• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 126
  • 71
  • 18
  • Tagged with
  • 210
  • 71
  • 63
  • 60
  • 60
  • 58
  • 46
  • 44
  • 34
  • 33
  • 33
  • 25
  • 23
  • 22
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Intégration en technologie CMOS d'un modulateur plasmonique à effet de champ CMOS Integration of a field effect plasmonic modulator / CMOS Integration of field effect plasmonic modulators

Emboras, Alexandros 10 May 2012 (has links)
Dans la réalisation de circuits intégrés hybrides électroniques - photoniques pour les réseaux télécom, les modulateurs intégrés plasmoniques pourront jouer un role essentiel de codage de l'information en signaux optiques. Cette thése montre la réalisation d'une approche modulateur plasmonique a effet de champ, intégrée en silicium en utilisant les technologies CMOS standards. Ce modulateur MOS plasmonique présente diverses propriétés intéressantes, a savoir un confinement optique fort, permettant une augmentation de l'interaction lumiére matiére. Ces modulateurs plasmoniques permettent aussi de réduire l'inadéquation entre la taille des dispositifs en photonique Si et celle de l' électronique, ce qui permet d'envisager une convergence de leur fabrication en technologie VLSI sur une meme puce. Le modulateur étudié dans ce mémoire repose sur l'accumulation de porteurs dans un condensateur MOS a grille cuivre integer dans un guide d'onde en silicium, nécessitant aux technologies front end et back end Cu d etre combinés de quelques nanométres l'une de l'autre. Nous présentons aussi de nouveaux designs pour injecter de la lumiére a partir de guide d'onde SOI dans un guide a nanostructure plasmonique et les mesures d'une modulation électro-optique dans les structures MOS plasmoniques / Compact and low energy consumption integrated optical modulator is urgently required for encoding information into optical signals. To that respect, the use of plasmon modes to modulate light is of particular interest when compared to the numerous references describing silicon based optical modulators. Indeed, the high field confinement properties of those modes and the increased sensitivity to small refractive index changes of the dielectric close to the metal can help decrease the characteristic length scales of the devices, towards to that of microelectronics.This thesis investigates the realization of Si field-effect plasmonic modulator integrated with a silicon-on insulator waveguide (SOI-WG) using the standard CMOS technology. The material aspects and also the technological steps required in order to realize an integrated plasmonic modulator compatible with requirements of CMOS technology were investigated. First, we demonstrate a Metal-Nitride-Oxide-Semiconductor (MNOS) stack for applications in electro-optical plasmonic devices, so that a very low optical losses and reliable operation is achieved. This objective is met thanks to a careful choice of materials: (i) copper as a metal for supporting the plasmonic mode and (ii) stoechiometric silicon nitride as an ultrathin low optical loss diffusion barrier to the copper. Final electrical reliability is above 95% for a 3 nm thick Si3N4 layer, leakage current density below 10-8 A.cm-2 and optical losses as low as 0.4 dB.μm-1 for a 13 nm thick insulator barrier, in agreement with the losses of the fundamental plasmonic mode estimated by 3D FDTD calculations, using the optical constant of Cu measured from ellipsometry. After demonstrating the MNOS as an appropriate structure for electro-optical CMOS plasmonics, we fabricate a vertical Metal-Insulator-Si-Metal (MISM) waveguide integrated with an SOI-WG, where the back metal was fabricated by flipping and molecular bonding of the original SOI wafer on a Si carrier wafer. The active device area varies from 0.5 to 3 μm2, 0.5 μm width and length varying from 1 to 6 μm.An efficient and simple way to couple light from Si-WG to vertical MISM PWG was experimentally realized by inserting a Metal-Insulator-Si-Insulator (MISI) coupling section between the two waveguides. We demonstrate that such couplers operates at 1.55 μm with the highest efficiency geometry corresponds to a compact length of 0.5 μm with coupling loss of just 2.5 dB (50 %) per facets. This value is 3 times smaller compared to the case of direct coupling (without any MISI section). High-k dielectrics are demonstrated as promising solution to reduce both the MISM absorption loss and the operation voltage. Given that interest, we experimental demonstrate an electrical reliable high-k stack for future applications to the MOS plasmonic modulators.A few μm long plasmonic modulator is experimentally investigated. Devices show leakage current below 10 fA through the copper electrodes based MOS capacitance. The accumulation capacitance (few fF) was found to scale with the surface of the device, in consistent with the expected equivalent oxide thickness of the MOS stack of our modulator. A low electro-absorption (EA) modulation showing capacitive behaviour was experimentally demonstrated in agreement with simulations. Finally, low energy consumption devices 6 fJ per bit was demonstrated.
12

