• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 13
  • 1
  • Tagged with
  • 31
  • 31
  • 21
  • 20
  • 20
  • 19
  • 19
  • 19
  • 18
  • 14
  • 12
  • 11
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dephasing and phase-coherence in disordered mesoscopic conductors

Völker, Axel 08 July 1996 (has links)
No description available.
2

Nitridonickelates: Preparation, Structure and Properties

Mehta, Akash 07 October 2005 (has links) (PDF)
Low valent nickel (less than +1) complexes are rare in nature, however they are regularly encountered in nitridonickelate chemistry. Ternary alkaline earth nitridonickelates exhibit a variety of interesting crystal structures with respect to their covalently bonded nitridonickelate anionic framework. The coordination geometry of low valent nickel in these compounds presents a unique structural feature with nickel being in linear coordination by nitrogen atoms. The nitridonickelate frameworks of compounds investigated in this work are: Ba2[Ni3N2]: The first ternary alkaline earth nitridonickelates with 2D Ni-N anionic network. The formal oxidation state of Ni is +0.67. Ba2(Ba6N)[NiN]6: The structure is made of o1D helical Ni-N anionic chains. Also, the structural stability of this compound´s structure type was found to occur over a wide range of substitution of Ba by Ca and Sr; a max. of 70 percent Ba could be successfully replaced by Sr and Ca atoms retaining the same structure type. The formal oxidation state of Ni is +0.83. Ba[NiN] and the solid solution series Ba[CuxNi1-xN]: The structure is made of 1D zig-zag Ni-N chains. The solid-solution series is isostructural to Ba[NiN] at lower content of Cu while, at higher content it resembles Ba[CoN] structure type, however at very high Cu content it again transforms to Ba[NiN] structure type. The formal oxidation state of Ni is +1.0. Sr2[Ni(CN)N]: The structure consists of N-Ni-(CN) dumbbells. The compound is the first example of cyano-nitridonickelate. The formal oxidation state of Ni is 0. The handling of the ternary alkaline earth nitridonickelates in specific and also of the other nitridometalates in general suffers greatly due to their being air and moisture sensitive. This requires synthetic methods suitable for air and moisture sensitive samples and also the respective instrumental setup for the measurement of their physical properties under inert atmosphere. Up to now no comprehensive investigation of the physical properties of the ternary alkaline earth nitridonickelates has been made. In this work an emphasis was given to systematically investigate the physical properties of the ternary alkaline earth nitridonickelates and to understand their structure specific physical properties. The common features of the investigated ternary alkaline earth nitridonickelates are: 1. the low valency of nickel. 2. the linear coordination of Ni and octahedral coordination of N. During this investigation the low valent character of nickel was experimentally confirmed with the help of X-ray absorption spectroscopy and the interpretation of magnetic susceptibility data where the magnetic moments of the nickel atoms were always consistent with that of a low valent nickel species. The results obtained from the magnetic measurements and electrical conductivity shows that the alkaline earth nitridonickelates order antiferromagnetically at low temperatures and show temperature dependent metallic conductivity whereas the cyano-nitridonickelate Sr2[Ni(CN)N] does not order at low temperature, is paramagnetic, and exhibits semiconducting behaviour. This investigation has provided a better understanding of ternary alkaline earth nitridonickelates with respect to the different structure they exhibit and their associated physical properties. This work motivates to extend the investigations of the physical properties of other nitridometalates. These also exhibit different crystal structures with respect to their nitridometalate anionic framework and thus, structure specific physical properties are also to be expected.
3

Ternary Rare-Earth Coinage Metal Arsenides LnTAs2, Sm2Cu3As3; Quaternary Arsenide Oxides Sm2CuAs3O and Selenides KGd2CuSe4, KLn2Cu3Se5, and K2Ln4Cu4Se9 (Ln = Y, La - Nd, Sm, Gd - Lu; T = Cu, Ag, Au): Syntheses, Crystal Structures and Physical Properties

