l’influence des stéroïdes endogènes, nous avons comparé le fonctionnement de la phosphorylation oxydative (consommation d’oxygène ou « respiration » et activités enzymatiques) ; le niveau du stress oxydant (pool de glutathion mitochondrial et inactivation oxydative de l’aconitase mitochondriale) et les taux cérébraux de stéroïdes dans des groupes de souris mâles et femelles soit jeunes adultes intactes ou gonadectomisées (3 mois) ; soit âgées (20 mois). Nous avons montré que la respiration NADH-dépendante est plus importante et que le stress oxydant mitochondrial est moins important chez les femelles que chez les mâles jeunes. Cette différence n’existe plus chez les souris âgées et est abolie après ovariectomie mais pas après orchidectomie, ce qui démontre l’influence des stéroïdes ovariens. Les taux cérébraux importants de prégnènolone et de progestérone chez les souris jeunes femelles par rapport aux jeunes mâles pourraient être impliqués dans le dimorphisme sexuel observé.Les modifications de la respiration mitochondriale induites par l’ischémie cérébrale sont également différentes entre les mâles et les femelles dans notre modèle. La respiration NADH-dépendante est diminuée dans les deux sexes, mais la respiration FADH2-dépendante est diminuée spécifiquement chez les femelles. Le stress oxydant mitochondrial est augmenté dans les deux sexes. L’administration de progestérone permet de restaurer la respiration FADH2-dépendante chez les femelles et la respiration NADH-dépendante ainsi que le pool de glutathion mitochondrial dans les deux sexes. Ce travail a permis de mettre en évidence des différences de fonctionnement mitochondrial cérébral chez les souris mâles et femelles jeunes et d’identifier la phosphorylation oxydative et le stress oxydant mitochondrial comme cibles d’action des effets neuroprotecteurs de la progestérone lors de l’ischémie cérébrale. / Besides the reproduction control, sex steroids also act on nervous system and exert neuroprotective effects. The mitochondria are centrally involved in cellular energy synthesis and oxidative stress regulation and constitute a potential target of steroids effects on brain. The aim of our study was twofold: (1) to study the influence of endogenous steroids on brain mitochondrial function in physiological conditions ; (2) to determine the effects of progesterone on mitochondrial function when used as therapeutic agent in an experimental model of cerebral ischemia. To analyze the influence of endogenous sex steroids, the oxidative phosphorylation system (oxygen consumption or “respiration” and enzymatic activities) and mitochondrial oxidative stress (glutathione pool and mitochondrial aconitase oxidative inactivation) were analyzed in brain mitochondria of young adult male and female mice (3-month-old), intact and after gonadectomy, and of aged male and female mice (20-month-old). Our results showed that young adult females have lower oxidative stress and a higher NADH-linked respiration rate as compared to young adult males. This sex difference was suppressed by ovariectomy but not by orchidectomy and no longer existed in aged mice. Concomitant analysis of brain steroids suggest that the major male/female differences in brain pregnenolone and progesterone levels may contribute to the sex differences observed in brain mitochondrial function.We have also shown that the decrease of brain mitochondrial respiration induced by ischemia is different according to sex in our experimental model. The NADH-linked respiration decreased after ischemia in males and female but a decrease of FADH2-linked respiration only occurred in females. Ischemia induced oxidative damages in both males and females. Progesterone restored NADH-linked respiration in both sexes and FADH2-linked respiration in females. Progesterone also preserved mitochondrial glutathione pool in both sexes. Our findings point to a sex difference in brain mitochondrial function of young male and female mice and identify the oxidative phosphorylation system and the mitochondrial oxidative stress as targets of the neuroprotective effects of progesterone.
7

ORGANISATION STRUCTURALE ET FONCTION METABOLIQUE DES UNITES ENERGETIQUES INTRACELLULAIRES (ICEUs) DANS LE MUSCLE CARDIAQUE ET SQUELETTIQUE :<br /><br />Conditions physiologiques et pathophysiologiques

Guerrero, Karen 02 December 2005 (has links) (PDF)
Ce travail de thèse s'intéresse principalement à la régulation de la respiration mitochondriale in situ dans les cellules de muscle cardiaque et squelettiques. L'oxygraphie, la spectrophotométrie et la microscopie confocale sur cellules isolées ou fibres musculaires perméabilisées à la saponine ont été utilisées ainsi que la modélisation mathématique. Dans les cellules musculaires, les mitochondries sont organisées de manière très précise tel un ‘cristal'. Cet arrangement intracellulaire serait la base d'une organisation à la fois structurale et fonctionnelle au sein desquelles les mitochondries sont couplées fonctionnellement par le cytosquelette aux autres organelles : réticulum sarcoplasmique et myofibrilles: les ICEUs (ou unités énergétiques intracellulaires). Au sein des cellules cardiaques, il existe 2 niveaux de régulation de la respiration mitochondriale par l'ADP exogène : la perméabilité de la membrane mitochondriale externe (VDAC) et des restrictions localisées de diffusion de l'ADP au voisinage des mitochondries. La Β-tubuline participe indirectement à ces mécanismes de régulation de même que la protéine STOP, une protéine associée aux microtubules. Ces données expérimentales sont utiles pour expliquer les aspects métaboliques de la loi de Frank-Starling dans le cœur. Cette notion d'ICEU peut servir de diagnostique lors de l'étude clinique du métabolisme énergétique chez des transplantés pulmonaires avant et après un programme d'entraînement à domicile.
8