Etude de cristaux plasmoniques opaliques et couplage de nano-émetteurs : caractérisation de nano-piliers diélectriques / Study of plasmonic opalic crystals and coupling with nanoemitters : characterization of dielectric nanopilars

Binard, Guillaume 18 July 2017 (has links)
L’environnement électromagnétique d’un nanoémetteur a une grande influence sur son émission. Une interface diélectrique va par exemple accélérer son émission d’un facteur appelé facteur de Purcell. L’objectif ici est d’utiliser différents types de matériaux pour améliorer cette émission. Des émetteurs seront placés de manière déterministe sur une opale métallisée à l’endroit où le champ électrique est le plus intense : à l’interstice entre les billes de l’opale recouverte d’or. Les fortes interactions avec le champ électrique vont jouer un rôle dans l’accélération de l’émission. Les structures de piliers diélectriques pourraient également avoir un rôle sur l’émission d’un nanoémetteur et ces structures sont ici confrontées à un modèle de guide d’onde cylindrique. / The electromagnetic surrounding of an emitter can really affect its emission. A dielectric interface for example can accelerate the emission by a factor called the Purcell factor. The emitters will be deposited on top of a metalized opal in the region of high intense electric field: the interstices between the beads of the metallized opal. The strong interactions with the electric field will accelerate the emission of these emitters. In the near future, nanopilars could play the same role. Here the optical response of this structure is compared with an analytical model of a cylindrical waveguide.
13

Étude par spectroscopie d’absorption transitoire sous atmosphère contrôlée de la photodynamique de nanoparticules d’argent stabilisées dans des nanozéolithes LTL et EMT déposées en couches minces / A transient adsorption spectroscopy study under controlled atmosphere of the photodynamics of silver nanoparticles stabilized in LTL and EMT nanozeolites assembled in thin films

Bryckaert, Mattéo 30 November 2016 (has links)
Les nanozéolithes assemblées sous forme de films ou couches minces et fonctionnalisées par des nanoparticules (NPs) métalliques sont attractives pour le développement de matériaux photoactif pour la conversion de l’énergie lumineuse en énergie chimique, via des processus de plasmoniques chimiques. Afin de soutenir le développement de ces nouveaux matériaux, l’étude des mécanismes gouvernant les photo-transferts ultrarapides de l’énergie à partir des électrons du métal excité est nécessaire. La spectroscopie d’absorption transitoire est une méthode bien adaptée, bien que peu utilisée, pour l’étude des solides poreux.Ce travail présente l’étude de la réponse transitoire de NPs d’argent stabilisées dans des nanozéolithes EMT et LTL préparées en suspension colloïdale puis déposées sous la forme de couches minces transparentes. Les spectres d’absorption transitoires de Ag-EMT et Ag-LTL ont été enregistrés après excitation de l’échantillons par des impulsions de 100 fs à 400 nm et 350 nm, sous vide. Les résultats montrent pour Ag-LTL que l’excitation induit la formation d’électrons chauds dans la bande de conduction qui relaxe par couplage électron-phonon. Ce comportement est typique d’une NP métallique excitée. Pour Ag-EMT, le comportement observé implique la forte délocalisation des électrons excités hors du métal vers les états électronique de la charpente zéolithes. Les mesures pompe-sondes réalisées en présence d’eau ou de méthanol en quantité contrôlée dans la zéolithe, déterminée et calibrée à partir de mesures par spectroscopie IRTF, montre que ces molécules interagissent différemment avec les NPs excités et modifient les interactions entre le métal et la zéolithe. / Nanozeolites assembled in thin films or layers and functionalized by metallic nanoparticles are attractive in the course of the development of photoactivable material for the light-to-chemical energy conversion through chemical plasmonic processes. To support the development of these new materials, the understanding of the mechanisms governing the ultrafast phototransfer of energy is mandatory. Transient absorption spectroscopy is a well-suited method, although rarely used, for the study of porous solids. This work presents the study of the transient response of silver nanoparticles stabilized in EMT and LTL nanozeolites prepared as colloidal suspension and then assembled in thin transparent films. Transient absorption spectra of Ag-LTL and Ag-EMT, under vacuum, were recorded after excitation of the sample by 100 fs pulses at 400 nm and 350 nm. The results show that for Ag-LTL, the excitation induces the formation of hot electrons in the conduction band that relax through electron-phonon coupling. This behavior is typical of an excited metallic nanoparticle. The behavior observed for Ag-EMT implies strong delocalization of the excited electrons out of the metal toward the electronic states of the zeolite framework. The pump-probe measurements made in presence of controlled amount of water or methanol in the zeolite, as determined and calibrated from FTIR measurements, show that those molecules interact differently with the excited nanoparticles and modify the interaction between the metal and the zeolite.
14

