• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 36
  • 9
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Synthesis And Studies Of Poly(Propyl Ether Imine) (PETIM) Dendrimers

Jayamurugan, Govindasamy 03 1900 (has links)
Dendrimers are hyperbranched macromolecules, with branches-upon-branches architectures, precise constitutions and molecular weights of several kiloDaltons (Figure 1). The dendritic structure remains to be an influential feature in the developments of dendrimer chemistry at large. Organometallic catalysis forms an active area, wherein the dendrimers find a defined importance. A number of dendrimer types have been utilized to study organometallic catalysis that combine the dendritic architectural principles. Chapter 1 of the Thesis summarizes the advances in the dendrimer-mediated catalyses, apart from an overview of the methods adopted to synthesize dendrimers. Chapter 2 describes the synthesis of newer types of larger generation poly(propyl ether imine) (PETIM) dendrimers. The molecular structure of a sixth generation PETIM dendrimer is shown in Figure 2. The PETIM series of dendrimers are synthesized by iterative synthetic cycles of two reductions and two Michael addition reactions. Modifications of the synthetic methods were identified, so as to facilitate the synthesis and purification of the higher generation dendrimers. Formation of the PETIM dendrimers, possessing a tertiary amine as the branch juncture and ether as the linker component, is assessed systematically by routine analytical techniques. The peripheries of these dendrimers possess either alcohols or amines or carboxylic acids or esters or nitriles, thereby opening up possibilities for varied studies. Architecturally-driven effects are searched constantly while integrating dendrimers in wide ranging studies. With knowledge that un-functionalized PAMAM and PPI dendrimers show fluorescence properties, we tested the PETIM dendrimers for their luminescence property. The photophysical properties of PETIM dendrimers presenting esters, alcohols, acid salts, nitriles and amines at their peripheries were studied. The anomalous fluorescence arising from alcohol terminated PETIM dendrimers (Figure 3) was established through a series of experiments. Various experimental parameters including pH, viscosity of the solvents, aging, temperature and concentration were used to assess the photochemical properties of the PETIM dendrimers. It was observed that generations 1 to 5 absorbed in the region of 260-340 nm, in MeOH and in aqueous solutions. Excitation of the OH-terminated dendrimer solutions at 330 nm led to an emission at ~390 nm (Figure 4). Dendrimers presenting esters, acid salts and amines at their peripheries also exhibited a similar excitation and emission wavelengths. An increase in the fluorescence intensity was observed at low pH and with more viscous solvents. Lifetime measurements showed at least two species (~2.5 and ~7.0 ns) were responsible for the emission. The quenching of the fluorescence originating from the PETIM dendrimers by inorganic anions was also established in the present study. The periodate, persulfate, perchlorate and nitrite anions quenched the fluorescence efficiently among several anions tested. An ‘oxygen-interacted moiety’, in addition to altered hydrogen bonding properties of the dendrimers, was presumed contribute to the anomalous fluorescence behavior. Chapter 3 of the Thesis elaborates photophysical studies of several PETIM dendrimers. Incorporation of catalytically active moieties at the peripheries of dendrimers was identified as an important avenue, in order to explore the effect of the dendritic architectures on the catalytic activities of chosen catalytic moieties. In order to assess the effect of the dendritic scaffold, in relation to both numbers and locations of the catalytic units, an effort was undertaken to study the catalytic activities of catalytic units, that are present in varying numbers within one generation. Partial and full phosphine-metal complex substituted three generations of dendritic catalysts were synthesized, by using a selective alkylation as a key step. The number of the primary amine groups led to define the number of phosphine groups at the peripheries. The primary amine groups were, in turn, prepared by a Michael addition of acrylonitrile and hydroxyl groups, followed by a reduction of the nitrile moieties to the corresponding amines. The first and the second generation PETIM dendrimers utilized in this study present up to four and eight hydroxyl groups at their peripheries. A partial etherification was exercised in order to mask few hydroxyl groups, useful to prepare the partially substituted