Relations entre la structure des lipides membranaires de mitochondries et l'activité d'enzymes associées chez l'huître creuse Crassostrea gigas

Dudognon, Tony 31 January 2013 (has links) (PDF)
Tout d'abord considérés comme simples composants d'une barrière imperméable, il a été démontré que les lipides membranaires auraient en fait un rôle biologique bien plus important, pouvant modifier l'environnement des enzymes membranaires et moduler l'activité de ces dernières. Dans la thèse présentée ici, ces relations ont été étudiées dans les mitochondries de l'huître creuse Crassostrea gigas. Les bivalves subissent d'importants changements environnementaux et l'adaptation à ces changements peut passer par un remodelage des membranes, ce qui fait de ces animaux des modèles intéressants pour les études des relations entre la structure des membranes et les activités d'enzymes associées. Des huîtres ont été nourries en écloserie avec deux régimes d'algues monospécifiques, T-Iso et Chaetoceros gracilis, et un mélange équilibré de ces deux algues. Malgré d'importantes modifications de composition en acides gras induites par les différents régimes alimentaires, une grande stabilité des processus membranaires mitochondriaux a été observée. D'un autre côté, la comparaison entre des huîtres élevées en écloserie et des huîtres élevées dans leur milieu naturel a révélé d'importantes modifications de capacités mitochondriales, qui pourraient être liées à une modulation des classes de phospholipides et de leur insaturation. Ces différences ne peuvent pas s'expliquer par une influence des cycles tidaux dans la mesure où, malgré un changement de production d'ATP, l'activité des mitochondries a été montrée comme étant similaire chez les huîtres collectées en émersion et en immersion. L'homéostasie mitochondriale observée dans cette étude pourrait être un moyen pour les huîtres de faire face aux variations biotiques (disponibilité en nourriture) et abiotiques (disponibilité en oxygène) de l'environnement naturel de C. gigas, et de maintenir leurs fonctions physiologiques malgré ces variations.
9

La localisation dynamique d'un complexe respiratoire module la respiration bactérienne / Dynamic subcellular localization of a respiratory complex controls bacterial respiration

Alberge, Francois-Baptiste 13 July 2016 (has links)
En fournissant l’énergie nécessaire au métabolisme, la phosphorylation oxydative (OXPHOS) est un processus essentiel pour la plupart des organismes vivants. Pour faire face à diverses conditions métaboliques, l’efficacité des chaines respiratoires de la membrane composant l’OXPHOS doit être optimisée. Il est donc important de déterminer les mécanismes qui permettent de réguler l’efficacité de l’OXPHOS en fonction des besoins métaboliques.La question posée est la suivante : existe-t-il une organisation particulière des acteurs de l’OXPHOS dans la membrane des procaryotes qui puisse réguler l’activité de l’OXPHOS ?J’ai étudié l’organisation spatio-temporelle d‘un complexe respiratoire majeur de l’anaérobiose, la nitrate réductase NarGHI chez E. coli. Après avoir créé les outils pour la visualisation de ce complexe dans la cellule, j’ai montré l’existence d’une microcompartimentation de NarGHI aux pôles de la cellule lors d’une respiration en anaérobiose par microscopie optique à fluorescence. Dans un deuxième temps, j’ai montré le caractère dynamique de cette localisation en fonction des conditions métaboliques. L’anaérobiose et la présence d’un ∆pH suffisant sont des éléments requis pour permettre ce niveau d’organisation. Enfin, j’ai démontré que la microcompartimentation de NarGHI aux pôles des cellules augmente le flux d’électrons et l’efficacité des chaines respiratoires associées à la respiration du nitrate.L’ensemble des travaux réalisés au cours de ma thèse permet une meilleure compréhension du processus de l’OXPHOS chez les procaryotes et donne une nouvelle vision des moyens employés pour optimiser l’OXPHOS en fonction des différentes conditions métaboliques. / By providing the energy for the cellular metabolism, oxidative phosphorylation (OXPHOS) is an essential process for most living organisms. In order to thrive, the efficiency of membrane respiratory chains which constitute the OXPHOS must be optimized. Thus it is important to address mechanisms by which the efficiency of the OXPHOS is regulated in response to varying metabolic needs.The question addressed during this PhD is the following: does it exist a specific organization of the OXPHOS components in prokaryotic membranes and does it contribute to the regulation of the OXPHOS process?I have investigated the spatio-temporal organization of a respiratory complex, the nitrate reductase NarGHI of the E. coli bacterium. After creating the tools needed to visualize submicrometrically this complex in the unique cell, I have shown the existence of a polar microcompartimentation during anaerobic respiration using fluorescence microscopy. I have demonstrated the dynamic subcellular organization of NarGHI in response to metabolic conditions. Anaerobiosis and a sufficient ∆pH are cues required to promote such cellular organization. Finally, I have demonstrated that polar microcompartimentation of the complex increases the electron flux and the efficiency of the associated respiratory chains.Overall, these results provide a novel view on OXPHOS in bacterial cells by demonstrating that spatio-temporal organization of a respiratory complex tunes the overall efficiency of the process in response to environmental cues.
10

