• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 57
  • 36
  • 11
  • 4
  • 1
  • 1
  • Tagged with
  • 209
  • 56
  • 39
  • 36
  • 30
  • 25
  • 25
  • 23
  • 22
  • 21
  • 19
  • 19
  • 17
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Nouveaux monomères et (co)polymères éthers vinyliques phosphonés / Novel phosphonated vinyl ethers monomers and their (co)polymers

Iftene, Fadela 26 June 2012 (has links)
L'objectif de cette thèse est de synthétiser de nouveaux monomères éthers vinyliques porteurs de groupements phosphonate, dans le but d'étudier leur efficacité comme retardateurs de flamme. Les produits phosphorés s'avèrent de bonnes alternatives aux retardateurs de flamme halogénés, qui présentent des problèmes environnementaux. Dans un premier temps, nous avons réalisé la synthèse des éthers vinyliques phosphonés par transéthérification de l'éthylvinyl éther en présence d'alcools phosphonés. Ensuite, nous avons choisi la copolymérisation radicalaire (A/D) afin de préparer des copolymères à base d'éthers vinyliques phosphonés et de différents accepteurs. Des études cinétiques par Infra-Rouge en temps réel et plusieurs méthodes d'analyses ont été effectuées afin de caractériser ces copolymères. Dans un second temps, nous avons réalisé des cinétiques de photocopolymérisation radicalaire du 2-vinyloxyéthylphosphonate de diméthyle avec une série de monomères accepteurs, par exemple, les maléimides avec qui ce monomère forme des complexes forts. La photopolymérisation cationique a aussi été réalisée et offre de meilleurs résultats que la photopolymérisation radicalaire. Un bilan de tous les polymères phosphonés a été réalisé dans le but de tester leurs performances en tant que retardateurs de flamme. Les caractérisations thermogravimétriques et microcalorimétriques de ces copolymères ont montré une quantité importante de résidus et des valeurs de chaleur dégagée encourageantes en vue d'une utilisation de ceux-ci en tant que retardateurs de flamme. / The aim of this work is the synthesis of new vinyl ethers monomers bearing phosphonate groups, in order to study their efficiency as flame retardants. Phosphorus products are known to be a good alternative to halogenated flame retardants, which are involved in environmental problems. Initially, the synthesis of phosphonated vinyl ethers was performed by trans-etherification of ethylvinyl ether in the presence of phosphonated alcohols. Then, the radical copolymerization (A/D) was used to prepare copolymers based on phosphonated vinyl ether and various electron-accepting monomers. Kinetic studies by real-time Infrared and several methods of analyzes were used to characterize these copolymers. In a second step, the radical photocopolymerization of 2-dimethylvinyloxyethylphosphonate was led with a series of electron-accepting monomers, for instance maleimides which form strong complexes with vinyl ethers. The cationic photopolymerization of these phosphonated vinyl ethers is also possible and affords better results than radical photopolymerization. An assessment of all phosphonated polymers was performed in order to test their performances as flame retardants. Thermogravimetric and microcalorimetric characterizations showed good amount of released residues showing that these copolymers are good candidates as flame retardants.
132

Estudos do meio reacional da síntese de polianilina e poli-o-toluidina / Studies of the reaction media of polyaniline and poly-o-toluidine synthesis

Machado, Douglas Silva 24 April 2007 (has links)
Foram realizadas análises por espectros absorção, fluorescência e excitação para anilina e orto-toluidina em água, com e sem a adição de HCl. Os resultados indicam que as propriedades do meio dependem das concentrações de amina e de HCl, sendo observado principalmente pelos espectros de excitação de fluorescência. Espectros de 1H RMN parecem indicar um efeito de agregação destas moléculas pelas mudanças observadas na forma e na posição dos sinais dos prótons. Foi realizada a síntese de polianilina e de poli-o-toluidina, sendo o acompanhamento efetuado por espectroscopia ultravioleta-visível e pela técnica de perfil de potencial, indicando similaridades entre os dois métodos. As sínteses de polianilina e de poli-o-toluidina também foram realizadas via fotoquímica, sendo os produtos de reação caracterizados por espectroscopia ultravioleta visível e por infravermelho. / The aim this work was to study aniline and orto-toluidine in aqueous solution with or without HCl addition. The analyses were realized by absorption and fluorescence spectrum. The results show that the proprieties are relation on amines and chloridric acid concentrations, especially it was observed by fluorescence excitation spectrum. Changes in protons sign position and in the form can be indicating an effect of aggregation with these molecules though 1H RMN spectrum. UV-Vis spectroscopy and open circuit potential measurements were used for monitor the synthesis of polyaniline and the poly-o-toluidine. Theses methods show similar results. Also, the synthesis of polyaniline and the poly-o-toluidine were realized by photochemistry via, which the reaction products were characterized by UV-Vis spectroscopy and FTIR.
133