Jemetio Feudjio, Jean Paul 22 August 2004 (has links) (PDF)
This thesis describes the syntheses, the crystal structures, and the physical properties of some new ternary and quaternary rare-earth coinage metal arsenides, selenides and oxides. All ternary compounds LnCu1+[delta]As2 (Ln = Y, La, Ce, Nd, Sm, Gd - Lu), LnAg1+[delta]As2 (Ln = La - Nd, Sm), and LnAuAs2 (Ln = Pr, Sm, Gd, Tb) adopt structures closely related to the HfCuSi2 type consisting of PbO-like layers of T and As atoms, square layers of As atoms and layers of Ln atoms separating the former two building units. All copper compounds of this series contain regular square nets of As atoms, whereas the respective nets in the silver and gold compounds are distorted. Two principally different patterns of distortion have been found: [As] zigzag chains in LnAgAs2 (Ln = Pr, Nd, Sm) and [As] cis-trans chains in LaAg1.01(1)As2, CeAgAs2, and PrAuAs2. Both patterns can undergo a further reduction of symmetry to end up with a pattern of As2 dumb-bells as can be seen in SmAuAs2, GdAuAs2, and TbAuAs2. Stoichiometric samples LnCuAs2 (Ln = Y, Pr, Nd, Sm, Gd, Tb, Dy, Er) have been used for measurements of the conductivity [rho], magnetic susceptibility [chi] and heat capacity cp. All investigated compounds exhibit metallic conductivity and, except for Y, order antiferromagnetically at temperatures below 10 K. In contrast to LnCuAs2 compounds, the silver compound CeAgAs2 shows semiconducting behavior throughout the temperature range from 4 to 350 K, whereas in PrAgAs2 metallic conductivity is preserved. The crystal structure of Sm2CuAs3O contains two different PbO-like layers formed either by Sm and O or Cu and As atoms. Both PbO-type layers are separated by sheets of Sm and distorted square nets of As atoms. The As atoms are arranged in planar zigzag chains, like those found in NdAgAs2. Sm2CuAs3O is thus the first quaternary rare-earth pnictide oxide with a distorted As net. The quaternary potassium rare-earth copper selenides KGd2CuSe4, KLn2Cu3Se5 (Ln = Ho, Er, Tm), and K2Ln4Cu4Se9 (Ln = Dy, Y) extend three series of previously described sulfide and selenide compounds. All three series adopt a three-dimensional tunnel structure built up by [LnSe6] octahedra and [CuSe4] tetrahedra. The K atoms reside in the tunnels with a bicapped trigonal prismatic coordination of eight Se atoms for KGd2CuSe4 and KLn2Cu3Se5 (Ln = Ho, Er, Tm), while for K2Ln4Cu4Se9 (Ln = Dy, Y), the K atoms are coordinated by seven Se atoms in monocappped trigonal prisms.
4

Verformungsinduzierte Strukturänderungen bei amorphem Ni0.5Zr0.5 in Molekulardynamik-Simulationen / Deformation-induced structural changes of amorphous Ni0.5Zr0.5 in molecular-dynamic simulations

Brinkmann, Kevin 31 October 2006 (has links)
No description available.
5

Structural, magnetic and electrical transport properties of GaN-based magnetic semiconductors and hybrid structures / Strukturelle, magnetische und elektrische Eigenschaften von GaN-basierten verdünnten magnetischen Halbleiter und Hybridstrukturen

Bedoya Pinto, Amilcar 09 November 2010 (has links)
No description available.
6

Charakterisierung und Modifizierung glatter laserdeponierter Poly(methyl methacrylat)-Schichten / Characterization and modification of smooth laser deposited poly(methyl methacrylate) films

Fuchs, Britta 23 February 2010 (has links)
No description available.
7

Struktur, Wachstum und Phasenumwandlungen dünner Eisen-Palladium Schichten / Structure, growth and phase transitions of thin Iron-Palladium films