phosphine groups. Subsequent Michael addition of acrylonitrile with remaining hydroxyl groups, to afford the nitrile terminated dendrimers, and a metal-mediated reduction of the nitrile to amine led to the required number of amine functionalized dendrimers. Functionalization of the peripheries with alkyldiphenyl phosphine moieties was conducted through a Mannich reaction of the amines with formaldehyde and diphenyl phosphine. The subsequent metal complexation with Pd(COD)Cl2 afforded a series of phosphine-Pd(II) complexes, for the zero, first and second generation PETIM dendrimers. Figure 5 shows the molecular structures of a partially and a fully substituted second generation dendrimer. Catalytic activities of the dendrimer-Pd(II) complexes were assessed in both Heck and Suzuki coupling reactions. A C-C bond forming reactions were studied, with the series of dendritic-Pd(II) catalysts, using Cs2CO3 as a base and at 40 oC. In an overall observation, it was found that an individual catalytic site showed a considerable increase in the catalytic activity when it was present in multiple numbers than as a single unit within the same generation (Figure 6). Figure 6. Bar diagrams of (a) Heck reaction and (b) Suzuki reaction, employing the dendritic catalysts 1 - 11. The Heck coupling reaction involved tert-butyl acrylate and iodobenzene, and the Suzuki coupling reaction involved phenyl boronic acid and iodobenzene. The observations revealed that: (i) the higher generation dendritic catalysts exhibited higher catalytic activities per catalytic site and (ii) the dendritic scaffold has a role in enhancing the activities of the individual catalytic sites. The catalysis study identified the catalytic activities that occurred when a series of catalysts within a given dendrimer generation was used. Such a study is hitherto unknown and the observations of this study address some of the pertinent queries relating to the efficiencies of multivalent dendritic catalysts. Chapter 4 of the Thesis describes the synthesis and characterization of series of organometallic PETIM dendrimer and studies of their catalytic activities. Studies on solid-supported catalysis present a significant importance in heterogeneous organometallic catalysis. Silica is a prominently utilized heterogeneous metal catalyst support. Functionalization of the solid supports with suitable chelating ligands is emerging as a viable strategy to circumvent not only the pertinent metal catalyst deterioration and leaching limitations, but also to stabilize the metal particles and to adjust their catalytic efficiencies. In exploring heterogeneous organometallic catalysis, functionalization of silica with a first generation phosphinated dendritic amine was undertaken. The synthetic scheme adopted to synthesize dendrimer functionalized silica is shown in Scheme 1. The reaction of the chloropropylated silica 4 with amine 3 was conducted in CHCl3. Complexation of the functionalized silica 5 with Pd(COD)Cl2 led to isolation of Pd(II)- impregnated silica. Scheme 1. Preparation of Pd nanoparticles stabilized by functionalized silica. It was anticipated that the ratio of phosphine to Pd(II) would be 1:0.5, resulting from a bidendate binding of the phosphine ligand to Pd metal. The observed ICP-OES result indicated that all phosphine ligands did not chelate the metal. With the desire to obtain the metal nanoparticles, the metal complex was subjected to a reduction, which was performed by conditioning 5-Pd(II) complex in EtOH. The Pd metal nanoparticle thus formed was characterized by physical methods, and the spherical nanoparticles were found to have >85 % size distribution between 2-4 nm (Figure 7). Analyses of the Pd(0) impregnated in dendrimer functionalized silica were performed using NMR, XPS spectroscopies, elemental analysis and microscopies. Figure 7. Transmission electron micrograph and histogram of 6, obtained after treatment with EtOH. The Pd-nanoparticle stabilized silica was used in the hydrogenation of several α, β-unsaturated olefins. The catalyst recycling experiments were conducted more than 10 times, and no loss in the catalytic activities were observed. Chapter 5 describes the functionalization of the silica support with diphenylphosphinomethyl-derivatized dendritic amine, palladium nanoparticle formation and the catalysis studies. Overall, the Thesis establishes the synthesis of larger generation PETIM dendrimers, studies of their anomalous fluorescence behavior, organometallic catalysis in solution, as well as, in heterogeneous conditions, pertaining to the C-C bond forming reactions and hydrogenation reactions. (For figure, graph and structural formula pl see the pdf file)
32