Experiment and theory of plasmon coupling physics, wave effects and their study by electron spectroscopies / Expériences et théorie relatives au couplage plasmonique, aux effets ondulatoires et à leur étude par spectroscopie électronique

Lourenço-Martins, Hugo 28 September 2018 (has links)
Les plasmons de surface (SP) sont des ondes électromagnétiques se propageant à l'interface entre deux milieux, typiquement un métal et un diélectrique. Les plasmons de surface ont la capacité de confiner le champ électromagnétique dans de très petite région de l’espace, typiquement quelques nanomètres, c’est à dire bien en dessous de la limite de diffraction de la lumière. Une conséquence de ce confinement sub-longueur d’onde de la lumière est que leur observation nécessite une résolution spatiale nanométrique - ce qui exclut l’utilisation de techniques optiques standard. Néanmoins, le microscope électronique en transmission à balayage (STEM) est un outil particulièrement adapté à l'étude des plasmons de surface car il emploie des électrons rapides ayant une longueur d’onde typique comprise entre 1 et 10 picomètres. Ainsi, durant la dernière décennie, les spectroscopies électroniques appliquées à la nano-optique se sont fortement développées, parmi elle comptent : la spectroscopie de perte d'énergie électronique (EELS), la spectroscopie cathodoluminescence (CL) ou l'interférométrie de Hanbury Brown et Twiss (HBT) appliquée à la CL. Dans cette thèse, j’ai exploré différents problèmes ouverts de la plasmonique et de la nano-optique dans le cadre particulier de la microscopie électronique. Dans le chapitre 3, je présente un formalisme prenant en compte à la fois la nature quantique et relativiste des expériences d’EELS en faisant appel notamment à des éléments de théorie quantique des champs. Dans le chapitre 4, nous démontrons que la réalisation d’une expérience d’EELS avec de tels faisceaux permet de mesurer des propriétés jusqu’alors inatteignable à l’échelle du nanomètre telle que la phase des plasmons, leurs chiralité optique voire même leur longueur de cohérence. Dans le chapitre 5, je présente plusieurs résultats théoriques et expérimentaux concernant des expériences de couplage. En particulier, j’étudie le phénomène contre-intuitif d’auto-hybridation qui est une conséquence de la nature non-hermitienne du problème aux valeurs propres associé aux résonances de plasmon et établit une analogie avec les systèmes quantiques ouverts. Enfin, au chapitre 6, je discute des récentes mesures de phonon réalisées dans un STEM grâce au développement de monochromateur électroniques. / Surface plasmons (SP) are electromagnetic waves propagating at the interface between two media typically a metal and a dielectric. SPs can confine electromagnetic fields in very short volumes (typically one to few nanometers), well below the light diffraction limit. This property has a tremendous number of applications ranging from fundamental physics (e.g. quantum optics) to applications (e.g. cancer therapy). However, the price to pay is that SPs suffer from huge ohmic losses in the metal which leads to very short lifetimes (typically few femtoseconds). Theoretically, this presence of dissipation dramatically hardens the theoretical description of SPs. Another consequence of the sub-wavelength confinement of light associated with SPs is that their observation requires a nanometric resolution - which excludes the use of standard optical techniques. Yet, the scanning transmission electron microscope (STEM) is a particularly suitable tool to study SPs as it employs fast electrons with typical wavelength from 1 to 10 picometers. Thus, the last decade has seen the tremendous development of electron-based spectroscopies applied to nano-optics such as electron energy loss spectroscopy (EELS), cathodoluminescence spectroscopy (CL) or STEM- Hanbury Brown and Twiss interferometry (HBT). In this thesis, I explored different open problems of plasmonics and nano-optics under the scope of electron microscopy and spectroscopies. In chapter 3, I develop a formalism taking into account both the quantum and relativistic nature of EELS experiments using elements of quantum field theory. In chapter 4, I apply the latter formalism to the case of EELS measurements of SPs using electrons with shaped phase. In chapter 5, I give several theoretical and experimental results on coupling experiments involving SPs. Particularly, I demonstrate a counterintuitive type of coupling, the so-called self- hybridization which is a consequence of the non-Hermitian nature of the LSP eigenproblem and draw analogy with open quantum system. Finally, in chapter 6, I discuss the recent result on vibrational EELS in monochromated STEM.
15