Edler, Tobias 15 June 2010 (has links)
No description available.
8

Nitridonickelates: Preparation, Structure and Properties

Mehta, Akash 27 October 2005 (has links)
Low valent nickel (less than +1) complexes are rare in nature, however they are regularly encountered in nitridonickelate chemistry. Ternary alkaline earth nitridonickelates exhibit a variety of interesting crystal structures with respect to their covalently bonded nitridonickelate anionic framework. The coordination geometry of low valent nickel in these compounds presents a unique structural feature with nickel being in linear coordination by nitrogen atoms. The nitridonickelate frameworks of compounds investigated in this work are: Ba2[Ni3N2]: The first ternary alkaline earth nitridonickelates with 2D Ni-N anionic network. The formal oxidation state of Ni is +0.67. Ba2(Ba6N)[NiN]6: The structure is made of o1D helical Ni-N anionic chains. Also, the structural stability of this compound´s structure type was found to occur over a wide range of substitution of Ba by Ca and Sr; a max. of 70 percent Ba could be successfully replaced by Sr and Ca atoms retaining the same structure type. The formal oxidation state of Ni is +0.83. Ba[NiN] and the solid solution series Ba[CuxNi1-xN]: The structure is made of 1D zig-zag Ni-N chains. The solid-solution series is isostructural to Ba[NiN] at lower content of Cu while, at higher content it resembles Ba[CoN] structure type, however at very high Cu content it again transforms to Ba[NiN] structure type. The formal oxidation state of Ni is +1.0. Sr2[Ni(CN)N]: The structure consists of N-Ni-(CN) dumbbells. The compound is the first example of cyano-nitridonickelate. The formal oxidation state of Ni is 0. The handling of the ternary alkaline earth nitridonickelates in specific and also of the other nitridometalates in general suffers greatly due to their being air and moisture sensitive. This requires synthetic methods suitable for air and moisture sensitive samples and also the respective instrumental setup for the measurement of their physical properties under inert atmosphere. Up to now no comprehensive investigation of the physical properties of the ternary alkaline earth nitridonickelates has been made. In this work an emphasis was given to systematically investigate the physical properties of the ternary alkaline earth nitridonickelates and to understand their structure specific physical properties. The common features of the investigated ternary alkaline earth nitridonickelates are: 1. the low valency of nickel. 2. the linear coordination of Ni and octahedral coordination of N. During this investigation the low valent character of nickel was experimentally confirmed with the help of X-ray absorption spectroscopy and the interpretation of magnetic susceptibility data where the magnetic moments of the nickel atoms were always consistent with that of a low valent nickel species. The results obtained from the magnetic measurements and electrical conductivity shows that the alkaline earth nitridonickelates order antiferromagnetically at low temperatures and show temperature dependent metallic conductivity whereas the cyano-nitridonickelate Sr2[Ni(CN)N] does not order at low temperature, is paramagnetic, and exhibits semiconducting behaviour. This investigation has provided a better understanding of ternary alkaline earth nitridonickelates with respect to the different structure they exhibit and their associated physical properties. This work motivates to extend the investigations of the physical properties of other nitridometalates. These also exhibit different crystal structures with respect to their nitridometalate anionic framework and thus, structure specific physical properties are also to be expected.
9

Ternary Rare-Earth Coinage Metal Arsenides LnTAs2, Sm2Cu3As3; Quaternary Arsenide Oxides Sm2CuAs3O and Selenides KGd2CuSe4, KLn2Cu3Se5, and K2Ln4Cu4Se9 (Ln = Y, La - Nd, Sm, Gd - Lu; T = Cu, Ag, Au): Syntheses, Crystal Structures and Physical Properties