Desenvolvimento e validação de metodologia para a determinação de monocloroacetato de sódio e dicloroacetato de sódio em cocoamido,N-[(3-dimetilamino)propil],betaína via cromatografia a gás: GC/FID, GC/ECD e GC/MS / Development and validation of method for determination of sodium monochloroacetate and sodium dichloroacetate in cocoamide,N-[(3-dimethylamine)propyl],betaine by gas chromatography: GC/FID, GC/ECD e GC/MS

LEÃO, CLÁUDIO 11 November 2016 (has links)
Submitted by Claudinei Pracidelli (cpracide@ipen.br) on 2016-11-11T09:28:13Z No. of bitstreams: 0 / Made available in DSpace on 2016-11-11T09:28:13Z (GMT). No. of bitstreams: 0 / O monocloroacetato de sódio (MCAS) e o dicloroacetato de sódio (DCAS) são compostos tóxicos e irritantes ao ser humano e nocivos ao meio ambiente, sendo impurezas indesejáveis na cocoamido propil betaína (CAPB), que é um surfactante anfótero utilizado em produtos de consumo dos segmentos cosmético e domiciliar. Diante dos requisitos de concentração em nível de mg/kg exigidos pelos órgãos reguladores de saúde do governo, tornou-se mandatório o emprego de metodologia com limite de quantificação, precisão e exatidão adequados aos rígidos controles de processo pelos fabricantes da CAPB, bem como, dispor de técnicas convencionais com poder de resolução e proficiência pelo controle de qualidade e neste contexto inseriu-se a cromatografia a gás. Neste estudo foram estabelecidos os procedimentos analíticos que definiram as melhores condições para identificar e quantificar as impurezas MCAS e DCAS na matriz CAPB por meio da cromatografia a gás. A preparação das amostras consistiu da derivação das impurezas MCAS e DCAS a ésteres etílicos e a extração líquido-líquido em hexano para separar dos demais constituintes da matriz. Os modos de detecção acoplados à cromatografia a gás foram a ionização pela chama (GC/FID), a captura de elétrons (GC/ECD) e a espectrometria de massas (GC/MS). A validação comprovou que as metodologias são lineares entre 4 e 50 mg/kg com recuperação de 70 a 120%, apresentam limites de quantificação inferiores a 10 mg/kg e produziram médias e incertezas similares na amostra examinada, constituindo-se alternativas para a determinação de cloroacetatos em betaínas. / Dissertação (Mestrado em Tecnologia Nuclear) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
33

Fímbrias Pil em Escherichia coli enteropatogênica atípica: Caracterização e investigação do papel de PilS e PilV na adesão bacteriana. / Type IV pilus in atypical enteropathogenic Escherichia coli: characterization and investigation of PilS and PilV in bacterial adhesion role.