Fabricação de microestruturas com múltiplas dopagens via fotopolimerização por absorção de dois fótons / Fabrication of multi-doped microstructures by two-photon absorption photopolymerization

Otuka, Adriano José Galvani 23 March 2012 (has links)
Microestruturas poliméricas dopadas despertam grande interesse nas áreas de óptica, fotônica e biologia, pois viabilizam a produção de dispositivos com propriedades específicas. Contudo, a dopagem de microestruturas com mais de um dopante é pouco explorada na literatura. Nesse contexto, o presente trabalho propõe o desenvolvimento de uma metodologia para fabricar microestruturas poliméricas com múltiplas dopagens, através de fotopolimerização por absorção de dois fótons. Esta técnica de microfabricação faz uso de um feixe laser pulsado (Ti:safira, 780 nm, 100 fs) que é focalizado, através de lentes de microscópio, no volume de uma resina polimérica contendo fotoiniciador composto orgânico responsável por iniciar o processo de polimerização. A intensidade dos pulsos de femtossegundos é alta o bastante para que processos não lineares absorcivos, nesse caso absorção de dois fótons, ocorram apenas no volume focal, induzindo a polimerização apenas ao seu redor. Como dopantes utilizamos os corantes fluorescentes Rodamina e Fluoresceína. Para averiguar a eficácia do sistema de fabricação desenvolvido, produzimos estruturas com apenas um dopante, e as caracterizamos utilizando microscopia óptica e eletrônica. Microestruturas contendo mais de um dopante, em regiões distintas, foram produzidas através da fabricação sequencial de estruturas dopadas. Essa metodologia permite a produção de estruturas com dupla dopagem, as quais apresentam boa integridade estrutural e preservam as propriedades ópticas dos dopantes. Por fim, visando aplicações em biologia, empregamos a metodologia desenvolvida para fabricar microambientes dopados, em sítios específicos, com o antibiótico cloridrato de ciprofloxacino. Estudos iniciais do desenvolvimento da bactéria Escherichia coli nestes microambientes foram feitos, com o objetivo de demonstrar a viabilidade para este tipo de aplicação. / Doped microstructures have attracted interest in optics, photonics and biology, because they allow the production of devices with specific proprieties. However, doping microstructures with more than one dopant is not much exploited in the literature. In this work we demonstrate the development of a method to fabricate multi-doped microstructures by two-photon absorption polymerization. For the microfabrication we used a femtosecond laser (Ti:sapphire laser, 780 nm, 100 fs) that is focused, by a microscope objective, in the volume of a polymeric resin containing a photoinitiator organic compound responsible to initiate the polymerization. The intensity of the femtosecond pulses is high enough to induced two-photon absorption, and consequently polymerization, only around the focal volume. As dopants we employed the fluorescent dyes Rhodamine and Fluorescein. In order to verify the microfabrication system, we have initially fabricated microstructures with only one dopant, which were characterized using optical and electron microscopies. Microstructures containing more than one dopant, in distinct regions, were produced by sequential fabrication of single doped structures. Such method allowed the fabrication of double doped structures, which presents good structural integrity and maintain the characteristic optical properties of the dyes. Finally, aiming at biological applications, we employed the developed method to fabricate micro-environments doped, in specific sites, with the antibiotics ciprofloxacin hydrochloride. Initial studies on the growth of the bacterium Escherichia coli, on such microstructures, were carried out to demonstrate the feasibility for such type of application.
134

Fabricação de microestruturas poliméricas opticamente ativas integradas com nanofibras de vidro / Fabrication of optically active polymeric microstructures integrated with glass nanofibers