Towards a Plasmonic and Electrochemical Biosensor Integrated in a Microfluidic Platform / Vers un biocapteur plasmonique et électrochimique intégré dans une plateforme microfluidique

Castro Arias, Juan Manuel 10 March 2017 (has links)
Au cours de ma thèse, j'ai développé un procédé de fabrication spécifique capable de produire un biocapteur qui combine deux techniques de biodétection différentes, la réponse plasmonique basée sur la résonance de plasmon de surface localisée (LSPR) et la réponse électrochimique. Les méthodes et les résultats qui sont présentés dans ce manuscrit ont été définis pour converger vers un dispositif fluidique unique combinant ces deux approches de détection différentes. Afin de trouver la configuration permettant l'excitation des résonances plasmoniques, la géométrie des nanocavités MIM (métal/isolant/métal) en réseau de lignes interdigitées a été optimisée par des simulations électromagnétiques. La fabrication par nanoimpression douce assistée UV (SoftUV-NIL) a été optimisée et, finalement, la caractérisation optique de ces nanocavités a été comparée avec succès aux simulations théoriques. Parallèlement à la réalisation de ce dispositif nanostructuré, des dispositifs électrochimiques fluidiques plus simples qui intègrent des microélectrodes classiques ont également été développés. L'objectif était d'abord de développer une chimie innovante pour le couple « biotine/streptavidine » et de comprendre ensuite comment les paramètres fluidiques peuvent affecter l'efficacité de capture des biomolécules. Ce manuscrit se termine par une discussion sur le rôle des paramètres fluidiques concernant l’efficacité de la biodétection sur la base de la théorie de Squires. / During my thesis, I worked on the development of a specific fabrication process able to produce a device that combines two different biodetection techniques, plasmonic response based on Localized Surface Plasmon Resonance (LSPR) and electrochemical response. Methods and results that are presented in this manuscript were defined to converge towards a unique fluidic device combining these two different sensing approaches. This device integrates interdigitated array of MIM nanocavities. In order to find the easier working configuration allowing the excitation of plasmonic resonances, their geometry has been optimized through electromagnetic simulations. The fabrication of these dual devices has been optimized based on Soft-UV NIL and, finally, optical characterization of these nanocavities has been successfully compared with theoretical simulations. In parallel to this challenging goal, simpler fluidic electrochemical devices that integrate conventional microelectrodes have also been developed. The goal was first to develop an innovative chemistry for the couple biotin/streptavidin and secondly to learn how fluidic parameters can affect the capture efficiency of molecules. This manuscript ends with a discussion on the role of the fluidic parameters on the biodetection efficiency based on the theory of Squires.
16

Nanostructures pour l'exaltation d'effets non linéaires / Nanostructures for nonlinear effects enhancement

Héron, Sébastien 18 November 2016 (has links)
Les sources infrarouges basées sur des effets d'optique du second ordre constituent de très bons outils de spectrométrie des polluants présents dans l'atmosphère, grâce notamment à leur grande accordabilité spectrale. Ils demandent toutefois une forte puissance lumineuse incidente et une grande quantité de matériau non linéaire pour être efficaces. On peut les rendre très compactes en réalisant la conversion de fréquence à l'aide de nanostructures plasmoniques contenant des inclusions diélectriques présentant une susceptibilité du deuxième ordre non nulle. La lumière y est très fortement concentrée à la résonance augmentant fortement la quantité de polarisation non linéaire produite, afin d'y exalter les effets d'optique non linéaire.Ce travail s'attaque d'abord à la conception de nano-résonateurs grâce au développement d'un outil de simulation d’empilements nanostructurés selon une dimension. Trois architectures sont étudiées : les nanorésonateurs de type sillon, les nanorésonateurs de Helmholtz et les guides d'ondes à résonances de modes guidés. Dans chaque cas, le dimensionnement passe par la détermination de géométries bi- voire tri-résonantes pour la réalisation d'accord de modes en génération de second harmonique ou de différence de fréquences.La fabrication en salle blanche des résonateurs sillons et guides d'ondes est ensuite exposée, suite à un important travail de développement technologique, qui a permis l’obtention d’échantillons de très bonne qualité. / Infrared sources based on second order effects are interesting tools for atmospheric pollutants spectrometry thanks to their wide tunability. Such effects nevertheless demand strong incident powers or massive non linear crystals to be efficient. A new way to reduce their size consists in realizing frequency conversion with the help of plasmonic nanostructures containing dielectric inclusions showing a non zero second order susceptibility. Light is greatly harvested and concentrated at resonance leading to the creation of a great quantity of non linear polarization, so as to further enhance non linear optics effects.This work begins with a study of nanoresonators through developing a simulation tool for one dimensional nanostructured multilayered structures. Three architectures are retained : slit nanoresonators, optical Helmholtz nanoresonators and waveguides based on guided mode resonances. In every case, the conception focuses on the finding of bi- and even of tri-resonant geometries to achieve mode matching for second harmonic of difference frequency generation.Clean room fabrication is then detailed step by step following the important works that have permitted the fabrication of samples showing a very good quality.
17