Natalia Cristina de Freitas 13 June 2012 (has links)
Fímbrias do tipo IV estão associadas a diversos fenótipos em bactérias gram-negativas, e o presente estudo consistiu na caracterização da fímbria Pil e investigação de seu papel na adesão bacteriana de isolados de EPEC atípica. Por PCR e RT-PCR foram investigadas a presença e a funcionalidade do operon Pil e os resultados demonstraram que este está sendo transcrito somente nos isolados BA558 e BA956. Os genes pilS e pilV foram clonados em vetor de expressão para obtenção das proteínas Pil recombinantes e produção de anticorpos policlonais. A análise qualitativa dos testes de inibição da adesão utilizando os soros anti-PilS e anti-PilV juntos demonstraram que o isolado BA558 apresentou mudança de fenótipo de adesão. Esses resultados nos permitem concluir que o operon Pil está funcional em BA558 e BA956, e a expressão da fímbria Pil nessas cepas não está relacionada à formação de biofilme e autoagregação, porém a proteína fimbrial PilS juntamente com a adesina PilV parecem exercer uma função acessória importante na interação de BA558 às células HEp-2. / Type IV fimbriae are associated with several phenotypes in gram-negative bacteria. The aim of this study was the characterization of the Pil fimbria and its role in the interaction of atypical EPEC isolates in bacterial adhesion. Using PCR and RT-PCR, we investigated the presence and functionality of the pil operon genes. The results showed that these genes are transcribed only in the BA558 and BA956 isolates. The pilS and pilV genes were cloned into an expression vector for recombinant proteins and polyclonal antibodies production. Qualitative analysis of the adherence inhibition assays using both rabbit sera changed to localized-like the phenotype of BA558 isolate adhesion. Together, these results allow us to conclude that the Pil operon is functional only in the BA558 and BA956 isolates and that the expression of Pil fimbriae in aEPEC is not related to biofilm formation and autoaggregation but, the fimbrial PilS protein together with PilV adhesin seem to play an important accessory function in the interaction between the BA558 and epithelial cells in vitro.
34

Synthesis of Polyaryl-substituted Bisquinazolinones with potential photophysical properties

Mmonwa, Mmakwena Modlicious 11 1900 (has links)
3,5-Dibromo-2-aminobenzamide was reacted with 1,3-cyclohexanedione derivatives in the presence of iodine as catalyst in toluene under reflux to afford novel 6,8-dibromo-2-[3-(2´-alkyl-1´,2´,3´,4´-tetrahydro-6´,8´-dibromo-4´-oxoquinazoline-2yl)propyl]quinazolin-4(3H)-ones in high yields. Suzuki-Miyaura cross-coupling of the latter with arylboronic acids in the presence of Pd(PPh3)2Cl2–Xphos catalyst complex and K2CO3 as a base in dioxane-water mixture (3:1, v/v) afforded the corresponding polyaryl-substituted bis-heterocycles in a single step operation. The resultant compounds were characterized using a combination of NMR (1H and 13C) and IR spectroscopic techniques, as well as mass spectrometry. The electronic absorption and emission properties of these polyaryl-substituted bis-heterocycles comprising 2,3-dihydroquinazolin-4(1H)-one and quinazolin-4(3H)-one moieties linked by a flexible carbon chain were measured in dimethylsulfoxide (DMSO) and acetic acid by means of UV-Vis and fluorescence spectroscopic techniques. The absorption spectra of the resultant polyaryl-substituted bis-heterocycles showed blue-shift in acetic acid and red-shift in DMSO, while their emission spectra are blue-shifted in DMSO and red-shifted in acetic acid. The 4-methoxy groups on aryl-substituents caused red shift on π‒π* transition of the aryl-substituents. Moreover, it was also observed that as the propyl linkage becomes more substituted, the absorption and emission intensities decrease. / Chemistry / M. Sc. (Chemistry)
35

Synthesis of Polyaryl-substituted Bisquinazolinones with potential photophysical properties

Mmonwa, Mmakwena Modlicious 11 1900 (has links)
3,5-Dibromo-2-aminobenzamide was reacted with 1,3-cyclohexanedione derivatives in the presence of iodine as catalyst in toluene under reflux to afford novel 6,8-dibromo-2-[3-(2´-alkyl-1´,2´,3´,4´-tetrahydro-6´,8´-dibromo-4´-oxoquinazoline-2yl)propyl]quinazolin-4(3H)-ones in high yields. Suzuki-Miyaura cross-coupling of the latter with arylboronic acids in the presence of Pd(PPh3)2Cl2–Xphos catalyst complex and K2CO3 as a base in dioxane-water mixture (3:1, v/v) afforded the corresponding polyaryl-substituted bis-heterocycles in a single step operation. The resultant compounds were characterized using a combination of NMR (1H and 13C) and IR spectroscopic techniques, as well as mass spectrometry. The electronic absorption and emission properties of these polyaryl-substituted bis-heterocycles comprising 2,3-dihydroquinazolin-4(1H)-one and quinazolin-4(3H)-one moieties linked by a flexible carbon chain were measured in dimethylsulfoxide (DMSO) and acetic acid by means of UV-Vis and fluorescence spectroscopic techniques. The absorption spectra of the resultant polyaryl-substituted bis-heterocycles showed blue-shift in acetic acid and red-shift in DMSO, while their emission spectra are blue-shifted in DMSO and red-shifted in acetic acid. The 4-methoxy groups on aryl-substituents caused red shift on π‒π* transition of the aryl-substituents. Moreover, it was also observed that as the propyl linkage becomes more substituted, the absorption and emission intensities decrease. / Chemistry / M. Sc. (Chemistry)
36