Gomes, Vinicius Tribuzi Rodrigues Pinheiro 19 April 2013 (has links)
Este trabalho demonstra o uso da fotopolimerização via absorção de dois fótons na produção de microestruturas dopadas com compostos orgânicos e nanopartículas de Au. A capacidade de produção de microestruturas com propriedades variadas é extremamente relevante, pois viabiliza o desenvolvimento de uma nova geração de dispositivos ópticos. Além disso, realizamos a conexão entre as microestruturas fabricadas e fontes de excitação, por meio de nanofibras de vidro. A integração entre essas estruturas, e destas com meios externos de excitação e detecção, é um passo essencial para o desenvolvimento de microcircuitos fotônicos, que podem representar uma nova revolução tecnológica, a exemplo do que foram os microcircuitos eletrônicos. Exploramos as possibilidades de dopagem da resina usando: (i) um composto fluorescente, (ii) um composto com birrefringência fotoinduzida e (iii) nanopartículas de ouro. Microestruturas contendo Rodamina B apresentaram boa integridade estrutural e fluorescência, tendo sido usadas para demonstrar a conexão dos microelementos com meios externos de excitação. Através de nanofibras e de micromanipuladores, comprovamos a capacidade de excitação seletiva de microestruturas através do guiamento da luz de um laser de Ar+. Estruturas birrefringentes foram obtidas pela dopagem com o azopolímero HEMA-DR13. Montamos um aparato que permite a observação da dinâmica de indução de birrefringência nas microestruturas, o qual representa um grande passo na caracterização deste tipo de microelementos. Com base nesse estudo, foi possível alcançar uma fração de birrefringência residual nas microestruturas de 35%. Por fim, propomos um método para a dopagem de microestruturas poliméricas com nanopartículas de ouro. Por se tratar de um método de dopagem indireta, ele evita interferências das nanopartículas no processo de microfabricação. Dessa forma, este trabalho abre possibilidades para a fabricação de microdispositivos funcionais com diversas propriedades especiais, bem como a integração desses microdispositivos em circuitos fotônicos. / This work demonstrates the use of two-photon photopolymerization in the fabrication of microstructures doped with organic compounds and gold nanoparticles. The ability to produce microstructures with different properties is extremely relevant, because it opens the possibility for the development of a new generation of optical devices. Besides, we have accomplished the connection between fabricated microstructures and excitation sources by means of silica nanowires. The connection among structures and with external means of detection and excitation is an essential step towards the development of new technological breakthrough in photonic microcircuits. We have explored the resin doping possibilities by using: (i) a fluorescent compound, (ii) a photoinduced birefringent compound and (iii) gold nanoparticles. Rhodamine B doped microstructures present good structural integrity and fluorescence, and were able to demonstrate the connection of microelements with external means of excitation. Through the use of nanofiber tapers and micromanipulators, we have shown the selective excitation capability of this method by guiding Ar+ laser light onto one single microstructure. Birefringent samples were obtained by doping the resin with the azopolymer HEMA-DR13. We have assembled an apparatus that allows observing the photoinduced birefringence dynamics, which represents a great step towards a better characterization of these kinds of microelements. Based on this study we were able to achieve a residual birefringence fraction of 35% in microscopic samples. Finally, we have proposed a new method for the doping of polymeric microstructures with gold nanoparticles. Because it is an indirect doping technique, it prevents gold nanoparticles from interfering with the microfabrication process. Thus, the work presented here paves the way for the fabrication of functional microdevices with a wide range of special properties, as well as for the connection of these microstructures for photonic microcircuit.
135

Control of swelling, electrochemical, and elongation properties of photopolymers through the modification of structure

McLaughlin, Jacob Ryan 01 May 2018 (has links)
Modifying photopolymer structure on the molecular and nanoscale level permits tailoring materials for use in a wide variety of applications. Understanding the fundamentals behind polymer structure at these levels permits the control of material properties. This work gains insight into the modification of structure on two levels, the nanoscale by use of structure templates and the molecular scale through the modification of polymer network formation. Lyotropic liquid crystals (LLCs) are a type of self-assembling surfactant system, which in combination with photopolymerization can be used to template ordered nanostructure within polymer materials. This structure can be controlled and utilized to influence the properties of a polymer material. This research examines materials used as templating agents and the types of nanostructures that may be obtained. Additionally, their effects upon the LLC templating process and material properties is determined. Structured polymers are created using LLC templates in pursuit of materials for use in water purification processes and electrochemical devices. Through a more complete understanding of the fundamentals of the templating process, the work presented here extends the LLC templating technique to a greater variety of materials and applications in the water remediation and energy storage fields. The second portion of this research is the use of reversible addition fragmentation chain transfer (RAFT) to modify photopolymer networks. RAFT agents are utilized to control the propagation reaction to create networks with increased homogeneity between network crosslinks. By increasing the uniformity of the polymer network, increases in polymer elongation and toughness as well as decreases in polymer modulus are observed. The effects of RAFT agent addition on the network formation and the final properties of the photopolymer is examined. By understanding the mechanisms behind this modification technique, photopolymers can be extended into new applications where increased elongation and toughness is valued.
136