Control disorder for electromagnetic localization in plasmonic devices for nanophotonic application / Désordre contrôlé sur des nanostructures métalliques pour des applications en plasmonique

Ung, Thi phuong lien 20 March 2018 (has links)
Les nanostructures métalliques permettent de confiner la lumière à des échelles sub-longueur d’onde grâce à l'excitation de plasmons de surface. Elles ouvrent la voie à de nombreuses applications que ce soit en imagerie, en élaboration de composants photoniques ou en information quantique. Cette thèse porte sur l’étude de nanostructures métalliques, semi-continues ou constituées par des réseaux de trous au désordre contrôlé, et à leur interaction avec des nanocristaux semi-conducteurs colloïdaux particulièrement photostables. En associant plusieurs approches expérimentales complémentaires (spectroscopie en champ lointain, microscopie de champ proche optique, microscopie avec une sonde active de champ proche, caractérisation par microscopie confocale de l’émission de nanocristaux couplés aux surfaces métalliques), nous avons pu mettre en évidence les caractéristiques spécifiques des modes plasmons de ces différentes structures. Pour les réseaux au désordre contrôlé, nous avons en particulier analysé l’apparition progressive de modes localisés intenses et déterminé l’influence de paramètres tels que l’épaisseur de la couche d’or, le diamètre des trous ou la périodicité initiale du réseau. Les résultats expérimentaux obtenus se sont révélés en très bon accord avec les simulations numériques réalisées par FDTD. / Metallic nanostructures allow to confine light at subwavelength scales by the excitation of surface plasmon. They open the way for many applications in imaging, photonic components development and quantum information. This thesis deals with the study of metallic nanostructures, semi-continuous or based on holes gratings with a controlled disorder, and their interaction with colloidal semiconductor nanocrystals that are very photostable. Combining several complementary experimental approaches (far-field spectroscopy, near-field optical microscopy, near-field active probe microscopy, characterization by confocal microscopy of the emission of nanocrystals coupled to the metallic surfaces), we were able to highlight specific characteristics of the plasmon modes of these different structures. For the gratings with a controlled disorder, we have in particular analyzed the emergence of intense localized modes and determined the influence of parameters such as the thickness of the gold layer, the diameter of the holes or the initial periodicity of the grating. The experimental results are in very good agreement with the numerical simulations carried out by FDTD.
18

Sunlight-driven photoreduction of CO₂ using zeolitic imidazolate frameworks (ZIFs)-based nanocomposite to produce valuable products