Crystallization of Parabens : Thermodynamics, Nucleation and Processing

Huaiyu, Yang January 2013 (has links)
In this work, the solubility of butyl paraben in 7 pure solvents and in 5 different ethanol-water mixtures has been determined from 1 ˚C to 50 ˚C. The solubility of ethyl paraben and propyl paraben in various solvents has been determined at 10 ˚C. The molar solubility of butyl paraben in pure solvents and its thermodynamic properties, measured by Differential Scanning Calorimetry, have been used to estimate the activity of the pure solid phase, and solution activity coefficients. More than 5000 nucleation experiments of ethyl paraben, propyl paraben and butyl paraben in ethyl acetate, acetone, methanol, ethanol, propanol and 70%, 90% ethanol aqueous solution have been performed. The induction time of each paraben has been determined at three different supersaturation levels in various solvents. The wide variation in induction time reveals the stochastic nature of nucleation. The solid-liquid interfacial energy, free energy of nucleation, nuclei critical radius and pre-exponential factor of parabens in these solvents have been determined according to the classical nucleation theory, and different methods of evaluation are compared. The interfacial energy of parabens in these solvents tends to increase with decreasing mole fraction solubility but the correlation is not very strong. The influence of solvent on nucleation of each paraben and nucleation behavior of parabens in each solvent is discussed. There is a trend in the data that the higher the boiling point of the solvent and the higher the melting point of the solute, the more difficult is the nucleation. This observation is paralleled by the fact that a metastable polymorph has a lower interfacial energy than the stable form, and that a solid compound with a higher melting point appears to have a higher solid-melt and solid-aqueous solution interfacial energy. It has been found that when a paraben is added to aqueous solutions with a certain proportion of ethanol, the solution separates into two immiscible liquid phases in equilibrium. The top layer is water-rich and the bottom layer is paraben-rich. The area in the ternary phase diagram of the liquid-liquid-phase separation region increases with increasing temperature. The area of the liquid-liquid-phase separation region decreases from butyl paraben, propyl paraben to ethyl paraben at the constant temperature. Cooling crystallization of solutions of different proportions of butyl paraben, water and ethanol have been carried out and recorded using the Focused Beam Reflectance Method, Particle Vision and Measurement, and in-situ Infrared Spectroscopy. The FBRM and IR curves and the PVM photos track the appearance of liquid-liquid phase separation and crystallization. The results suggest that the liquid-liquid phase separation has a negative influence on the crystal size distribution. The work illustrates how Process Analytical Technology (PAT) can be used to increase the understanding of complex crystallizations. By cooling crystallization of butyl paraben under conditions of liquid-liquid-phase separation, crystals consisting of a porous layer in between two solid layers have been produced. The outer layers are transparent and compact while the middle layer is full of pores. The thickness of the porous layer can reach more than half of the whole crystal. These sandwich crystals contain only one polymorph as determined by Confocal Raman Microscopy and single crystal X-Ray Diffraction. However, the middle layer material melts at lower temperature than outer layer material. / <p>QC 20130515</p> / investigate nucleation and crystallization of drug-like organic molecules

Page generated in 0.0299 seconds