Développement d'une résine thermoplastique photopolymérisable dans le cadre d'une application photocomposite / Development of a photopolymerizable thermoplastic resin for a photocomposite application

Charlot, Vincent 13 November 2015 (has links)
Ce manuscrit rassemble les recherches effectuées dans le cadre du développement d’une résine thermoplastique photopolymérisable pour une application composite. Ce travail a été effectué dans le cadre du projet COMPOFAST, lancé par ARKEMA à la fin de l’année 2012. Ce projet, accompagné par l’ADEME, a pour but, la mise au point d’une nouvelle génération de composites thermoplastiques à haute cadence de production pour la conception de pièces pour l’automobile. L’intérêt de ces matériaux, et donc du projet, est l’allégement des véhicules par réduction de la masse des pièces utilisées et la recyclabilité des matrices choisies. A travers ce projet, plusieurs techniques ont été envisagées. Dans le cadre de cette thèse c’est le procédé QCM, pour Quick Composite Molding, qui a été étudié au sein du LPIM. L’utilisation de la lumière pour assurer la polymérisation de la matrice rend novateur ce procédé. Cette étape dite de photopolymérisation est connue pour être l’un des moyens les plus rapides pour former une résine solide à partir d’une formulation liquide. Le procédé repose également sur la dépose automatisée de bandes de préimprégnés sur un moule ouvert afin d’augmenter la vitesse de production des pièces de composites. Techniquement, deux étapes ont été prévues : la première consiste en la réalisation des bandes de préimprégnés de manière automatique. La deuxième étape est la conception du composite par dépose automatique sur un moule des bandes de renforts préirradiés à laquelle succède une étape finale d’irradiation pour obtenir le composite requis. / This manuscript brings together research in the development of a light-curing thermoplastic resin for a composite application. This work was performed under the COMPOFAST project launched by Arkema at the end of 2012. This project, along with the ADEME, aims at the development of a new generation of thermoplastic composites with high production rates for designing automobile parts. The advantages of these materials, and therefore of the project, is making vehicles lighter by reducing the mass of the parts used and the recyclability of the selected matrices. Through this project, several techniques were considered. As part of this thesis, it's the QCM method for Quick Composite Molding, which has been studied within the LPIM. The use of light to ensure the polymerization of the matrix makes this method innovative. This step called photopolymerization is known to be one of the fastest ways to form a solid resin from a liquid formulation. The method also relies on the automated removal prepreg bands on an open mold in order to increase the rate of production of composite parts. Technically, two stages were planned: the first involves the automatically construction of prepreg tapes. The second step is the design of the composite by automatically depositing prepregs on the mold which is followed by a final step of irradiation to give the desired photocomposite.
137

Des systèmes amorceurs hautes performances pour les photopolymérisations radicalaires, cationiques ou radicalaires contrôlées / Initiators systems high performance for radical, cationic or radical controlled photopolymerization