Becerra Sanchez, Jorge 07 February 2023 (has links)
De nos jours, le développement de nouveaux matériaux capables de récolter la lumière solaire de manière efficace pour des applications photocatalytiques est un véritable défi pour la science. Par conséquent, les matériaux réticulaires qui agissent comme des blocs de construction, constitués de joints entre des lieurs organiques et des métaux, avec des propriétés plus adaptées à la photocatalyse, sont devenus encore plus attractifs. Cependant, conférer une fonctionnalité à ces matériaux avec un minimum de défauts cristallins, qui conduisent à une recombinaison de charge électron-trou, et une absorption maximale de la lumière reste un problème. Pour cette raison, différentes stratégies, comme le dopage, l'utilisation de cocatalyseur entre autres, ont été rapportées comme alternatives pour minimiser les problèmes mentionnés ci-dessus et par conséquent les désintégrations photocatalytiques. Néanmoins, les nanostructures de métaux nobles ont récemment montré des propriétés exceptionnelles d'absorption de la lumière, dans lesquelles des pairs électron-trous peuvent être générés et utilisés comme « porteurs de charges », qui améliorent l'activité photocatalytique sur les matériaux pour différentes applications. Les propriétés caractéristiques de ces nanostructures sont associées à l'effet des phénomènes de résonance plasmonique de surface localisée (LSPR en anglais). Les stratégies de préparation de matériaux plasmoniques pour les systèmes photocatalytiques sont très importantes pour améliorer les performances des réactions et les processus photocatalytiques souhaités. Des aspects critiques tels que la morphologie, la taille, les précurseurs chimiques entre autres doivent être pris en compte. Par exemple, l'utilisation du même métal avec une forme différente pourrait affecter ses performances photocatalytiques et déterminer son application. Ce document offre des preuves scientifiques intéressantes, dans le domaine de la photocatalyse, que les techniques d'ingénierie mentionnées ci-dessus sont cruciales pour le développement de matériaux à base de plasmons adaptés à la conversion du CO₂. Parmi ces preuves, des nanosphères d'or décorées à la surface d'un cadre d'imidazolate zéolitique (ZIF-67) ont montré un taux de génération de méthanol maximal de 1.6 mmol gcₐₜ⁻¹ h⁻¹ avec un rendement quantique apparent (AQY en anglais) de 6.4 %. Alors que les nanoparticules d'or en forme de nanotige ont doublé ce taux avec un AQY de 7.4 %. De plus, les nanoparticules d'or liées chimiquement avec des agents tensioactifs fonctionnels ont montré une amélioration significative des performances avec des taux de génération de 2.5 mmol gcₐₜ⁻¹ h⁻¹ en utilisant des charges métalliques inférieures et un AQY de 3.7 %. Alors qu'il existe un nombre croissant de rapports sûr de nouveaux matériaux réticulaires nanocomposites pour les processus photochimiques; les rapports de matériaux plasmoniques sur la chimie réticulaire sont encore rares. Par conséquent, ce rapport fournit un aperçu approfondi des différents concepts liés aux matériaux plasmoniques et à leurs applications sur les matériaux réticulaires afin d'identifier leurs opportunités et leurs défis sur la photocatalyse pour de futures considérations industrielles. / Nowadays the development of novel materials that can harvest solar light in an efficient way for photocatalytic applications is a real challenge for science. Therefore, reticular materials that act as building blocks, consisting of joints between organic linkers and metals, with properties more suitable for photocatalysis, have become even more attractive. However, imparting functionality to these materials with minimum crystalline defects, that lead to electron-hole charge recombination, and maximum light absorption is still an issue. For that reason, different strategies like doping, and usage of co-catalyst among others have been reported as alternatives to minimize the above-mentioned problems and consequently photocatalytic decays. Nevertheless, noble metal nanostructures have recently shown exceptional light absorption properties, in which electron-hole pairs can be generated and used as "charge-carriers", that enhance photocatalytic activity on materials for different applications. The characteristic properties of these nanostructures are associated with the effect of localized surface plasmonic resonance phenomena (LSPR). The strategies for the preparation of plasmonic materials for photocatalytic systems are highly crucial to achieve improvement in the performance of desired photocatalytic reactions and processes. Critical aspects such as morphology, size, and chemical precursors among others must be considered. For example, the use of the same metal with a different shape could affect its photocatalytic performance and determine its application. This document offers interesting scientific evidence, on the field of photocatalysis, that above-mentioned engineering techniques are crucial for the development of plasmon-based materials suitable for CO₂ conversion. Among this evidence, gold nanospheres decorated on the surface of zeolitic imidazolate framework (ZIF-67) showed a maximum methanol generation rate of 1.6 mmol gcₐₜ⁻¹ h⁻¹ with an apparent quantum yield (AQY) of 6.4%. While nanorod shape gold nanoparticles doubled this rate with an AQY of 7.4%. Furthermore, chemically bonded gold nanoparticles with functional surfactant agents showed a significant improve on the performance with generation rates of 2.5 mmol gcₐₜ⁻¹ h⁻¹ using lower metal loadings and AQY of 3.7%. While there is a growing number of reports of novel nanocomposite reticular materials for photochemical processes; reports of plasmonic materials on reticular chemistry are still scarce. Therefore, this report provides a brief overview and profound insight into different concepts related to plasmonic materials and their applications on reticular materials to identify their opportunities and challenges in photocatalysis for future industrial considerations.
19

Photocatalytic hydrogen evolution using porphyrin-metal organic framework nanocomposites decorated with plasmonic gold nanoparticles