Jemetio Feudjio, Jean Paul 16 September 2004 (has links)
This thesis describes the syntheses, the crystal structures, and the physical properties of some new ternary and quaternary rare-earth coinage metal arsenides, selenides and oxides. All ternary compounds LnCu1+[delta]As2 (Ln = Y, La, Ce, Nd, Sm, Gd - Lu), LnAg1+[delta]As2 (Ln = La - Nd, Sm), and LnAuAs2 (Ln = Pr, Sm, Gd, Tb) adopt structures closely related to the HfCuSi2 type consisting of PbO-like layers of T and As atoms, square layers of As atoms and layers of Ln atoms separating the former two building units. All copper compounds of this series contain regular square nets of As atoms, whereas the respective nets in the silver and gold compounds are distorted. Two principally different patterns of distortion have been found: [As] zigzag chains in LnAgAs2 (Ln = Pr, Nd, Sm) and [As] cis-trans chains in LaAg1.01(1)As2, CeAgAs2, and PrAuAs2. Both patterns can undergo a further reduction of symmetry to end up with a pattern of As2 dumb-bells as can be seen in SmAuAs2, GdAuAs2, and TbAuAs2. Stoichiometric samples LnCuAs2 (Ln = Y, Pr, Nd, Sm, Gd, Tb, Dy, Er) have been used for measurements of the conductivity [rho], magnetic susceptibility [chi] and heat capacity cp. All investigated compounds exhibit metallic conductivity and, except for Y, order antiferromagnetically at temperatures below 10 K. In contrast to LnCuAs2 compounds, the silver compound CeAgAs2 shows semiconducting behavior throughout the temperature range from 4 to 350 K, whereas in PrAgAs2 metallic conductivity is preserved. The crystal structure of Sm2CuAs3O contains two different PbO-like layers formed either by Sm and O or Cu and As atoms. Both PbO-type layers are separated by sheets of Sm and distorted square nets of As atoms. The As atoms are arranged in planar zigzag chains, like those found in NdAgAs2. Sm2CuAs3O is thus the first quaternary rare-earth pnictide oxide with a distorted As net. The quaternary potassium rare-earth copper selenides KGd2CuSe4, KLn2Cu3Se5 (Ln = Ho, Er, Tm), and K2Ln4Cu4Se9 (Ln = Dy, Y) extend three series of previously described sulfide and selenide compounds. All three series adopt a three-dimensional tunnel structure built up by [LnSe6] octahedra and [CuSe4] tetrahedra. The K atoms reside in the tunnels with a bicapped trigonal prismatic coordination of eight Se atoms for KGd2CuSe4 and KLn2Cu3Se5 (Ln = Ho, Er, Tm), while for K2Ln4Cu4Se9 (Ln = Dy, Y), the K atoms are coordinated by seven Se atoms in monocappped trigonal prisms.
10

Structural Chemistry of Intermetallic Compounds of Beryllium and Magnesium with Late Transition Metals