Telitel, Sofia 24 September 2015 (has links)
Des photoamorceurs construits sur une chimie radicalaire originale sont développés. Les photopolymères présentent des avantages écologiques (pas de COV) et économiques. Ils sont utilisés dans les adhésifs, les encres, les revêtements, l’optique… Une première étude est réalisée sur la photopolymérisation radicalaire (FRP) en présence d’organoboranes. Sous l’action de la lumière, des radicaux boryles sont formés. Ces composés convertissent des radicaux peroxyle (stables) en radicaux boryles très réactifs sous air. Ils permettent ainsi une polymérisation radicalaire en milieu aéré. Avec l’ajout de colorant, la photopolymérisation a lieu sous lumière visible.Une seconde étude est menée sur la photopolymérisation cationique (FRPCP). Des sources d’irradiation douces (lampe halogène, LED,…), peu énergivores et peu coûteuses sont employées. Des composés photosensibles ayant de fortes propriétés d’absorption dans le visible sensibilisent les sels d’iodonium. Cette décomposition permet d’amorcer la polymérisation cationique sous faible intensité lumineuse.Enfin, la polymérisation radicalaire contrôlée/vivante induite par de la lumière UV et visible est présentée. Deux modes de polymérisation contrôlée sont discutés : la NMP2 (Nitroxide Mediated PhotoPolymerization) et l’ATRP2 (Atom Transfer Radical PhotoPolymerization). En NMP2, les alcoxyamines ont la particularité de se réactiver sous irradiation lumineuse. En ATRP2, de nouveaux complexes d’iridium et de fer ayant de bonnes propriétés d’absorption dans le visible sont employés comme photocatalyseurs. Les résultats montrent un caractère contrôlé/vivant lors de la photopolymérisation du MMA. / Photoinitiators constructed on an original radical chemistry are developed. Photopolymers have ecological advantages (no VOCs) and economic. They are used in adhesives, inks, coatings, optical...A first study is carried out on the radical curing (FRP) in the presence of boron molecules. Under light irradiation, boryls radicals are formed. These compounds convert peroxyl radicals (stable) in boryls radicals highly reactive under air. They allow a radical polymerization in aerated medium. With the addition of dye, the photopolymerization is carried out under visible light.A second study was conducted on the cationic curing (FRPCP). Soft radiation sources (halogen lamp, LED, ...), energy efficient and inexpensive are used. Photosensitive compounds having high absorption properties in the visible sensitize iodonium salts. This decomposition allows initiating the cationic polymerization under low light intensity.Finally, controlled/living radical polymerization induced by UV and visible light is presented. Two controlled polymerization methods are discussed: NMP2 (Nitroxide Mediated Photopolymerization) and ATRP2 (Atom Transfer Radical Photopolymerization). In NMP2, alkoxyamines have the particularity to be reactivated under light irradiation. In ATRP2, new iridium complexes and iron having good absorption properties in the visible range are used as photocatalysts. The results show a controlled/living character during the photopolymerization of MMA.
138

Experimental investigations and theoretical modeling of large area maskless photopolymerization with grayscale exposure

Conrad, Matthew 18 November 2011 (has links)
Large Area Maskless Photopolymerization (LAMP) is a technology being developed to fabricate integrally-cored ceramic molds for the investment casting of turbine airfoils. In LAMP, ultraviolet (UV) light in the form of bitmap images is projected from a spatial light modulator (SLM) onto a photocurable ceramic material system (PCMS). Exposed and unexposed regions are determined through black and white portions of the bitmaps, respectively. UV light induces photopolymerization and the formation of an insoluble solidified network. Three-dimensional structures are built layer-by-layer through sequential application and curing of PCMS layers of 100 micron thickness. To date, ceramic molds fabricated using LAMP have been successfully implemented in investment casting of single-crystal turbine airfoils without internal cooling schemes. Two particularly important challenges for the fabrication of airfoil molds with internal cooling passages are: (a) fabrication of unsupported structures in the mold geometry and; (b) mitigation of internal stresses that arise during layer-by-layer build-up due to volumetric shrinkage during photopolymerization. Unsupported geometries arise in nearly every cored airfoil mold and often in a location where support structures cannot be easily removed after fabrication. Internal stresses generated by volumetric shrinkage can lead to cracking during binder burnout (BBO), sintering and casting. This thesis aims to simultaneously address these challenges through the investigation of grayscale exposure to control the degree of monomer conversion during photopolymerization of single and multiple layers. The effective intensity of the UV light incident on the monomer system can be reduced by selectively turning off pixels within the nominally "white" or "on" regions of the projected bitmaps, effectively producing an exposure with a lower light intensity. In an effort to reduce internal stresses in the mold, the grayscale exposure can be tuned to create regions of uncured or partially cured monomer within the mold geometry to reduce the connectivity between cured regions and thus reduce the net effect of volumetric shrinkage. Grayscale exposure can also be used to generate support structures with a low degree of polymerization to create a gel state beneath and surrounding the unsupported segments of the mold, which can be washed away after completion of mold fabrication. In order to successfully utilize grayscale techniques in LAMP, the cure depth must be predicted. This is accomplished through cure depth measurements at different exposure times to develop a "working curve." In addition, the degree of monomer conversion and its relation to cure depths resulting from grayscale exposure must be understood. Measurements of the degree of conversion are obtained through Fourier Transform Infrared spectroscopy (FTIR). Empirical models are developed and compared to theoretical predictions. Also, the scattering length pixelation model is introduced as a technique to predict the light intensity distribution within the PCMS for exposure patterns at multiple length scales. Results from these grayscale investigations are then applied to LAMP and the effectiveness of grayscale to fabricate unsupported geometries and internal stresses from volumetric shrinkage is discussed.
139