Pena, Edward 07 September 2023 (has links)
Titre de l'écran-titre (visionné le 14 août 2023) / Des études récentes se sont concentrées sur la production d'énergie à partir de sources différentes des combustibles fossiles. Parmi ces autres sources, la production d'hydrogène vert par photocatalyseurs a attiré l'attention ces dernières années, en particulier l'utilisation de cadres métallo-organiques (MOF) qui a donné des résultats en matière de production d'hydrogène grâce à la surface élevée, à la taille adéquate des pores, à la grande stabilité et à la composition ajustable de ce type de matériaux. Néanmoins, ces matériaux souffrent de la recombinaison des charges électron-trou, de problèmes de stabilité et d'une faible absorption de la lumière. Pour améliorer les performances des MOF, de nombreuses méthodes de synthèse sont mises en place, ainsi que des stratégies qui impliquent l'utilisation de co-catalyseurs, la modification superficielle et le dopage, entre autres. L'une des stratégies explorées consiste à tirer parti des phénomènes de résonance plasmonique locale (LSPR) affichés par des nanoparticules de métaux nobles de tailles spécifiques. Ces nanoparticules améliorent les propriétés d'absorption de la lumière du MOF et génèrent des paires électron-trou qui peuvent être facilement transférées à des matériaux liés pour conduire des réactions d'oxydoréduction dans les centres actifs du matériau. Pour tirer parti de cet effet, il est important de contrôler la taille des nanoparticules, la méthode de liaison avec le photocatalyseur et la morphologie, entre autres. Le présent document donne un aperçu des différents matériaux utilisés pour la production d'hydrogène, des différentes techniques permettant d'améliorer les performances de ces matériaux, comme les matériaux à effet LPRS, les photocatalyseurs à atome unique et les MOF de porphyrine, afin d'identifier les opportunités et les défis liés à la mise en œuvre de ces matériaux pour la production photocatalytique d'hydrogène. / Recent studies have focused on the generation of energy from sources different than fossil fuels, among these other sources, the green hydrogen generation through photocatalysts has gained attention in recent years, particularly the use of metal-organic frameworks (MOFs) has shown results towards hydrogen generation thanks to the high superficial area, adequate pore size, high stability and the tuneable composition of these type of materials. Nevertheless, these materials suffer from electron-hole charge recombination, stability problems, and poor light absorption. To enhance the performance of MOFs multiple synthetic methods are implemented, as well as strategies that involve the use of co-catalysts, superficial modification, and doping, among others. One of the strategies explored consists in taking advantage of the local plasmonic resonance phenomena (LSPR) displayed by noble metal nanoparticles with specific sizes, these nanoparticles will improve the light absorption properties of the MOF and will generate electron-hole pairs which can be easily transferred to linked materials to conduct redox reactions in the active centers of the material. To take advantage of this effect is important to control the size of the nanoparticle, the linkage method with the photocatalyst, and the morphology, among other factors. Herein, this document provides an overview of the different materials used for hydrogen generation, the different techniques for enhancing the performance of these materials, and a more in-depth view of LPRS effect materials, single atom photocatalysts, and porphyrin MOFs, to identify the opportunities and challenges on the implementation of these materials for photocatalytic hydrogen generation.
20

Nanoengineering plasmonic-based hybrid nanomaterials : towards smart soft materials for biomedical applications