Agnarelli, Laura 03 November 2023 (has links)
This work is dedicated to the investigation on intermetallic compounds of beryllium and magnesium with late transition metals. By conducting fundamental research, the objective is to unveil novel intermetallic compounds possessing distinctive chemical bonding and interesting physical properties, with the aim to identify potential semiconductor materials for further thermoelectric applications. Following the recent discovery of the semiconducting properties of Be5Pt, it was initially hypothesised that replacing Be with Mg, while preserving the semiconducting properties, could enhance the widespread applicability of said material considering the lower toxicity of magnesium compared to that of beryllium. The study of the already well-investigated Mg–Pt system, revealed that a phase with composition Mg5Pt does not exist, instead two new phases, Mg3Pt2 and Mg29-xPt4+y (x = 0.47, y = 0.07), were discovered. Mg3Pt2 can be synthesised by direct reaction of its constituent elements or through spark plasma sintering (SPS) using MgH2 and PtCl2 as precursors. An in-depth analysis of the chemical bonding in Mg3Pt2 allowed to conclude that belonging to the same structural prototype (Eu3Ga2) does not necessarily indicate the same chemical bonding scenario. The isolation of single crystals for diffraction experiments combined with atomic-resolution transmission electron microscopy (TEM), enabled the determination and examination of the crystal structure of Mg29-xPt4+y, the existence of which had previously only been hinted on the basis of powder diffraction or metallography analysis. The investigation of the chemical bonding in Mg29-xPt4+y revealed a unique characteristic, that distinguishes it from other complex intermetallic compounds (CMAs). Notably, a spatial separation of regions with different bonding features was observed, explaining a distinctive mixed Mg/Pt site occupancy near the origin of the unit cell. Beryllium has garnered considerable interest due to its versatile behaviour when combined with other elements. These combinations can give rise to materials exhibiting distinctive physical properties and intriguing chemical bonding characteristics. However, the high toxicity associated with beryllium and its compounds as well as difficulties in characterisation, e.g. very low X-ray scattering power, has limited systematic investigations of Be–based intermetallic compounds. This comprehensive study focuses on the binary Be–Ru system. The redetermination of the Be3Ru crystal structure, showed that it crystallises with TiCu3–type structure. The crystal structure can be derived by ‘colouring’ the hexagonal closest packing of spheres characteristic for large groups of intermetallic compounds. Be3Ru exhibits diamagnetic properties, and its metallic electrical resistivity is in good agreement both with electronic structure calculations and experimental measurements. Be2Ru crystallises with Fe2P–type structure, instead of the previously reported MgZn2–type one. Detailed investigations using single crystal X-ray diffraction experiments together with atomic-resolution electron microscopy have revealed the presence of minor orthorhombic inclusions dispersed within the hexagonal Fe2P–type matrix crystal structure. Despite these structural variations, both atomic arrangements primarily consist of similar structural layers and exhibit comparable chemical bonding characteristics. It has been also discovered that Be3Ru2 crystallises with U3Si2–type structure, in contrast to the previously reported (Mn0.5Fe0.5)2O3–type structure. Be7Ru4 and Be12Ru7 represent two new phases in the Be–Ru system. They possess a very close atomic composition (63.6 at. % Be and 63.2 at. % Be, respectively) and are situated between Be2Ru and Be3Ru2 in the Be–Ru phase diagram. Together with Be2Ru, these two new phases form a series of two-dimensional intergrowth structures, incorporating building blocks of Be2Ru and Be3Ru2 (Fe2P– and U3Si2– type structure). The first one is comprised of hexagonal channels of Ru atoms accompanied by embedded columns of [Be@Be6] trigonal prisms, while the second structure consists of columns composed of tetragonal [Be@Ru8] and trigonal [Be@Ru6] prisms. The structural organisation observed in Be7Ru4 and Be12Ru7 has not been documented previously, indicating that these two phases represent novel structural prototypes. A careful investigation of the crystal structure of Be17Ru3, revealed that the center of a cage [X@Be12] around at the origin of the unit cell, is not completely empty, but rather partly occupied by either Be or Ru. Furthermore, it was observed that this cage can be filled by rare earth and actinide elements giving rise to a novel family of ternary compounds with composition RBe68Ru12 (R = U, Th, Ce, Pr, Gd, Ho). Finally, two new Be–based Laves phases C15–Be2Fe1-xRux (x = 0.52) and C14–Be2Fe1-xOsx (x= 0.57) were discovered through alloying Ru and Os to C14–Be2Fe Laves phase. This study confirmed that the stability of C15 or C14 AB2 Laves phases cannot be predicted by simple reasoning such as atomic size ratio between the A and B atoms, difference in electronegativity or valence electron concentration (VEC), particularly when all three elements, Fe, Ru and Os, belong to the same group of the periodic table. Despite their different chemical behaviour, the investigation of chemical bonding using quantum chemical techniques in the Be– and Mg–based intermetallic compounds with late transition metals, unveiled shared characteristics whereby their crystal structures are stabilised by the formation of polar multiatomic bonds. The observed charge transfer not only serves a decisive role in stabilising the atomic configurations, but also contributes to the emergence of distinct structuring of the calculated electronic density of states of states, DOS, i.e. appearance of more or less prominent dips in the vicinity of the Fermi level, implying their proximity to a semiconducting state, in particular as far as Be–based intermetallic compounds are concerned.

Page generated in 0.1238 seconds