Dibenzophenazine And Quinoxaline Derivatives As Novel Visible Photosensitizers For Diaryliodonium Salts

Kolay, Merve 01 July 2011 (has links) (PDF)
This study is focused on the use of visible light in photoinitiated cationic polymerization. Photoinitiated polymerization of oxiranes, vinyl ethers, and other vinyl monomers was achieved. In doing so, (2-(2,3 dihydrobenzo [b][1,4]dioxin-6-yl)-3-(2,3-dihydrobenzo[b]-[1,4]dioxin-7-yl)-5-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-8-(2,3-dihydrothieno[3,4-b][1,4]dioxin-7yl) quinoxaline) (DBQEd) and poly(2,3,5,8-tetra(thiophen-2-yl)quinoxaline) (TTQ), two dibenzo[a,c]phenazine derivatives / 10,13-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)dibenzo[a,c] phenazine (PHED) and 10,13-bis(4-hexylthiophen-2-yl)dibenzo[a,c]phenazine (PHEHT) were utilized as the photosensitizers for diaryliodonium salt photoinitiators. Novel dyes based on the dibenzo[a,c]phenazine and quinoxaline skeleton were shown to be efficient in carrying out the cationic photopolymerizations of a wide variety of epoxide, oxetane, and vinyl monomers at room temperature upon irradiation with long-wavelength UV and visible light. The polymerizations were initiated at room temperature in the presence of diphenyliodonium hexafluorophosphate (Ph2I+PF-6) and monitored by optical pyrometry (OP). The photopolymerization of an epoxide monomer via solar irradiation was also demonstrated.
140

Polymer microneedles for transdermal delivery of biopharmaceuticals

Sullivan, Sean Padraic 03 February 2009 (has links)
Biopharmaceuticals, including proteins, DNA and vaccines, are one of the fastest growing segments of the overall pharmaceutical market. While the hypodermic injection, the most common delivery method for these molecules, is effective, it also has limitations, including low patient compliance, need for medically trained personnel and biohazardous sharps after delivery. The overall goal of this thesis was to develop a new delivery system for biopharmaceuticals, based on dissolving polymer microneedles, which is effective and more patient compliant than the hypodermic needle. Microneedles are microscopic needles that are large enough to insert into the skin to deliver drugs effectively, while being short enough to avoid the pain causing nerves deep in the skin. An additional benefit of polymer microneedles is that the needles completely dissolve in the skin, leaving behind no biohazardous sharps. There are significant material and fabrication issues that must be overcome in the development of this new device. The first part of this thesis focused on the development of a new fabrication process, based on in situ photopolymerization, for the creation of polymer microneedles. These microneedles were shown to successfully insert into the skin, dissolving within a minute to deliver the encapsulated cargo, and retain full activity of encapsulated proteins. Next, we applied the microneedle technology to the delivery of the influenza virus. We found that the reformulation process required to encapsulate the influenza virus in polymer microneedles did not affect the antigenicity or immunogenicity of the virus. In addition, we used coated metal microneedles to successfully immunize mice with the influenza virus, verifying the delivery capabilities of a microneedle system. Finally, we used the dissolving polymer microneedles to successfully immunize mice with the influenza virus, resulting in full protection against lethal challenge after one immunization. This immune response was equivalent to the control intramuscular injection. In conclusion, we have developed dissolving polymer microneedles as an effective and patient compliant delivery system for biopharmaceuticals. This system could be especially applicable to mass immunization efforts or home use, since it can be self-administered and allows for easy disposal with no biohazardous sharps.

Page generated in 0.0907 seconds