Sepúlveda, Adolfo 10 May 2024 (has links)
Note sur les annexes : 7 documents en format mp4, « the nanoparticle tracking analysis (NTA) technique uses the properties of both light scattering and Brownian motion to extract information about the size and concentration of particles in suspension by employing microscopy techniques. Through the use of an objective lens and a camera, NTA is able to record videos of the scattered light produced by individual particles as they traverse a microchannel. » / Les matériaux souples stimulants dotés de propriétés hybrides présentent un grand intérêt dans les domaines de la biomédecine et de la santé, car ils permettent de développer de nouveaux actionneurs intelligents pour des applications telles que l'administration de médicaments, la cicatrisation des plaies et les plateformes de culture cellulaire in vitro. Les hydrogels thermosensibles, tels que l'hydrogel de poly(N-isopropylacrylamide) (pNIPAM), sont couramment utilisés comme matériaux souples en raison de leur biocompatibilité et de leur capacité à subir des modifications de leurs propriétés physiques et/ou chimiques en fonction de la température, par exemple un rétrécissement ou un gonflement volumétrique. L'incorporation de nanoparticules d'or plasmoniques dans le réseau d'hydrogel représente une excellente alternative pour déclencher localement et à distance le retrait volumétrique de l'hydrogel sous l'effet de la lumière. Les nanoparticules d'or supportant des résonances plasmoniques de surface localisées (LSPR) présentent des propriétés photothermiques exceptionnelles en raison de leur grande section d'extinction optique aux longueurs d'onde visibles et proches de l'infrarouge. Il est donc impératif de bien comprendre les paramètres qui influencent leur synthèse pour garantir la réussite de la mise en œuvre de ces nanomatériaux hybrides intelligents dans le domaine biomédical. Cette compréhension est essentielle pour développer des protocoles bien contrôlés et échelonnables avec des propriétés adaptées et des méthodes de fabrication simples, rentables et à grande échelle. L'objectif principal du travail présenté dans cette thèse était de développer un nanomatériau hybride à base plasmonique avec un comportement réversible et une réactivité élevée pour être utilisé comme actionneurs souples intelligents pilotés par la lumière dans des applications biomédicales. À cette fin, des microgels cœur-coquille Au-pNIPAM ont été choisis comme éléments constitutifs des matériaux hybrides sensibles à la lumière et synthétisés par polymérisation par précipitation avec ensemencement. Dans un premier temps, le rôle crucial des points de nucléation dans le processus de polymérisation a été étudié, montrant leur influence, indépendamment de la taille du noyau d'or, sur la modulation de paramètres importants pour la synthèse de microgels Au-pNIPAM, y compris le rendement d'encapsulation des noyaux d'or, la taille et la capacité de rétrécissement du nanomatériau. Deuxièmement, en exploitant le protocole de synthèse bien contrôlé et la stabilité colloïdale des microgels cœur-coquille Au-pNIPAM, une méthode simple basée sur la compression et les colloïdes a été développée pour fabriquer des films minces Au-pNIPAM photopolymérisables. Cette méthode a permis la fabrication de films homogènes, en termes de densité de noyaux d'or, de l'ordre du micron sur des substrats rigides et malléables. Grâce à l'utilisation de la lumière et de photomasques, le patronage des films Au-pNIPAM a permis la fabrication de microgels Au-pNIPAM anisotropes avec des rapports d'aspect largeur-hauteur élevés sur des substrats et des suspensions, ajoutant une nouvelle dimension à la méthode de fabrication mise au point. Enfin, pour démontrer les propriétés d'actionnement de la lumière du matériau hybride développé et en tirant parti des propriétés thermoplasmoniques collectives des nanoparticules d'or, des robots nageurs guidés par la lumière ont été fabriqués. Sous exposition à la lumière, la trajectoire et la rotation des robots nageurs à l'interface air/eau ont été contrôlées avec précision grâce à l'effet Marangoni induit par la lumière. / Stimuli-responsive soft materials possessing hybrid properties are of great interest in the biomedical and healthcare fields to develop novel smart actuators for applications in, for instance, drug delivery, wound healing, and in-vitro cell culture platforms. Thermo-responsive hydrogels, such as the poly(N-isopropylacrylamide) (pNIPAM) hydrogel, are commonly used as soft materials owing to their biocompatibility and capacity to experience changes in their physical and/or chemical properties as a function of temperature, e.g., volumetric shrinkage. Incorporating plasmonic gold nanoparticles within the hydrogel network represents an excellent alternative to locally and remotely trigger the volumetric shrinkage of the hydrogel upon light illumination. Gold nanoparticles supporting localized surface plasmon resonances (LSPR) exhibit exceptional photothermal properties due to their large optical extinction cross-section at visible and near-infrared wavelengths. A comprehensive understanding of the parameters that influence their syntheses is imperative to ensure the successful implementation of these smart hybrid nanomaterials in the biomedical field. This understanding is pivotal in developing well-controlled and scalable protocols with tailored properties and simple, cost-effective, and large-scale fabrication methods. The main objective of the work presented in this thesis was to develop a plasmonic-based hybrid nanomaterial with reversible behavior and high responsivity to be used as light-driven smart soft actuators in biomedical applications. To this, Au-pNIPAM core-shell microgels were chosen as building blocks of light-responsive hybrid materials and synthesized through seeded precipitation polymerization. At first, the crucial role of nucleation points in the polymerization process was studied, showing their influence - regardless of gold core size - on the modulation of significant parameters for the synthesis of Au-pNIPAM core-shell microgels, including encapsulation yield of gold cores, size, and shrinking capacity of the nanomaterial. Secondly, by exploiting the well-controlled synthesis protocol and colloidal stability of Au-pNIPAM core-shell microgels, a simple compression- and colloid-based method was developed to fabricate photopolymerizable thin Au-pNIPAM films. This method allowed the fabrication of homogeneous films - in terms of gold core number density - in the micron-size range onto both rigid and malleable substrates. Through the use of light and photomasks, the patterning of Au-pNIPAM films permitted the fabrication of anisotropic Au-pNIPAM microgels with high width-to-height aspect rations on substrates and suspension, adding a new dimension to the developed fabrication method. Finally, to demonstrate the light-actuation properties of the developed hybrid material and by leveraging the collective thermoplasmonic properties of gold nanoparticles, light-guided swimming robots of millimeter-scale were fabricated. Under light exposure, the trajectory and rotation of swimming robots at the air/water interface were precisely controlled due to the light-induced Marangoni effect.

Page generated in 0.0645 seconds