Modeling the respiratory chain and the oxidative phosphorylation / Modélisation de la Chaîne Respiratoire et de la Phosphorylation Oxydative

Heiske, Margit 11 December 2012 (has links)
Mitochondria are cell organelles which play an essential role in the cell energy supply providing the universal high energetic molecule ATP which is used in numerous energy consuming processes. The core of the ATP production, oxidative phosphorylation (OXPHOS) consists of four enzyme complexes (respiratory chain) which establish, driven by redox reactions, a proton gradient over the inner mitochondrial membrane. The ATP-synthase uses this electrochemical gradient to phosphorylate ADP to ATP. Dysfunctioning of an OXPHOS complex can have severe consequences for the energy metabolism and cause rare but incurable dysfunctions in particular tissues with a high energy demand such as brain, heart, kidney and skeleton muscle. Moreover mitochondria are linked to widespread diseases like diabetes, cancer, Alzheimer and Parkinson. Further, reactive oxygen species which are a by-product of the respiratory chain, are supposed to play a crucial role in aging. The aim of this work is to provide a realistic model of OXPHOS which shall help understanding and predicting the interactions within the OXPHOS and how a local defect (enzyme deficiency or modification) is expressed globally in mitochondrial oxygen consumption and ATP synthesis. Therefore we chose a bottom-up approach. In a first step different types of rate equations were analyzed regarding their ability to describe the steady state kinetics of the isolated respiratory chain complexes in the absence of the proton gradient. Here Michaelis-Menten like rate equations were revealed to be appropriate for describing their behavior over a wide range of substrate and product concentrations. For the validation of the equations and the parameter estimation we have performed kinetic measurements on bovine heart submitochondrial particles. The next step consisted in the incorporation of the proton gradient into the rate equations, distributing its influence among the kinetic parameters such that reasonable rates were obtained in the range of physiological electrochemical potential differences. In the third step, these new individual kinetic rate expressions for the OXPHOS complexes were integrated in a global model of oxidative phosphorylation. The new model could fit interrelated data of oxygen consumption, the transmembrane potential and the redox state of electron carriers. Furthermore, flux inhibitor titration curves can be well reproduced, which validates its global responses to local effects. This model may be of great help to understand the increasingly recognized role of mitochondria in many cell processes and diseases as illustrated by some simulations proposed in this work. / Les mitochondries sont l’usine à énergie de la cellule. Elles synthétisent l’ATP à partir d’une succession de réactions d’oxydo-réduction catalysées par quatre complexes respiratoires qui forment la chaîne respiratoire. Avec la machinerie de synthèse d’ATP l’ensemble constitue les oxydations phosphorylantes (OXPHOS). Le but de ce travail est de bâtir un modèle des OXPHOS basé sur des équations de vitesse simples mais thermodynamiquement correctes, représentant l’activité des complexes de la chaîne respiratoire (équations de type Michaelis- Menten). Les paramètres cinétiques de ces équations sont identifiés en utilisant les cinétiques expérimentales de ces complexes respiratoires réalisées en absence de gradient de proton. La phase la plus délicate de ce travail a résidé dans l’introduction du gradient de protons dans ces équations. Nous avons trouvé que la meilleure manière était de distribuer l’effet du gradient de proton sous forme d’une loi exponentielle sur l’ensemble des paramètres, Vmax et Km pour les substrats et les produits. De cette manière, j’ai montré qu’il était possible de représenter les variations d’oxygène, de ΔΨ et de ΔpH trouvés dans la littérature. De plus, contrairement aux autres modèles, il fut possible de simuler les courbes de seuil observées expérimentalement lors de la titration du flux de respiration par l’inhibiteur d’un complexe respiratoire donné.Ce modèle pourra présenter un très grand intérêt pour comprendre le rôle de mieux en mieux reconnu des mitochondries dans de nombreux processus cellulaires, tels que la production d’espèces réactives de l’oxygène, le vieillissement, le diabète, le cancer, les pathologies mitochondriales etc. comme l’illustrent un certain nombre de prédictions présentées dans ce travail.

Page generated in 0.147 seconds